
The University of Manchester Research

Scientific GPU Programming with Data-Flow Languages

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Goodman, D., & Lujan, M. (2011). Scientific GPU Programming with Data-Flow Languages. Poster session
presented at Multi-Core and Reconfigurable Super Computing, Bristol.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. Jun. 2022

https://www.research.manchester.ac.uk/portal/en/publications/scientific-gpu-programming-with-dataflow-languages(7748dc50-5907-4f4b-8526-67904282e431).html


protection from race conditions. This protection can be provided by

either the addition of locks, or the use of transactions, but the

overall effect is there are areas of memory that are restricted such

that only a single thread may access them at a time when they are

being modified.

These restrictions leaves us with the strikingly similar set of four

types of memory as can be seen in the table on the left. Once again

the scheduling of the computation is based on the data

dependencies, not the control flow, although in data-flow languages

this is overt. Taking this view, the dependency graph from the

earlier CUDA program may convert to the following data-flow

graph.

GPU Programming with Data-Flow Languages

Daniel Goodman Mikel Luján

Current GPU Dataflow

Read Only: Memory which can be read by one or more

blocks in order to get their input. This memory will never

change during the kernel invocation

Read Only: Memory which can be read by multiple threads

in order to get their input.

Owner Writable: Memory that can only be written to by a

specific thread within a block, and will not be read or written

to by other blocks during this kernel invocation or any other

thread before the next synchronization point.

Owner Writable: Memory that can only be written to by a

specific thread, and will not be read by other threads during

this thread's execution. Once this thread has completed this

memory can become read only memory.

Atomic: Memory that is protected by atomic sections, so

allowing writes from multiple threads at a performance cost.

Atomic: Memory that is protected by atomic sections,

allowing multiple threads to safely modify it, but potentially

at a performance cost.

Block Local: Memory used to store temporary values used

by a single block or thread within the block

Thread Local: Memory used to store temporary values used

by a thread.

Memory Type Memory Usage

Main Owner Writeable, Atomic,

Read Only, Block Local

Shared Block Local

Constant Read only

Texture Read only

This poster argues that the memory and synchronization restrictions

when programming GPU's mean that GPU’s are better served by an

alternative programming style known as data-flow programming. We

demonstrate that correctly constructed GPU programs map onto a

coarse grained data-flow model, and that the programming of GPU's

is a specific reoccurrence of the more general data-flow model.

GPUs have a high level of parallelism, on which large numbers of

threads run in small groups to compute independent results without

communication. These computations are controlled by the flow of

data through pipelines as transferring control information between

groups of threads is not possible. Currently CUDA and OpenCL are

low level non-domain specific languages for programming GPUs.

With these the programmer is loaded with a lot of low level details

that add time and complexity to the construction of codes. This has

resulted in a large number of domain specific languages being

produced. These are augmented by more general purpose languages

provided by companies such as the Portland Group and MathWorks.

However all of these languages are derived from an imperative

programming model where the user specifically describes the order

that instructions are to be executed, instead of just describing the

dependencies between instructions. The imperative model was

originally developed for single threaded applications and lacks an

intuitive way of handling the large levels of concurrency.

Conclusion
GPUs are data-flow devices, however, for scientific computing they

are programmed with imperative languages developed from C. This

results in many natural actions in the language being illegal, and

forces the user to comprehend the difficult problem of how to write

data-flow code in an imperative language. Instead we believe it

would be better to develop a data-flow language for scientific

computation on GPUs. Such a language would make it easier for

the user to program codes to run on these devices, and would also

allow stronger semantics that could support type checking and

memory management in an efficient way. Collectively this would

make GPUs easier to program, more accessible and will blur the

line between the GPU and the CPU.

Acknowledgments
Many thanks to Chris Kirkham, Ian Watson, Salman Khan and

Berham Khan for their thoughts. Dr. Luján is supported by a Royal

Society University Research Fellowship

CUDA Program Execution
CUDA kernels are made up of Blocks. Blocks are independent of each other and have no guarantees about when they will

execute, which order that they will execute in, or even that two blocks will be executing at the same time. To handle this

concurrency, normally blocks will maintain separation on outputs and will only share inputs. Atomic statements can be used

to ensure that interleaved of instructions do not affect the correctness of the result written to areas of memory used by

multiple blocks. However, because there is no guarantee that two blocks are executing at the same time, no form of complex

interaction is possible. For example it is not possible to use the atomic statements for one block to communicate with

another sending back and forth information about each other's computations. Instead, when it is necessary for a pair of

blocks to communicate to successfully complete the computation, these blocks must be split into two and placed in separate

kernels. These kernels consist of the computation before the communication and the computation after the communication.

The information that the blocks wish to communicate is then written out into separate memory locations by the first

invocation and then read back in by the receiving block in the second kernel invocation. Semantically this splitting into two

kernels is the same as the synchronization points within a block.

These restrictions mean that in addition to several types of physical memory such as shared, constant, main and texture

memory used for different tasks, abstractly the memory used in a program can be grouped as in the above table. The

mapping of these abstract types of memory map onto the physical memories can be seen in the table on the left. The CPU is

used to turn these kernel invocations into a workflow, keeping track of dependencies and deciding which kernel to execute

next. This allows the scenario where the CPU will wait for several kernels to complete before starting another kernel, so

providing the potential for complex synchronisation restrictions. A dependency graph constructed from multiple kernels can

be seen on the left, showing how different kernels can run concurrently and depend on each other's results.

Data-Flow Languages
Unlike control flow programs or imperative programs that view a program as a sequential list instructions that must be

followed, a data-flow program consists of either dynamically or statically generated graph, where the nodes are a fragments

of sequential code that can be run in parallel by separate threads and edges are data dependencies. Each of these fragments

has a set of inputs that are required before it can begin executing and a set of outputs that it generates. Once all the required

inputs for a fragment of code have been generated its associated thread can be passed to the scheduler for execution. So the

organisation is controlled by the flow of data through the program, not the flow of control. Aside from the data

dependencies there is no guarantee of the order that the threads will execute in and multiple threads may make use of a

single output from an earlier thread. This means that it is necessary for these threads to be functional in their construction.

This means that once a piece of data has been written to it will remain the same for the entire execution of the program.

However, the removal of mutable memory restricts the class of programs that can be described, and the way programs can

be described. For example, loops have to demonstrate the same semantics as recursion, and systems such as a concurrent

booking service for an airline is not possible. The restriction to loops is overcome by allowing mutable thread local memory.

The restriction on a parallel booking system is because of the need for a single piece of data describing all bookings that can

only be modified by a single thread at a time. Shared mutable state is needed to overcome this. Such shared state needs

...race


