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Abstract

We consider the classical optimal dividend control problem which was
proposed by de Finetti [8]. Recently Avram et al. [3] studied the case
when the risk process is modelled by a general spectrally negative Lévy
process. We draw upon their results and give sufficient conditions under
which the optimal strategy is of barrier type, thereby helping to explain
the fact that this particular strategy is not optimal in general. As a
consequence, we are able to extend considerably the class of processes for
which the barrier strategy proves to be optimal.
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1 Introduction

De Finetti [8] introduced the dividend model in risk theory. In this model the
insurance company has the option to pay out dividends of its surplus to its
beneficiaries up to the moment of ruin. De Finetti [8] argued that this should
be done in an optimal way, namely such that the expected sum of the discounted
paid out dividends from time zero until ruin is maximized. He proved that if
the risk/surplus process evolves as a random walk with step sizes ±1, then
an optimal way of paying out dividends is according to a barrier strategy, i.e.
there exists a constant a∗ ≥ 0, such that at each time epoch the excess of the
net risk process over the level a∗ is paid out. In the case of continuous time
models, the problem of finding the optimal dividend strategy has been studied
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extensively in the Brownian motion setting ([2, 21, 26, 31]) and in the Cramér-
Lundberg setting ([4, 6, 14, 29]), where by the former is meant that the risk
process X = {Xt : t ≥ 0} is modelled by a Brownian motion plus drift and by
the latter that

Xt −X0 = ct−

Nt∑

i=1

Ci,

where C1, C2, . . . are i.i.d. positive random variables representing the claims,
c > 0 represents the premium rate and N = {Nt : t ≥ 0} is an independent
Poisson process with arrival rate λ. Note that traditionally in the Cramér-
Lundberg model it is assumed that Xt drifts to infinity, but this condition is not
necessary to formulate the problem. Very recently, Avram et al. [3] considered
the case where the risk process is given by a general spectrally negative Lévy
process. Explanations for why this particular process serves as an appropriate
generalization of the classical compound Poisson risk process can be found in
e.g. [13, 18, 23]. It has been proved that in the Brownian motion setting and in
the Cramér-Lundberg setting with exponentially distributed claims, an optimal
dividend strategy is formed by a barrier strategy. No other explicit examples of
spectrally negative Lévy processes have been given for which the same can be
said. On the other hand Azcue & Muler [4, Section 10.1] have found an example
for which the optimal strategy is not a barrier strategy. Further, Avram et al. [3]
have given a sufficient condition involving the generator of the Lévy process for
optimality of the barrier strategy. Besides finding the optimal strategy, a large
body of literature exists ([9,12,15,16,19,23–25,28,32,33]) in which expressions
are derived for e.g. the expected time of ruin, the moments of the expected
paid out dividends and the Gerber-Shiu discounted penalty function, under
the assumption that the insurance company pays out dividends according to a
barrier strategy; the main motivation being the fact that the barrier strategy is
optimal in (at least) the aforementioned two examples.

In this article motivated by the long history and broad interest of this control
problem, we will shed new light on optimality of the barrier strategy when the
risk process is modelled by a spectrally negative Lévy process. Using the setup
and results from Avram et al. [3], we show that the shape of the so-called scale
functions of spectrally negative Lévy processes plays a central role. Further
we will prove optimality of the barrier strategy if an easily checked analytical
condition is imposed on the jump measure of the underlying Lévy process. This
enables us to extend considerably the class of processes for which this strategy
is optimal.

The outline of this paper is as follows. In Section 2 and 3 we state the
problem and briefly introduce scale functions. We present our main results in
Section 4 and prove them in Section 5 using some earlier results from Avram
et al. [3]. We then conclude by giving some explicit examples to illustrate our
results.
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2 Problem setting

Let X = {Xt : t ≥ 0} be a spectrally negative Lévy process on a filtered
probability space (Ω,F ,F = {Ft : t ≥ 0},P) satisfying the usual conditions. We
denote by {Px, x ∈ R} the family of probability measures corresponding to a
translation of X such that X0 = x, where we write P = P0. Further Ex denotes
the expectation with respect to Px with E being used in the obvious way. Let
the Lévy triplet of X be given by (γ, σ, ν), where γ ∈ R, σ ≥ 0 and ν is a
measure on (0,∞) satisfying

∫

(0,∞)

(
1 ∧ x2

)
ν(dx) <∞.

The Laplace exponent of X is given by

ψ(θ) = log
(
E

(
eθX1

))
= γθ +

1

2
σ2θ2 −

∫

(0,∞)

(
1 − e−θx − θx1{0<x<1}

)
ν(dx)

and is well defined for θ ≥ 0. Note that in the Cramér-Lundberg setting σ = 0,
ν(dx) = λF (dx) where F is the law of C1 and γ = c −

∫
(0,1)

xν(dx). We

exclude the case that X has monotone paths. The process X will represent the
risk/surplus process of an insurance company before dividends are deducted.

We denote a dividend or control strategy by π, where π = {Lπ
t : t ≥ 0} is a

non-decreasing, left-continuous F-adapted process which starts at zero. Lπ
t will

represent the cumulative dividends the company has paid out until time t under
the control π. We define the controlled (net) risk process Uπ = {Uπ

t : t ≥ 0} by
Uπ

t = Xt − Lπ
t . Let σπ = inf{t > 0 : Uπ

t < 0} be the ruin time and define the
value function of a dividend strategy π by

vπ(x) = Ex

[∫

[0,σπ)

e−qtdLπ
t

]
,

where q > 0 is the discount rate. By definition it follows that vπ(x) = 0 for
x < 0. A strategy π is called admissible if ruin does not occur by a dividend
payout, i.e. Lπ

t+ − Lπ
t ≤ Uπ

t for t < σπ . Let Π be the set of all admissible
dividend policies. The control problem consists of finding the optimal value
function v∗ given by

v∗(x) = sup
π∈Π

vπ(x)

and an optimal strategy π∗ ∈ Π such that

vπ∗
(x) = v∗(x) for all x ≥ 0.

We denote by πa = {La
t : t ≥ 0} the barrier strategy at level a which is

defined by La
0 = 0 and

La
t =

(
sup

0≤s<t

Xs − a

)
∨ 0 for t > 0.
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Note that πa ∈ Π. Let va denote the value function when using the dividend
strategy πa. In this paper we find sufficient conditions such that v∗(x) = va(x)
for all x ≥ 0 for a certain specified a.

3 Scale functions

For each q ≥ 0 there exists a function W (q) : R → [0,∞), called the (q-)scale
function of X , which satisfies W (q)(x) = 0 for x < 0 and is characterized on
[0,∞) as a strictly increasing and continuous function whose Laplace transform
is given by ∫ ∞

0

e−θxW (q)(x)dx =
1

ψ(θ) − q
for θ > Φ(q),

where Φ(q) = sup{θ ≥ 0 : ψ(θ) = q} is the right-inverse of ψ. We write
W = W (0). We will later on use the following relation

W (q)(x) = eΦ(q)xWΦ(q)(x). (1)

Here WΦ(q) is the (0-)scale function of X under the measure P
Φ(q), where this

measure is defined by the change of measure

dP
Φ(q)

dP

∣∣∣∣
Ft

= eΦ(q)Xt−qt.

The process X under the measure P
Φ(q) is still a spectrally negative Lévy pro-

cess, but with a different Lévy triplet. In particular its Lévy measure is now
given by e−Φ(q)xν(dx). We refer to [22, Chapter 8] for more information on
scale functions.

Throughout this paper we will use the term sufficiently smooth, whereby we
mean the following. A function f : R → R which vanishes on (−∞, 0) is called
sufficiently smooth at a point x > 0 if f is continuously differentiable at x when
X is of bounded variation and is twice continuously differentiable at x when
X is of unbounded variation. A function is then called sufficiently smooth if it
is sufficiently smooth at all x > 0; see [7] for conditions under which the scale
function W (q) is sufficiently smooth. The derivative of x 7→W (q)(x) is denoted
by W (q)′.

Avram et al. [3] showed that the value of the barrier strategy can be ex-
pressed in terms of scale functions in the following way.

Proposition 1 Assume W (q) is continuously differentiable on (0,∞). The
value function of the barrier strategy at level a ≥ 0 is given by

va(x) =






W (q)(x)
W (q)′(a)

if x ≤ a

x− a+ W (q)(a)
W (q)′(a)

if x > a.
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The proof of proposition 1 in [3] is based on excursion theory. An alternative
proof where only basic fluctuation identities are used in conjunction with the
strong Markov property, is given in [28,34]. Define now the (candidate) optimal
barrier level by

a∗ = sup
{
a ≥ 0 : W (q)′(a) ≤W (q)′(x) for all x ≥ 0

}
,

where W (q)′(0) is understood to be equal to limx↓0W
(q)′(x). It follows that

a∗ < ∞ since limx→∞W (q)′(x) = ∞. Note that our definition of the optimal
barrier level is slightly different than the one given by Avram et al. [3]. It is
easily seen that if an optimal strategy is formed by a barrier strategy, then the
barrier strategy at a∗ has to be an optimal strategy.

4 Main results

We will now present the main results of this paper which give sufficient condi-
tions for optimality of the barrier strategy πa∗ .

Theorem 2 Suppose W (q) is sufficiently smooth and

W (q)′(a) ≤W (q)′(b) for all a∗ ≤ a ≤ b. (2)

Then the barrier strategy at a∗ is an optimal strategy.

A drawback of condition (2) is that it involves the scale function for which closed
form expressions are only known in a few cases. It would be better to have a
condition which is directly given in terms of the Lévy triplet (γ, σ, ν) and the
discount rate q. The second theorem entails exactly such a condition.

Theorem 3 Suppose that the Lévy measure ν of X has a completely monotone
density, i.e. ν(dx) = µ(x)dx, where µ : (0,∞) → [0,∞) has derivatives µ(n) of
all orders which satisfy

(−1)nµ(n)(x) ≥ 0 for n = 0, 1, 2, . . ..

Then W (q)′ is strictly convex on (0,∞) for all q > 0. Consequently, (2) holds
and the barrier strategy at a∗ is an optimal strategy for the control problem.

5 Proof of main results

Before proving the main results, we give two lemmas. Both lemmas are lifted
from Avram et al. [3]. We therefore do not give a proof of the first lemma
which is a verification lemma involving a Hamilton-Jacobi-Bellman inequality.
However, we do include a short proof of the second one as various arguments
will be instructive to refer back to in the proof of Theorem 2.

Let Γ be the operator acting on sufficiently smooth functions f , defined by

Γf(x) = γf ′(x) +
σ2

2
f ′′(x) +

∫

(0,∞)

[f(x− y) − f(x) + f ′(x)y1{0<y<1}]ν(dy).
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Lemma 4 (Verification lemma) Suppose π is a admissible dividend strategy
such that vπ is sufficiently smooth and for all x > 0

max{Γvπ(x) − qvπ(x), 1 − v′π(x)} ≤ 0. (HJB-inequality)

Then vπ(x) = v∗(x) for all x ∈ R.

Lemma 5 Suppose W (q) is sufficiently smooth and suppose that

(Γ − q)va∗(x) ≤ 0 for x > a∗. (3)

Then va∗(x) = v∗(x) for all x ∈ R.

Proof of Lemma 5 It suffices to show that under the conditions of Lemma 5
va∗ satisfies the conditions of the verification lemma. When a∗ = 0 this is trivial
because of (3), so we assume without loss of generality that a∗ > 0. Because
W (q) is sufficiently smooth and by Proposition 1, it follows that for any a ≥ 0,
va(x) is sufficiently smooth at all x ∈ (0,∞)\{a}. By definition of a∗ and the
assumed smoothness, we have W (q)′′(a∗) = 0 when X is of unbounded variation
and hence va∗(x) is also sufficiently smooth at x = a∗. Further v′a∗(x) ≥ 1 by

definition of a∗. Since
(
e−q(t∧τ

−

0 ∧τ+
a )W (q)(Xt∧τ

−

0 ∧τ
+
a

)
)

t≥0
is a Px-martingale,

one can deduce that

(Γ − q)va(x) = 0 for 0 < x < a and a > 0. (4)

(Note that for a 6= a∗, va(x) is not necessarily twice continuously differentiable in
x = a even if W (q)′′ is continuous in a. Therefore (Γ− q)va(x) is not necessarily
continuous in a and so (4) does not hold for x = a in general.) In particular (4)
holds for a = a∗. Hence together with (3), va∗ satisfies the HJB-inequality. �

Proof of theorem 2 Firstly, we claim that

lim
y↑x

(Γ − q)(va∗ − vx)(y) ≤ 0 for x > a∗. (5)

We prove the claim for X being of unbounded variation (the case of bounded
variation is slightly easier). Let x > a∗. By assumption on the smoothness of
the scale function, vx and va∗ are twice continuously differentiable on (0,∞),
except for the possibility that limy↑x v

′′
x(y) 6= limy↓x v

′′
x(y). We can use the

dominated convergence theorem to deduce

lim
y↑x

(Γ − q)(va∗ − vx)(y) =

= γ(v′a∗ − v′x)(x) +
σ2

2
(v′′a∗(x) − lim

y↑x
v′′x(y)) − q(va∗ − vx)(x)+

∫

(0,∞)

{
[(va∗ − vx)(x− z) − (va∗ − vx)(x)] + (v′a∗ − v′x)(x)z1{0<z<1}

}
ν(dz).

Since we have by using Proposition 1
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(i) limy↑x v
′′
x(y) ≥ 0 = v′′a∗(x) where the inequality is by (2),

(ii) (v′a∗ − v′x)(u) ≥ 0 for u ∈ [0, x], since for u ∈ [0, a∗] (v′a∗ − v′x)(u) ≥ 0 by
definition of a∗ and for u ∈ (a∗, x] (v′a∗ − v′x)(u) ≥ 0 by (2). This implies
that (va∗ − vx)(x − z) ≤ (va∗ − vx)(x) for all z ≥ 0,

(iii) (va∗ − vx)(x) ≥ 0 which follows from va∗(a∗) ≥ vx(a∗) and (ii),

(iv) v′a∗(x) = v′x(x) = 1,

the claim follows.
We now prove by contradiction that (3) holds; the theorem is then proved by

applying Lemma 5. Suppose there exist x > a∗ ≥ 0 such that (Γ−q)va∗(x) > 0.
Then by (5) and the continuity of (Γ − q)va∗ we have limy↑x(Γ − q)vx(y) > 0
which contradicts (4). �

Proof of Theorem 3 Since νΦ(q)(dx) = e−Φ(q)xµ(x)dx is the Lévy measure of

the process X under the measure P
Φ(q), we have that νΦ(q)(dx) has a completely

monotone density, since the product of two completely monotone functions is
completely monotone. It follows that x 7−→ νΦ(q)(x,∞) is completely monotone,

since d
dx
νΦ(q)(x,∞) = −e−Φ(q)xµ(x).

Let {Ĥt : t ≥ 0} be the descending ladder height process of X . As q > 0,

the process X under P
Φ(q) drifts to infinity and it follows that the process Ĥ

under P
Φ(q) (under a suitable chosen constant appearing in the local time at the

minimum) is a killed subordinator with Lévy measure given by νΦ(q)(x,∞)dx

(see e.g. [22, Exercise 6.5]). Hence the Lévy measure of Ĥ under P
Φ(q) has a

completely monotone density and consequently the Laplace exponent of Ĥ under
P

Φ(q) is a complete Bernstein function (see [20, Theorem 3.9.29]). We may now
use a result from Rao et al. [27, Theorem 2.3] combined with [30, Remark 2.2]

to conclude that the renewal function of Ĥ under P
Φ(q) defined by ÛΦ(q)(x) =

E
Φ(q)

(∫ ∞

0
1{Ĥt∈[0,x]}dt

)
has a completely monotone derivative.

It is well known that the scale function of a spectrally negative Lévy process
which does not drift to minus infinity is equal (up to a multiplicative constant
appearing in the local time) to the renewal function of the descending ladder
height process (see e.g. [5, Chapter VII.2]). So we can say that WΦ(q)(x) =

ÛΦ(q)(x) and therefore W ′
Φ(q) is completely monotone. A nonnegative function

on (0,∞) with a completely monotone derivative is also known as a Bernstein
function.

Because WΦ(q)|(0,∞) is a Bernstein function, it admits the following repre-
sentation, which is closely related to Bernstein’s theorem, (see e.g. [20, Chapter
3.9])

WΦ(q)(x) = a+ bx+

∫

(0,∞)

(1 − e−xt)ξ(dt) x > 0, (6)

where a, b ≥ 0 and ξ is a measure on (0,∞) satisfying
∫
(0,∞)(t ∧ 1)ξ(dt) <

∞; in other words WΦ(q) is the Laplace exponent of some (possibly killed)
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subordinator. From (6) and (1) it follows that

W (q)(x) = eΦ(q)x(a+ bx) +

∫

(0,∞)

(eΦ(q)x − e−x(t−Φ(q)))ξ(dt).

By repeatedly using the dominated convergence theorem, we can now deduce

W (q)′′′(x) =f ′′′(x) +

∫

(0,∞)

(
Φ(q)3eΦ(q)x + (t− Φ(q))3e−x(t−Φ(q))

)
ξ(dt)

=f ′′′(x) +

∫

(0,Φ(q)]

(
Φ(q)3eΦ(q)x − (Φ(q) − t)3e(Φ(q)−t)x

)
ξ(dt)

+

∫

(Φ(q),∞)

(
Φ(q)3eΦ(q)x + (t− Φ(q))3e−x(t−Φ(q))

)
ξ(dt),

where f(x) = eΦ(q)x(a + bx). Hence W (q)′′′(x) > 0 for all x > 0 and so W (q)′

is strictly convex on (0,∞). Since W (q) is infinitely differentiable, we can now
apply Theorem 2 to deduce that the barrier strategy at a∗ is optimal. �

6 Examples

Example from Theorem 2 We now give an example to illustrate Theorem
2. Let X be given by the Cramér-Lundberg model perturbed by Brownian
motion, i.e.

Xt = x+ ct−

Nt∑

i=1

Ci + σBt,

where we let C1 ∼ Erlang(2, α) (i.e. sum of two independent exponentially
random variables with parameter α). Note that the Lévy measure ν(dx) =
λα2xe−αxdx (where λ is the arrival rate of the Poisson process {Nt : t ≥ 0})
does not have a completely monotone density. For this example a closed form
expression for the q-scale function in terms of the roots of ψ(u) = q can easily
be found by inverting its Laplace transform by the method of partial fraction
expansion. Indeed, we can write (for q > 0 and σ > 0)

1

ψ(u) − q
=

1

cu− λ+ λα2

(α+u)2 + 1
2σ

2u2 − q
×

(α+ u)2

(α+ u)2

=
(α + u)2

1
2σ

2
∏4

j=1(u− θj)
=

4∑

j=1

Dj

u− θj

,

where (θj)
4
j=1 are the (possibly complex) zeros (which are assumed to be dis-

tinct) of the polynomial (ψ(u) − q)(α+ u)2 and (Dj)
4
j=1 are given by

Dj =
1

ψ(u) − q
(u − θj)

∣∣∣∣
u=θj

=
(α+ θj)

2

1
2σ

2
∏4

k=1,k 6=j(θj − θk)
.
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The scale function is then given by

W (q)(x) =

4∑

j=1

Dje
θjx for x ≥ 0.

We now choose the values of the parameters as follows: c = 21.4, λ = 10,
α = 1, q = 0.1 and for σ we consider two cases, the case when σ = 1.4 and
σ = 2. (For these choices of the parameter values, the zeros (θj)

4
j=1 are indeed

distinct.) Note that when σ = 0, this is exactly the example given by Azcue &
Muler [4] for which the optimal strategy is not of barrier type. In the two figures
the graphs of W (q)′ and (Γ−q)va∗(x) for the chosen parameters are plotted with
the help of Matlab. When σ = 1.4, a∗ ≈ 0.4 and we see from Figure 1 that (2)
and also (3) do not hold. When σ = 2 the minimum of the derivative has shifted;
now a∗ ≈ 10.5 and we see from Figure 2 that (2) does hold. Consequently by
(the proof of) theorem 2, (3) must hold, which is confirmed by the figure.

0 2 4 6 8 10 12 14 16 18 20
0.023

0.024

0.025

0.026

0.027

0.028

0.029

(d/dx)W(q)(x)

0 5 10 15
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−1.5

−1

−0.5

0

0.5
(Γ−q)v

a
*

Figure 1: σ = 1.4; left: x 7→W (q)′(x), right: x 7→ (Γ − q)va∗(x)
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Figure 2: σ = 2; left: x 7→W (q)′(x), right: x 7→ (Γ − q)va∗(x)

Examples from Theorem 3 By Theorem 3, we have that when the Lévy
measure is completely monotone, then the barrier strategy at a∗ is always an
optimal strategy. There are many examples of spectrally negative Lévy processes
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which have such a feature and which have been used in the literature to model
the risk process. We name as examples the α-stable process which has Lévy
density

µ(x) = λx−1−α with λ > 0 and α ∈ (0, 1) ∪ (1, 2)

and is used in [13] and the (one-sided) tempered stable process which has Lévy
density given by

µ(x) = λx−1−αe−βx with λ, β > 0 and −1 ≤ α < 2.

The latter process includes other familiar Lévy processes, like the gamma process
(α = 0) which is considered in [11] and the inverse Gaussian process (α = 1/2)
which is used in [10] to model the risk process.

We can also conclude that the barrier strategy at a∗ is optimal, when we
are in the Cramér-Lundberg setting where the claims have a distribution with
a completely monotone probability density function. Some examples of these
type of claim distributions which have been used in risk theory (see [1, Chapter
I.2]) are the heavy-tailed Weibull distribution

µ(x) = crxr−1e−cxr

with c > 0 and 0 < r < 1,

the Pareto distribution

µ(x) = α(1 + x)−α−1 with α > 0

and the hyperexponential distribution

µ(x) =

n∑

j=1

Ajβje
−βjx with βj, Aj > 0, j = 1, . . . , n and

n∑

j=1

Aj = 1.

Note that since in Theorem 3 there is no condition on the value of the Gaussian
component σ, a barrier strategy will still form an optimal strategy if any one of
the above examples is perturbed by Brownian motion.

For most spectrally negative Lévy processes an explicit expression for the
q-scale function (and hence a∗) can not be obtained. However, very recently
Hubalek and Kyprianou [17] have found some new examples (including where
the Lévy measure has a completely monotone density) for which the q-scale
function is completely explicit.
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