
The University of Manchester Research

Techniques for dynamically updating a web page

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Brown, A., Jay, C., & Chen, A. Q. (2008). Techniques for dynamically updating a web page. (SASWAT Technical
Reports). University of Manchester.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. Jun. 2022

https://www.research.manchester.ac.uk/portal/en/publications/techniques-for-dynamically-updating-a-web-page(d50f122d-33d1-4302-b235-4ae418a584f4).html

School
of

Computer
Science

Information
Management

Group

HCW

HCW— SASWAT Technical Report 3, September 2008

Techniques for dynamically updating
a Web page

Andy Brown, Caroline Jay and Alex Chen

Human Centred Web Lab
School of Computer Science
University of Manchester
UK

World Wide Web (Web) documents, once delivered in a form that
remained constant whilst viewed, are now often dynamic, with
sections of a page able to change independently (and not requir-
ing a full page reload), either automatically or as a result of user
interaction. In order to make these updates, and hence their host
pages, accessible, it is necessary to detect when the update occurs
and how it has changed the page, before determining how, when
and what to present to the user. This can only be achieved with
an understanding of the technologies used to achieve dynamic up-
dates and the human factors influencing how people use them.
This report classifies the types of update that may be included
on a page and reviews the techniques available to Web developers
for achieving them. This is complemented by an analysis of Web
pages, including the most popular pages and a random selection,
which investigates how frequently some technologies are imple-
mented. While JavaScript is used in nearly all sites, and Flash
in about half, AJAX is used in some 20% of the current top 20
pages.

Human Centred Web

2

SASWAT

The aim of the SASWAT project is to develop a framework for mapping the
competing dynamic micro content produced by Web 2.0 technologies to audio.
The SASWAT web pages may be found at http://hcw.cs.manchester.ac.uk/
research/saswat/.

SASWAT Reports

This report is in the series of HCW SASWAT technical reports. Other reports in this
series may be found in our data repository, at http://hcw-eprints.cs.man.ac.uk/
view/subjects/saswat.html. Reports from other Human Centred Web projects
are also available at http://hcw-eprints.cs.manchester.ac.uk/.

Acknowledgements

This report forms Deliverable 3, Range and Scope of Dynamic Updates, for the
SASWAT project. SASWAT is funded by the EPSRC, reference: EP/E062954/1.

Techniques for dynamically updating a Web page

Contents

1 Introduction 1

2 Range of Dynamic Updates 1
2.1 Initiating Event . 1

2.1.1 Automatic Updates . 2
2.1.2 User-initiated Updates . 2

2.2 Page Changes . 3
2.2.1 Add . 3
2.2.2 Remove . 4
2.2.3 Replace . 4
2.2.4 Rearrange . 4

2.3 Presentation . 5
2.4 Semantics . 5
2.5 Taxonomy of Updates . 6

2.5.1 Timing . 6
2.5.2 Page Effects . 6

2.6 Design Patterns . 6

3 Technologies 8
3.1 DOM . 9
3.2 XMLHttpRequest . 9

3.2.1 AJAX . 10
3.3 DOM Load and Save . 12
3.4 Inline Frames . 13
3.5 Objects . 13
3.6 Java . 13
3.7 Flash . 14
3.8 Plugin scripting . 14
3.9 Image Wrappers . 14
3.10 Static page changes . 14

4 Usage of Updates 15
4.1 Method . 15
4.2 Results . 15

5 Summary 16

Human Centred Web Lab
School of Computer Science
University of Manchester
Kilburn Building
Oxford Road
Manchester
M13 9PL
UK

tel: +44 161 275 7821

http://hcw.cs.manchester.ac.uk/

Corresponding author:
Andy Brown
tel: +44 (161) 275 7821
andrew.brown-3@manchester.ac.uk
http://homepages.cs.manchester.ac.
uk/~browna

Section 1 Introduction 1

1 Introduction

Web pages that update dynamically are an integral part of ‘Web 2.0’, potentially
offering benefits to both provider (e.g., updating a small section of a page can use
less bandwidth than a full page refresh) and user. Dynamic updates (defined here
as changes to a page which occur after its initial loading, but without a full page
refresh) can allow the latter group to interact with Web pages in a way that resembles
traditional desktop programs, indeed office ‘applications’ are available to use online1.
Accessibility of these updates is, however, thought to be poor, resulting in initiatives
such as ARIA (Accessible Rich Internet Applications [3]), where markup allows page
authors to indicate the function of controls, and the attributes of dynamic content
(such as how important it is). The capabilities of screen readers (and, to a lesser
extent, browsers) to deal with this content are discussed in Deliverable 2 of this
project [1]. This report examines the nature of updates (Section 2), proposing a
taxonomy by which to classify them (Section 2.5), and describes the technologies
that may be used to enable them (Section 3). The prevalence of this technology is
discussed in Section 4.

2 Range of Dynamic Updates

This section looks at the current range of Web-2.0 sites, exploring the variety of
applications for which the technologies are implemented. In particular it considers
situations where the content or the structure of a page may change while it is being
viewed: dynamic updates. This analysis is intended to inform experiments which
are designed to develop an understanding of how users interact with these updates,
with emphasis on building a model of how attention is allocated when these updates
occur. Accordingly, this subject is approached from the perspective of the user
rather than the developer, examining how the update is seen by the user, not how
it is implemented.

The analysis focuses on four attributes of an update. The first two describe the
behaviour of the update: what causes it to occur (i.e., when does it happen), and
what effect the update has on the page structure. The second two describe the
update in terms of its content: its presentation and its semantics. These attributes
are considered in the following sections, and are summarised in the taxonomy that
follows.

2.1 Initiating Event

Updates can be split into two categories based upon the initiating event: they may
occur automatically, independent from any user activity, or they may occur as a
result of user activity. The distinctions between these are described in more detail
below.

1For example, see http://docs.google.com/

2 Andy Brown

2.1.1 Automatic Updates

It has not been uncommon for web-pages to periodically and automatically reload.
This may be achieved with ‘traditional’ techniques by using the following HTML
meta tag:

<meta http-equiv=refresh content=10>

Inserting this into the head section of a page will cause the entire page to reload
every 10 seconds. A common use for this has been for sites providing information on
rapidly changing events, such as sports fixtures, enabling users to keep up-to-date
with the latest score and commentary without needing to manually reload the page.

In contrast, Web-2.0 technologies, such as AJAX, allow individual sections of a
page (‘micro-content’) to be refreshed periodically, without the need to reload the
whole page. Automatic updates are those where this refresh is not dependent upon
any user activity. Examples include:

• Digg Spy2: The page shows a list of recent stories from Digg.com; every 2
seconds a new story is added to the top of the list (the others move down, and
the bottom one is removed)

• Yahoo! Finance3: The page displays the current values of various share indices
(actually the values are approximately 20 minutes old). These are coloured
green or red, depending upon whether the market is up or down for the day,
and update every few seconds. Different indices update at different rates.

2.1.2 User-initiated Updates

While the updates discussed above occur automatically, many others are triggered
by some action by the user. The triggering action may be one of:

• Mouse click on link, image, button, etc.

• Hovering the mouse over a link, image, button, etc.

• Typing (note that the keyboard may be used to emulate many mouse actions).

Examples include:

• The Yahoo! home page4 displays news in tabs (‘In the news’, ‘World’, ‘Local’,
‘Finance’) — clicking the tab title loads relevant content in the box below.

• Google Suggest5 is a version of the Google search engine interface that gives
users suggestions for completing their query string. Each time a character
is typed, a box shows 10 matches, along with the number of hits each of
these would produce. This box is interactive, in the sense that the user may
navigate (with the mouse or keyboard) to any of the suggestions and activate
that suggestion as their search.

2http://digg.com/spy
3http://finance.yahoo.com/intlindices?e=europe
4http://www.yahoo.com/
5http://www.google.com/webhp?complete=1\&hl=en

Section 2 Range of Dynamic Updates 3

• National Rail Enquiries6 has a similar form completion to help with a con-
strained query. In this case, entries to the form should match a station: as the
user types, the system displays all stations that match. Note that with some
systems of this type (but not this example) suggestions are not displayed until
the user has entered a minimum number of characters (often three).

• The Magic Seaweed7 surf report pages have a bar chart giving the predicted
size of the swell over a few days. Below this are three map images showing
swell size, swell period and wind speed at a given time. Hovering the mouse
over a time period on the chart causes the images below to be replaced by maps
appropriate for that time. This example is particularly interesting as moving
the mouse across the chart effectively creates an animation in the maps below.

• Slide shows. When viewing a photo page on Flickr8, there is often a section
of the page that shows the next and previous photos from that user. This has
controls that allow viewers to scroll through the thumbnails of all photos —
these are replaced dynamically, while the rest of the page remains unchanged.
(Note that this section of the page may be expanded or contracted dynami-
cally.)

It is probably worth noting that, from the user’s perspective, the distinction
between user-initiated and automatic is not quite as clear-cut as it might appear.
Some user initiated updates might be triggered inadvertently (e.g., those initiated by
mouse hover), or unexpectedly, e.g., users might expect a link to lead to a new page,
whereas it actually updates their current page. A further complication is where a
single action by the user might result in a series of changes, e.g., pressing a play
button for a slide show. While the first update is clearly user-initiated, it is not
clear how to classify subsequent changes. Experimental evidence will be needed to
determine whether these types of update are attended to in the same way as other
automatic changes.

2.2 Page Changes

As well as understanding when an update occurs, it is possible to consider it in
terms of how it changes the structure of the page: is information added or removed,
replaced or rearranged? We propose a second axis of classification, one that is
orthogonal to the initiating event, by which updates may be categorised.

2.2.1 Add

Some user-requested updates will simply be a request for additional information,
and this will be added to the page as they see it. In these cases, all the content
that was visible before the update will still be visible. Note, however, that this often
implies a certain degree of reconfiguration of the page. For example, a footer might

6http://www.nationalrail.co.uk/
7http://magicseaweed.com/Hells-Mouth-Surf-Report/27/
8For example, http://www.flickr.com/photos/andybrown/2497320979/

4 Andy Brown

become further from the header (and hence, perhaps, move out of the user’s view)
as the area containing the new content expands. Examples include the following:

• BBC News9 has a section for ‘Your local news, weather and sport’, which ex-
pands to show more content. The content below moves down to accommodate.

• The Yahoo! home page10 has what appear like buttons on the top right
(‘weather’, ‘mail’, ‘horoscopes’, etc.) — when the user hovers the mouse over
one of these it expands to show a box below with relevant information.

2.2.2 Remove

This type of update is essentially the opposite of the previous type: information is
removed from view. As an example of this and the previous type of update, one might
envisage a control that causes a section of a page to expand, revealing additional
information about a subject; this could be considered an adding update. When the
user has read the information, they may activate the control again to contract the
page section, hiding the information: this could be considered a removing update.
Note that this type of update does not need to involve communication with the
server. An example is the ‘Your local news, weather and sport’ panel on the BBC
page, described above, which may also be hidden.

2.2.3 Replace

The third type of user-requested update covers all situations where some information
on the page is replaced by some other information. Examples include slide shows,
where an image and its title and caption might all be replaced, while the surrounding
context (e.g., a summary of the show, thumbnails of all images) remains, or tabbed
panels (such as those on the Yahoo home page described above).

This is an important category, within which updates may be placed on a scale
reflecting the similarity of the original information with that which replaced it (see
presentation and semantics, below). At one end of this scale are updates where the
structure does not change, only a small piece of information. A typical use might be
to present sports scores, as per automatic updates but giving the user control over
when to request the update: here only a single number might change. At the other
end of the scale, some tabbed panes may contain radically different information
in each tab (note that the Yahoo tabs have identical formats to each other). A
special type of replacement is where information is replaced by a rearrangement of
the original. The situations in which this may be considered a replacement update
versus a rearrange update are discussed in the next section.

2.2.4 Rearrange

Rearrangements are where the update does not actually change the information
seen by the user, just the arrangement of it on the page. We may further refine this

9http://news.bbc.co.uk/
10http://www.yahoo.com/

Section 2 Range of Dynamic Updates 5

category to distinguish between those situations where the user has control of the
rearrangement (e.g., a classic ‘drag and drop’, such as iGoogle11) and those where
there is no explicit control. The latter case, exemplified by the re-ordering of the
rows of a table, may be considered a special case of replacement. This is particularly
pertinent in the case of tables, where the table might actually span multiple pages,
meaning its rearrangement does change the content. It would not be desirable to
classify single page table rearrangements differently from rearrangements of long
tables spanning multiple pages.

2.3 Presentation

Attention is likely to be attracted differently according to how the information is
presented [5]: movement [6], and certain colours [2], are known to be visually salient,
and it is possible that different forms of information, such as images, text, or videos,
are attended to differently. In addition to the intrinsic nature of the new information,
how it differs from what was being viewed previously may also change its saliency.
Some updates change only the meaning of the information (e.g., a stock value might
change from 3.14 to 3.18, but presentation remains identical), while others might
result in a different visual appearance.

2.4 Semantics

This attribute describes how relevant the changes are likely to be to the user, and
thus depends upon the content, or semantics, of the update. This is expected to
have a major impact on how important the user considers the information, and thus
how much attention they allocate to it. Inevitably, this attribute is less concrete,
and more difficult to divide into distinct classes, but should it prove important, it
may be possible to allocate an update a level of ‘importance’, perhaps inferred from
factors such as its position on the page.

As examples of the range of types of content, consider the following:

Yahoo Finance. Updates refresh the current values of the displayed stock indices.
It is reasonable to assume that this is the ‘primary’ information on the page,
and that these updates have high relevance.

News tickers. News sites often have tickers giving the latest headlines. The rela-
tively small size and discreet nature of these suggest that the page authors con-
sider them of ‘secondary’ importance, so it can be assumed that these updates
have relatively low relevance. (This is supported by eye-tracking studies [4].)

Google Suggest. Auto-suggest lists, such as Google Suggest, or National Rail En-
quiries, update to give the user suggestions when completing a form. Some-
times they list all possible options (e.g., if entry is constrained), while in other
cases, they simply provide suggestions. In either situation, the information is
not essential for task completion, but is supplementary, aiding the user. The

11http://www.google.com/ig

6 Andy Brown

nature of these means that they are inevitably directly relevant to the users
task.

These three examples give updates characteristic of three types that might be
labelled primary, secondary, and supplementary relevance. These are vague cate-
gories, and assigning updates to them is unlikely to be an objective process, so the
validity of using this concept in the taxonomy is not clear. It is therefore suggested
at this stage, but not included below. It is possible, however, that experiments on
how users allocate attention to updates might suggest a way of classifying updates
on this axis.

2.5 Taxonomy of Updates

From the attributes described above, it is possible to tentatively propose the fol-
lowing classification system for updates. This is based purely on the behavioural
characteristics of the updates, and not upon presentation or semantics. The taxon-
omy is based on a largely theoretical consideration about how updates may behave,
and whilst backed up with examples, a comprehensive study of their applications on
the Web might highlight areas for revision. Nevertheless, it should serve to inform
investigations into how users allocate attention to updates, and thus into making
these updates accessible.

2.5.1 Timing

What causes the update to occur?

Automatic Updates which occur independently from any user activity.

User-Initiated Updates which occur as a direct result of user activity.

2.5.2 Page Effects

What is the effect on the page of the update?

Add Information that the user has not seen before is added to the page.

Remove Information is removed from the page and not replaced.

Replace Existing content is changed — information that was visible before the
user’s action is no longer shown, but different information takes its place.

Rearrange The information contained in the page does not change, but its struc-
ture is modified in a way over which the user has direct control.

2.6 Design Patterns

The Yahoo! pattern library12 is a set of design patterns, i.e., reusable solutions to
common problems, for Web design. Typically, these patterns are described in terms

12http://developer.yahoo.com/ypatterns/index.php

Section 2 Range of Dynamic Updates 7

of some information that needs to be conveyed to the user, and a method for doing
this. For example, the Auto Complete pattern13 is described as follows (this is a
summary — the library gives much more detail, including advice on when to use,
why it works, and accessibility issues):

Problem Summary: The user needs to enter an item into a text box
which could be ambiguous or hard to remember and therefore has
the potential to be mis-typed.

Solution: As the user types, display a list of suggested items that most
closely match what the user has typed. Continue to narrow or
broaden the list of suggested items based on the user’s input.

The library contains many examples of how, and why, dynamic updates can be
used to make users Web tasks more efficient. The existence of libraries such as this
is only likely to increase the usage of these updates. Here, these patterns are used
to exemplify application of the taxonomy described above. Note that many of the
patterns do not relate to dynamic updates (e.g., methods for presenting a user’s
status in a community) — these are not discussed here.

The largest class of patterns are the transition patterns, which are used to high-
light change on a page, to ensure the user is aware of it. Different transition patterns
may be used for different types of page change, and may be placed into the page-
effects categories from the classification above. These may be used for either auto-
matic or user-initiated updates. Table 1 shows how all relevant patterns fit into this
taxonomy. Two transitions not included, Brighten transition and Dim transition,
are used to highlight whether or not a region is active.

A second distinct group of pattern contains the four invitation patterns, which
indicate to the user that a particular item on a page may be interacted with. These
include Cursor invitation, where the mouse cursor changes to indicate interactivity,
and Tool-tip invitation, where a tool-tip appears when an area is hovered over, and
explains how it may be interacted with — these patterns may be applied to controls
for any user-initiated update. The Drop invitation indicates suitable targets for drag
and drop operations, and thus is applicable to user-initiated rearrange updates. The
Hover invitation is similar to the tool-tip, but typically gives more information, and
that information is added directly onto the web page. Thus it is implemented via
an update that is user-initiated (hover) and may add-to or replace content.

The other patterns that use dynamic updates are as follows. Auto complete is
user-initiated addition (for the first key press), or replacement (for subsequent key-
presses); Drag and drop modules is user-initiated rearrangement; Carousel (a set
of pictures from which the user must choose, not unlike a slide show) and Module
tabs (e.g., Yahoo! home page) are both user-initiated replacement. In addition to
these, which necessarily involve dynamic updates, the Calendar picker, Rating an
object, Writing a review, and Sign-in continuity patterns may be implemented using
dynamic updates.

The Yahoo! pattern library gives another view on dynamic updates — that of
designers (rather than users or developers) who wish to communicate some informa-

13http://developer.yahoo.com/ypatterns/pattern.php?pattern=autocomplete

8 Andy Brown

Page Effect Initiation
Pattern Add Remove Replace Rearrange Automatic User
Transitions
Animate X X X
Collapse X X X
Cross-fade X X X
Expand X X X
Fade-in X X X
Fade-out X X X
Self-healing X X X
Slide X X X
Spotlight X X X
Invitations
Cursor X X X X X
Tool-tip X X X X X
Drop X X
Hover X X X
Other
Auto complete X X X
Drag and drop X X
Carousel X X
Module tabs X X

Table 1: Classification of Yahoo! patterns. Note that this classification is done ac-
cording to the update, which the pattern may be loosely associated with (e.g., drop
invitation, or which the pattern demands (e.g., auto complete).

tion to the user. In many cases this is done by dynamically updating the page. This
brief introduction to the patterns has shown how the classification system might
work, although precise categorisation of many patterns will depend upon the actual
implementation.

3 Technologies

This section describes the techniques that developers can use to update their pages
dynamically. The options include:

• XMLHttpRequest

• The Document Object Model (DOM) Level 3 Load and Save Specification

• Inline frames

• HTML 4 Objects

• Java Applets

• Adobe Flash Player

Section 3 Technologies 9

• Plugin Scripting

• Image wrappers

These are discussed below, following a brief introduction to the Document Object
Model (DOM).

3.1 DOM

The Document Object Model (DOM)14 is a way of representing documents as a
hierarchy, and defines a standard way to manipulate and access HTML documents.
It provides a platform and language neutral interface that allows programs or scripts
to access and update the content and style of an HTML or XML document dynami-
cally. DOM is divided into three parts: Core, HTML and XML. The Core interface
can represent any structured document by providing a low-level set of objects, while
both HTML and XML are higher level interfaces, used with the core interface for
simpler access to specific types of documents.

The DOM specifications are divided into several levels, of which the first three
are of most interest here:

• Level 1: This level concentrates on the document models (core, HTML, and
XML). It is used to navigate and manipulate a document.

• Level 2: This level concentrates on the style sheet model. It is used to
manipulate the style information.

• Level 3: This level concentrates on loading and saving the document as well
as key events and event groups.

3.2 XMLHttpRequest

XMLHttpRequest15 is an application programming interface (API) that can be used
by scripting languages (e.g., JavaScript16) to transfer XML (extensible markup lan-
guage) to and from a web server over Hypertext Transfer Protocol (HTTP). The
connection is independent from the connection by which the page was originally
loaded, thus allowing data transfer to be asynchronous. The World Wide Web
Consortium (W3C) also notes that the name is misleading on all three counts: it
supports any text-based format of data, not just XML; it may also use HTTPS
(HTTP over Secure Socket Layer); and it may be used for all activity involved with
HTTP requests or responses for the defined HTTP methods (GET, POST, HEAD,
PUT, DELETE, OPTIONS).

According to the W3C, for a user-agent to conform to XMLHttpRequest it must
support some version of DOM Events and DOM Core, and must also support some
version of the Window Object17. There are some differences between browsers in

14http://www.w3.org/DOM/
15http://www.w3.org/TR/XMLHttpRequest/
16http://www.ecmascript.org/
17The Window object “provides a global namespace for web scripting languages, access to other

documents in a compound document buy reference, navigation to other locations, and timers.”

10 Andy Brown

the implementation of XMLHttpRequest, but these can be worked around by using
a JavaScript wrapper.

3.2.1 AJAX

AJAX is a Web development technique based on XMLHttpRequest and JavaScript,
allowing asynchronous updates. It uses a client-side scripting language (typically
JavaScript) to get new data from the server (via XMLHttpRequest or IFrames) and
to interact with the Document Object Model (DOM) of the page.

An example of AJAX can be used to demonstrate the technical aspects of its
functioning. Introduced above, Google Suggest is a version of the Google search
page that uses AJAX to display search suggestions when a user types in the search
box. The suggestions are retrieved dynamically, and update with each keystroke.
The essence of the code is that typing into the box invokes JavaScript to make an
XMLHttpRequest, then takes the data (plain text) and generates an HTML table
which is inserted into the Document Object Model of the page. To the user, this
table appears just below the search box. Some of the more relevant JavaScript for
this page is below.

From an AJAX perspective, the key function is the one that creates an XML-
HttpRequest object, which may be used to communicate with the server. Note that
this is complicated by the need to create these objects differently according to the
browser.

function wa(){

var a=null;

try{

a=new ActiveXObject("Msxml2.XMLHTTP");

}catch(b){

try{

a=new ActiveXObject("Microsoft.XMLHTTP");

}catch(c){

a=null;

}

}

if(!a && typeof XMLHttpRequest!="undefined"){

a=new XMLHttpRequest;

}

return a;

}

The second function uses the XMLHttpRequest object to make a call to the
server and has JavaScript to handle different potential responses.

function Ea(a){ if(l&&l.readyState!=0 && l.readyState!=4){ // if the

request state is neither ‘uninitialized’ // or ‘loaded’, then

abort. l.abort(); } l=wa(); // call above function to create

new XMLHttpRequest if(l){ // if created properly

l.open("GET",P+"&js=true&q="+a,true); // open communication

l.onreadystatechange=function(){

if(l.readyState==4&&l.responseText){ // script to handle

incoming data // (depends upon http status code) } } };

l.send(null); } }

Section 3 Technologies 11

In the case of Google Suggest, the response is plain text. For example, if the
variable ‘a’ above was ‘hello’, the response would be:

window.google.ac.Suggest_apply(frameElement, "hello", new Array(2,

"hello kitty", "6,770,000 results",

"hello magazine", "21,100,000 results",

"hellogoodbye", "2,560,000 results",

"hellogoodbye lyrics", "1,180,000 results",

"hello world", "132,000,000 results",

"helloween", "3,360,000 results",

"hello holidays", "4,300,000 results",

"hello lyrics", "5,140,000 results"),

new Array(""));

Another part of the script modifies the page DOM so that a table, which is
empty before the user starts typing, has its contents modified. The resulting HTML
is shown below (simplified for ease of reading).

<tbody>

<tr>

<td>hello kitty</td>

<td>6,770,000 results</td>

</tr>

<tr>

<td>hello magazine</td>

<td>21,100,000 results</td>

</tr>

<tr>

<td>hellogoodbye</td>

<td>2,560,000 results</td>

</tr>

<tr>

<td>hellogoodbye lyrics</td>

<td>1,180,000 results</td>

</tr>

<tr>

<td>hello world</td>

<td>132,000,000 results</td>

</tr>

<tr>

<td>helloween</td>

<td>3,360,000 results</td>

</tr>

<tr>

<td>hello holidays</td>

<td>4,300,000 results</td>

</tr>

<tr>

<td>hello lyrics</td>

<td>5,140,000 results</td>

</tr>

<tr>

<td COLSPAN="2" COLSPAN="2" >

close

</td>

</tr>

</tbody>

12 Andy Brown

3.3 DOM Load and Save

DOM Load and Save is the W3C recommendation18 for updating a page without a
reload. This is a platform and language neutral interface, and may be implemented in
any language. A JavaScript example is below19. This example creates an LSParser
object to parse the XML from the file at URI “data.xml”: the content of this is
placed in the (initially empty) div with id=“loadtarget”. For real applications, this
code should also contain a check that the browser supports DOM 3 load and save.

function test_dom3ls_parse() {

var impl = document.implementation;

// create a parser object

var lsp = impl.createLSParser(DOMImplementationLS.MODE_SYNCHRONOUS, null);

// parse the data at the given URI

var resultdoc = lsp.parseURI("data.xml");

// import parsed XML into current document

var resultelem = resultdoc.documentElement;

var elem = document.importNode(resultelem, true);

document.getElementById(’loadtarget’).appendChild(elem);

}

An extract of relevant HTML code to use this is below - when the user clicks on
the link, data from data.xml is inserted into the div.

<p>

Click to test the DOM3 Load and Save parser!

</p>

<div id="loadtarget"></div>

For example, if data.xml contained:

<?xml version="1.0"?>

<div xmlns="http://www.w3.org/1999/xhtml">

Test successful!

</div>

Then after clicking the link, the document would be:

<p>

Click to test the DOM3 Load and Save parser

</p>

<div id="loadtarget">

<div xmlns="http://www.w3.org/1999/xhtml">

Test successful!

</div>

</div>

18http://www.w3.org/TR/DOM-Level-3-LS/load-save.html
19A version of this example is at http://hcw.cs.manchester.ac.uk/research/saswat/

experiments/techTests/dom3ls_parse.xhtml.

Section 3 Technologies 13

It is not clear how well supported this technique is by browsers (the above ex-
ample works in Opera 9.23, but not Internet Explorer 7 or Firefox 3.0.1), nor how
well-known this is by developers.

3.4 Inline Frames

Inline Frames (IFrames) allow a web page to contain another page. The contents
of the <iframe> are defined by its src attribute, and may be changed by a script,
or by the user activating a link. In the latter case, the link must specify its target
as the id of the iframe; clicking the link will then replace the iframe content with
whatever the link pointed to.

It is also possible to use a hidden frame to communicate with a server20. In this
case, the iframe is made invisible (by giving it zero height and width) and made to
load a page from the server containing a script (e.g., when a link is clicked). This
script passes data to another script on the host page; this then displays the data
somehow (JavaScript alert, modification of host DOM, etc). Extra functionality
may be gained by passing data to the server page, either from a form, or encoded
in its URL.

3.5 Objects

Objects were introduced in HTML 4, and allow cascading. For example, if the
object is a movie, there may be another object embedded within that is a picture,
and within that may be some descriptive text. Then, if the browser can display
movies, it does so, otherwise it displays the picture; if that is not possible only
the text is shown. An object need not be multimedia, but might just be HTML, in
which case it can behave in a similar (but not identical21) fashion to iframes. As with
iframes, the contents of an object may be changed by user action, or automatically.

The following HTML example, shows an object that displays the contents of
anotherPage.html. When the links to some data or the ticker are followed, the
contents of the object change accordingly. If the browser cannot display the contents,
it just displays the text “An object”.

<p>Select contents of object below by clicking a link:

some XMLdata or

news ticker.</p>

<object id="ob" data="anotherPage.html">An object</object>

3.6 Java

Java Applets may communicate with a server. This can happen directly to a Com-
mon Gateway Interface (CGI) program on the server through the HTTP protocol, or
indeed any protocol. Alternatively, an applet may connect to a Java HTTP Servlet

20See http://developer.apple.com/internet/webcontent/iframe.html
21See http://www.w3.org/TR/html401/struct/objects.html##embedded-documents

14 Andy Brown

running on the server. Finally, Applets may communicate using the Java tech-
niques of Remote Method Invocation (RMI), Java Database Connectivity (JDBC),
or Common Object Request Broker Architecture (CORBA).

3.7 Flash

Adobe’s Flash allows relatively sophisticated user interaction, and can also exchange
data with the server. This data may be text (including XML), images or many other
forms, and can be loaded dynamically using the LoadVars() class.

3.8 Plugin scripting

LiveConnect22 is an API to allow Java and JavaScript to call each other’s methods.
LiveConnect appears to have been superseded in Mozilla by an extension to the
Netscape Plugin API (plugins include PDF readers, Java applets, Flash players)
known as NPRuntime23. This allows conforming plugins to access browser objects
such as the window object or the DOM element that loaded the plugin, and thereby
influence the DOM of the surrounding page. Similarly, plugin methods may be called
from a script on the page. If a plugin is able independently to communicate with
a server, this technology allows it not just to change itself, but also to dynamically
manipulate the rest of the page.

3.9 Image Wrappers

This old method is much more complicated than the methods above, and appears
to be rarely used. It is based on the ability of JavaScript to modify the source of an
image. The image used is often a blank single pixel image, so as to remain hidden.

3.10 Static page changes

The techniques above concentrate on technologies that allow communication between
the browser and the server so that new information can be downloaded and presented
to the user without needing to refresh the whole page. While this is a common
phenomenon (see below), it is actually much more common that the content of
a page appears to change, despite no browser-server communication taking place.
In these cases, all content is downloaded with the original page, but JavaScript
(typically) is used to modify the appearance.

The BBC Homepage24 has several examples of this: there are plus and minus
buttons for several of the sections that allow the user to display more or fewer stories.
A fixed number of these are part of the page source; the buttons merely control how
many are visible. The functionality is provided by JavaScript (if disabled, a default
of three stories are shown, and the buttons have no effect).

22See http://developer.mozilla.org/en/docs/LiveConnect
23http://developer.mozilla.org/en/docs/Gecko_Plugin_API_Reference:Scripting_

plugins
24http://bbc.co.uk/

Section 4 Usage of Updates 15

4 Usage of Updates

This section explores how updates are actually used on Web sites: which technologies
are deployed, how many sites use AJAX, and how this is changing. It reports on an
analysis of historical and current Web pages that examined the technologies used.

4.1 Method

Four categories of sites were examined, two of which gave information over the last
10 years, and two of which gave a snapshot of the current situation. The selections
were designed to compare the most popular sites with a random selection from the
Web as a whole. Popularity was determined using the Alexa rankings25; the top 20
pages from June 2008 were analysed to gain historical data, while for the snapshot
of the current situation the most popular 500 pages were used. A random selection
of sites (taken from Google directories) were used to determine the state of the Web
as a whole, with 500 pages being analysed each year for historical data, and 5000
for the current situation. For the historical data, the same sites were used over the
entire period (i.e., the data does not necessarily represent the most popular sites for
a given year). Since these pages were not always archived in a given year, there are
some missing data; values are therefore presented as a percentage of the available
pages.

For the snapshot data, searches were performed on the page source ((X)HTML)
and all associated JavaScript files. For historical data, it was not always the case
that JavaScript files were archived (the Internet archive selects URLs by popularity),
so it is possible that searches may return fewer results than was actually the case. A
further limitation is if a single JavaScript file is required by several pages, it might
contain functions that are not used by the particular page being examined but will
nevertheless be searched, and might return a false-positive result.

4.2 Results

JavaScript is, and has been for at least 10 years, very commonly used by Web
designers. The analysis reveals that it has been used in at least 90% of the top 20
sites and more than 80% of the random 500 pages for all of the last 10 years. The
data are shown in Figure 1.

Analysis of the data reveals that Flash is becoming increasingly common. Cur-
rently 8 (40%) of the Alexa top 20 sites and 18% of the random 5000 sites use
Flash; usage is showing a steady increase (Figure 2). Note that Flash is often used
for animations and videos, and it is likely that only a small proportion give similar
functionality to the dynamic updates under consideration here.

AJAX techniques are also increasing in frequency: XMLHttpRequest is found in
around 20% of most popular pages (20% of the top 20; 22% of the top 500), and in
around 3% of the random selection of 5000 pages (Figure 3). In contrast, a search
for “createLSParser” found no matches over any of the page selections; this suggests

25http://www.alexa.com/

16 Andy Brown

Figure 1: JavaScript usage 1998 to 2008.

Figure 2: Flash usage 1998 to 2008.

that the W3C recommended DOM 3 Load and Save method is not in common use;
unsurprising given the lack of browser support.

5 Summary

Web 2.0 technology allows Web pages to change dynamically, with updates of micro-
content rather than an entire page. Changes may occur automatically or as a result
of the user’s interaction with the page. They may affect the page in a variety of ways,
by adding, removing, replacing or rearranging content. These behavioural charac-

REFERENCES 17

Figure 3: XMLHttpRequest usage 1998 to 2008.

teristics have been classified in a taxonomy, which is designed to inform experiments
investigating how sighted users interact with updates. The intrinsic (presentational
and semantic) attributes have also been discussed and, while not sufficiently objec-
tive to be included in the taxonomy, these should also be considered when exploring
how users allocate attention to updates.

Many techniques are available to developers wishing to implement Web pages
that have dynamically updating micro-content. An increasingly common technology
used to achieve dynamic updates is XMLHttpRequest, (AJAX) but other techniques
may be used to achieve the same result.

References

[1] A.J. Brown and C. Jay. A review of assistive technologies: Can users access
dynamically updating information? Technical report, University of Manchester,
2008.

[2] R. Carmi and L. Itti. Visual causes versus correlates of attention selection in
dynamic scenes. Vision Research, 46:4333–4345, 2006.

[3] Becky Gibson. Enabling an accessible web 2.0. In W4A ’07: Proceedings of
the 2007 international cross-disciplinary conference on Web accessibility (W4A),
pages 1–6, New York, NY, USA, 2007. ACM.

[4] C. Jay and A.J. Brown. User review document: Results of initial sighted and
visually disabled user investigations. Technical report, University of Manchester,
2008.

18 REFERENCES

[5] Derrick Parkhursta, Klinton Law, and Ernst Niebur. Modeling the role of salience
in the allocation of overt visual attention. Vision Research, 42(1):107–123, Jan-
uary 2002.

[6] H. Petersen and J. Nielsen. The eye of the user: the influence of movement on
users’ visual attention. Digital Creativity, 13(2):109–121, 2002.

