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Modelling non-stationary time series has been a difficult task for both parametric and nonparametric
methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity
of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is
adopted as a such mixture model. It breaks time series into underlying segments and at the same time
fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time
series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more
flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in
the self-organising network to better quantify the similarity of time series segments. The network can
be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial,
benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex
rates) are presented and the results show that the proposed SOMAR network is effective and superior
to other similar approaches.

Keywords: Time series; autoregressive models; non-stationarity; self-organising map; mixture of temporal
models.

1. Introduction

Non-stationary time series modelling has attracted a
great deal of attention and effort from researchers,
because their wide existence in real-world applica-
tions such as finance, astronomy, seismology and neu-
rophysiology. Most existing techniques developed in
signal processing theory assume that the time series
being dealt with are stationary or can be converted
to stationary.1 However, most of real-world signals
are not in line with this assumption and their statis-
tical properties change with time. Developing meth-
ods for modelling non-stationary signals has become
an active area of research in both statistics and sig-
nal processing. Many adaptive neural network mod-
els have been adopted to extend linear regressive
models.

For instance, autoregressive moving average
(ARMA) models assume a structured linear

relationship between the current value of the variable
and previous values of the variable and error terms.
The relationship is assumed to be described by a set
of fixed parameters. Apparently this assumption is a
pitfall of ARMA models when the time series is non-
stationary. Although the autoregressive integrated
moving average (ARIMA), a generalisation of the
ARMA model, can better fit the non-stationary time
series, it doesn’t outperform neural network based
methods in our experiments. According to the def-
inition of ARIMA model,1 the differenced FX rates
or FX returns modelled by an ARMA model is the-
oretically equivalent to modelling the FX rates by
an ARIMA model, where the order of integrated
equals to 1.

Nonparametric models offer a good alternative to
parametric ones. Not restricted by a fixed structure,
a nonparametric model is relatively more flexible,
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but at the cost of extensive computation. Due to
the recent advances in computational intelligence
and computer power, nonparametric models have
been used extensively in the last few years with
various success. For example, forecasting by neu-
ral networks provides strong evidence in terms of
out-of-sample forecasting achievements.3 Compar-
ative studies show that adaptive methods signifi-
cantly outperform the linear ARMA model and the
naive random walk models.3−5 The most widely
used techniques so far are the multilayer percep-
tron (MLP), radial basis function (RBF) networks,
support vector machines (SVM) and recurrent
networks.

Non-stationarity implies that the time series
switch their dynamics in different time regions.
Empirical studies6 show that the distribution of daily
returnsa is approximately symmetric and leptokur-
tic (i.e., fat tailed). One intuitive explanation for the
fat-tailed distribution is that samples are indepen-
dently distributed as a normal distribution whose
mean and variance change over time. Alternatively,
Clark and Mandelbrot argued that observed returns
come from a mixture of normal distributions.7,8 It
is apparently not convincing for a single model to
capture the dynamics of the whole time series. A
potential solution can be found by using a mixture
model approach, in which the entire model is divided
into several smaller ones. Then regression and pre-
diction are made by a dynamic set of best fit local
models.

The self-organising map (SOM) can be used to
divide a time series into segments. A number of
regressive models can then be created by locally fit-
ting to the corresponding parts of the time series.
There have been a few successful applications. For
instance, Dablemont9 applied SOM-based local mod-
els with RBF network as regressors to predict the
returns of the DAX30 index. Liu and Xu10 used
SOM-based local models to perform PCA on the data
from multi-modes. Cao5 proposed a SVM expert sys-
tem, which is also based on SOM local models, to pre-
dict the future movement of a time series. However,
these models are two-stage modelling. Both cluster-
ing and local modelling may not be optimal, or at
least may not be jointly optimal.

In addition, SOM is a spatial model and does
not naturally fit temporal signals. Although consec-
utive time points can be grouped into vectors to
form temporal context by means of a sliding win-
dow, the vectors formed may not capture all tem-
poral information of the time series. Several variants
have since been proposed such as, the recurrent SOM
(RSOM)11 and the recursive SOM (RecSOM).12

These SOM variants integrate the information of
a sequence via recursive operations. As they differ
in the notion of context, their efficiency in terms
of representing temporal context are different.13

Lampinen and Oja proposed a self-organising autore-
gressive (SOAR) model, where every unit represents
an autoregressive (AR) model with its reference vec-
tor as the model parameters.16 The experiments
have shown that the model can learn to distin-
guish textures from images. The method in fact is
a multiple AR model with the parameters of com-
ponent models forming topological orders. However,
the model is difficult to converge to the underly-
ing regressive models due to the simple error-based
similarity measure. Here, we extend such a model
to a multi-regressive mixture model, termed self-
organising mixture autoregressive (SOMAR) model,
with a different partition mechanism and similarity
measure to reflect the characteristics of homogeneous
time series. It combines the strength of the SOM
and simplicity of the AR model. Both the mixture
and local models are jointly optimised, and thus it
is better than two-stage modelling, e.g.5,17 Good ini-
tial results have been reported in Ref. 18. In the two-
stage process, the information that may be useful in
the regression stage (second stage) can be inevitably
lost in the clustering stage (first stage), since the two
stages are separately optimized. Compare to SOAR
model, the proposed method is more capable in mod-
elling dynamic time series.

Neural gas (NG)19 is another popular compet-
itive vector quantization method in analog to the
SOM. Instead of having a fixed network topol-
ogy throughout, NG can dynamically deploy its
resources to suit varying topology of the data, and
therefore does not suffer from topological restric-
tions like the SOM. Apart from this advantage,
the NG algorithm20 is very much similar to the

aThe distribution of values that are simple logarithmic differences between the daily closing prices of two consecutive
trading days.
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SOM algorithm, and is regarded as a variant of the
SOM. In the proposed model, we replace SOM-based
neighbourhood function with the NG-based updat-
ing function. The results show that the combination
of NG-based clustering and AR regression further
improves on the initial outcome in Ref. 18.

The remainder of the paper is organised as fol-
lows. In Section 2, we describe the proposed method-
ology. Section 3 will present the application of the
proposed methodology for prediction of various non-
stationary time series signals. Finally, conclusions are
given in Section 4.

2. Methodology

The most straightforward way of predicting a future
value of a time series from its past is by using a
correctly tuned regressive model. Identifying a cor-
rect regressive model with its parameters is therefore
the basis of the proposed prediction model. Appar-
ently a non-stationary time series can hardly be
modelled by a single AR model. Therefore one can
assume that a non-stationary time series consists of
several independent stationary AR processesb with
the expectation that each AR process can be rep-
resented by a local AR model. This is thus in line
with the argument that a non-stationary time series
comes from a mixture of normal distributions.7,8

The complete model can be considered as a mix-
ture of these local AR models. The output of
the SOMAR is the output of the best fitted local
models.

x̂t =
K∑

i=1

β(i,x(t))Φi(x(t), φi) . (1)

where Φi represents the i-th local AR model and
β(i,x(t)) are the mixing parameters. Since we define
the prediction of the whole system as the prediction
of the best fitting local model, β(i,x(t)) are then con-
sidered as gate functions, given as,

β(i,x) =
{

1 if i = v

0 else
(2)

x(t) = [x(t−1), x(t−2), . . . , x(t−mi)]T is the input
vector, {φi} are model parameters, K is the num-
ber of AR processes, v is the index of the winning
local model at each time step and mi is the order

of AR process i. The value of mi can be determined
by the Bayesian Information Criterion (BIC).15 For
example, in the experiment of Section 3, the order is
shown by model validation to be a constant for each
local model. In such a case, the proposed SOMAR
network is a homogeneous mixture of local AR
models.

2.1. Lampinen and Oja’s
self-organising AR models

Lampinen and Oja proposed a method called self-
organising AR map (SOAR) based on a self-
organising map of “neural” units for unsupervised
segmentation and classification of 1D and 2D
signals.16 In the SOAR model, each neuron’s weight
vector wi represents the parameters of a local AR
model. The best matching unit is selected based on
the smallest exponentially-smoothed error.

yt
i = αei(t) + (1 − α)yt−1

i . (3)

where α is a smoothing factor and ei(t) = x(t) −
x(t)T wi. The winner and its neighbouring units
update their weights according to

wi(t) = wi(t − 1) + g(r)ei(t)x(t) . (4)

where g(r) is a linear neighbourhood function and
r is the distance between the best matching unit
and the unit to be updated. The model has been
shown to work in segmenting images into texture
classes.

The SOAR model seamlessly links up the SOM
clustering with the AR model. It yields positive
experimental results on 2D textures.16 However it
can often fail in identifying and thus modelling the
correct local AR models in a non-stationary time
series. For example, Fig. 1 shows the divergence of
the SOAR model in modelling a time series of a
mixture of two AR(1) processes. The initial weights
were set either randomly (upper figure) or to the
true parameters (lower figure). The failure can be
attributed to the fact that the weight updating of
the SOAR local models is based on wrongly classi-
fied time series segments. That is, at each time step,
the SOAR fails to identify the correct local model
due to the stochastic nature of the error based simi-
larity measure.

bThis approach is different from the usual approach that transforms a non-stationary time series into a stationary one,
in particular by removing linear trends.14
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Fig. 1. Parameter estimation of two AR(1) processes by the SOAR with initial weights set either randomly (upper plot),
and to the true parameters (lower plot). The dashed lines represent the true parameters.

2.2. Self-organising mixture AR model
(SOMAR)

Improving on the SOAR model, the proposed self-
organising mixture AR (SOMAR) network not only
combines topological clustering and linear autore-
gression, but also uses a better model-matching
method for identifying local regressive models to
ensure the convergence of the network. As a suf-
ficient condition, the modelling error should be
gradually close to white noise if the modelling is
following a “correct” path. Therefore, we employ
the autocorrelation of the error instead of the error
itself to measure the fitness of a local model to
an input segment. The size of the segments can
vary to suit the correct orders of the local mod-
els. Though modelling errors of a local model may
not decrease monotonically in its values (due to
the stochastic gradient descent nature on the mod-
elling error generated by a recursive LMS algo-
rithm), the error should become closer to white
noise when the structure of the data is gradually
learnt. The autocorrelation of a time series is used
as an efficient measure for its whiteness. The more

white an error series is, the smaller the sum of its
autocorrelation coefficient; and vice versa. Assume
that we have a consecutive set of p modelling errors,
{e(1), e(2), . . . , e(p)}, with mean µ and variance σ2.
p is an integer larger than one, which is the number
of consecutive modelling errors used for finding the
winning local model. At the time when a segment is
fed to the SOMAR, the winning local model is the
one which generates the smallest sum of (the abso-
lute value of) autocorrelation coefficients (SAC) of
the modelling errors,

Ri(k)=
1

(p − k)σ2

p−k∑
t=1

(ei(t)−µi)(ei(t+k)−µi) , (5)

where k is the number of lags and i is the index of a
local regressive model. The winner is then,

v = argmin
i


 k∑

j=−k

|Ri(k)|

 i = 1, 2, . . . , N, (6)

where the absolute autocorrelation coefficient is used
as non-white errors may be either positively or
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Fig. 2. Autocorrelation of the modelling errors for models a0 to a3. Corresponding SAC values are 3.8832, 4.3504, 4.5224
and 4.5963 respectively.

negatively correlated, and N is the number of local
models.

Figure 2 shows the autocorrelation coefficients of
the modelling errors of a patch of 20 points. The gen-
erating parameters of the AR(2) process are a0 =
[−.2, .5]. We test the SAC value on the true para-
meters and three randomly chosen sets of parame-
ters, a1 = [−.1, .6], a2 = [.1,−.1] and a3 = [.5,−.2].
Their correlations are plotted in Fig. 2. The SAC val-
ues for these four cases are 3.8832(a0), 4.3504(a1),
4.5224(a2), and 4.5963(a3) respectively. As we can
see that, a0 is the best fit model, and model a1 is
closer to model a0 than models a2 and a3, as are
their SAC values. Therefore a better way to iden-
tify the correct local model is to use the SAC value
instead of the modelling error itself.

In order to verify that SAC has only one unique
global minimum corresponding to the correct regres-
sive model, we empirically calculate the SAC values
of a number of models whose parameters are within

the vicinity of the pre-set parameter [−.2, .5]. The
SAC values with regard to model parameters are
illustrated in a contour plot in Fig. 3.

The SOMAR network thus extends the con-
ventional SOM-based local regression model,
e.g. Refs. 13 and 17, and the SOAR model for better
temporal modelling capability of (non-stationary)
time series.

Analogous to the algorithm in Ref. 18, the win-
ning local AR model and its neighbouring mod-
els update their model parameters by the ordinary
recursive least-mean-squared method.21 The adap-
tion of the parameters wi(t) are further weighted by
the neighbourhood function h(λ, ki) and adaptation
strength η(t). Therefore the overall updating rule is,

wi(t) = wi(t − 1) + h(λ, ki)η(t)ei(t)x(t), (7)

where ei(t) = x(t) − x(t)T wi.
Furthermore, neural-gas (NG) topology is used

in stead of the common lattice structure. The
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Fig. 3. Contour plot of SAC values around the true model parameters, w = [−.2, .5].

neighbourhood function, which controls a certain
number of units being adapted, is the “rank order”
of the NG. Similar to the neighbourhood function of
the SOM, h(λ, ki) sets a fixed schedule for decreasing
the effective range of the adapting neighbourhood,

h(λ, ki) = exp(−ki/λ(t)) (8)

λ(t) = λi(λf/λi)t/tmax (9)

where λi, λf are two parameters controlling the range
of the neurons to be adapted. tmax is the maximum
number of time steps of the training. ki is the rank
order of the unit: wi0 is the closest reference vector
to the input x(t), wi1 is the second-closest reference
vector to x(t), and so on.

The adaptation rate η(t) is the same to the
learning rate of the common SOM algorithm and
is decreasing with time. It can be either linear or
non-linear. A non-linear case, which associates with
a better performance than a linear form, is used in
training,

η(t) = ηi(ηf/ηi)t/tmax (10)

again, ηi, ηf are two controlling parameters that can
be set empirically.

Since some input patches may inevitably contain
input segments generated by more than one under-
lying AR processes, it is necessary to filter out those

segments when the parameters of local AR models
have been roughly identified. The errors generated
by these segments would result in small differences in
the SAC values among the neighbouring local mod-
els. Therefore a fine tuning is introduced at that
stage by skipping those segments that have similar
SAC values to more than one local models. A thresh-
old value is set to check whether a segment should
be filtered out or should be used in the fine tuning
stage. Intuitively the fine tuning can start when the
learnt parameters have become generally stabilized
or the oscillations of the parameters become small.
A flowchart for training the SOMAR network is out-
lined in Fig. 4.

The local models effectively transform a non-
stationary time series to a mixture of ‘pieces’ of sta-
tionary time series. The effectiveness can be shown
by the unit root test. A widely used unit root test,
the Augmented Dickey Fuller (ADF) test,22 is used
to check whether the time series localised by the
SOMAR are intra-cluster stationary.

3. Experiments

In this section, experiments on various data
sets, including artificial data generated by mixed
AR models, benchmark Mackey-Glass data, and
real-world Sunspots observations and FX time series,
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Fig. 4. Flowchart of the SOMAR training procedure. The decision of the ‘fine tuning’ is made by whether the SAC value
is smaller than the pre-determined threshold value. Stopping criterion is made on the convergence of the local models or
the maximum number of iterations.

are presented. The proposed SOMAR network is
compared with other SOM-based two-stage local
regressive model approaches, such as vector SOM
(VSOM), recurrent SOM (RSOM), recursive SOM
(RecSOM), SOM with SVM regression, neural gas,
the SOAR model, as well as the GARCH and
ARIMA models.c

3.1. Artificial data

To illustrate the capability of SOMAR network in
finding the underlying components of a mixture time
series, we generate such a time series constructed
from two AR(2) processes, a1 = [.5,−.2] and a2 =
[.4,−.3]. The signal consists of 60 consecutive 200-
point long segments. Each segment is generated ran-
domly by one of these two AR processes.

The SOMAR network is trained on the time
series and the results, i.e. the weights learnt over
time, are shown in the Fig. 5. This figure also shows
that the oscillations of the learnt parameters become
significantly smaller in the fine tuning phase as
expected.

3.2. Mackey-Glass data

To further investigate the performance of the pro-
posed SOMAR model in time series prediction, we
apply it to 600 consecutive points of Mackey-Glass

series, a dynamic system defined by the following dif-
ferential equation:

dx

dt
= βmgx(t) +

αmgx(t − δmg)
1 + x(t − δmg)10

, (11)

with the parameters δmg = 17, αmg = 0.2, βmg =
−0.1. The SOMAR network regards the Mackey-
Glass data as of a number of unknown AR processes.
In this experiment, the input is the Mackey-Glass
series grouped by every 12 points x(i) = [x(i), x(i −
1), . . . , x(i − 11)]. The order of the AR processes is
validated to 11 by the BIC. The results of prediction
of the series are listed in Table 1 and a part of results
are shown on Fig. 6.

3.3. Number of sunspots

Routinely collected sunspot number is one of the
measurements of solar activity. The sunspot data
is a benchmark data, which has been modelled by
various regression and neural network models.23 The
‘cycles’ in the number of sunspots, shown in Fig. 7,
are not symmetrical, as the spot count takes on aver-
age around 5 years to rise from a minimum to a max-
imum and around 6 years to fall to a minimum. The
data was collected from Ref. 24.

Again analogous to the Mackey-Glass data, we
assume the sunspot process consists of a number
of unknown AR processes. The sunspot series is
grouped into every 8 points. The first 2,000 points are

cThe performance of GARCH and ARIMA is quantified by the best average performance of repeated experiments on
different model parameters, when q = 1, 2, 3 for GARCH(p, q) model and d = 0, 1, 2 for ARIMA(p, d, q) model.
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Fig. 5. Parameter estimation of two AR(2) processes a1 = [0.5,−0.2] and a2 = [0.4,−0.3], by SOMAR network. The
solid lines represent the learning progresses and the dashed lines indicate the parameters of two AR(2) models.

Table 1. The performance of Mackey-Glass data
predicted in terms of the mean-square-error
(between the predicted values and the observed val-
ues) and the error variance by various methods.

Prediction MSE of MSE

model prediction(−2) variance(−2)

SOMAR 3.60 0.33
SOAR 4.26 0.39
VSOM 4.46 0.48
RSOM 4.32 0.53
RecSOM 4.06 0.32
NeuralGas 4.40 0.43
SOM-SVM 4.52 0.46
GARCH 4.49 0.45
ARIMA 4.38 0.52

used to train the SOMAR model and the prediction
is performed on the rest of the data. The prediction
results are shown in Fig. 8 to illustrate the effect
of SOMAR prediction. The results, in terms of the
mean-square-error and the error variance, are listed
in Table 2.

3.4. Forex rate data

The data was retrieved from the PACIFIC Exchange
Rate Service provided by W. Antwiler at UBC’s
Sauder School of Business. It consists of 15 years
of daily exchange rates (e.g. British pound vs. US
dollar, Euro vs. HK dollar) excluding weekends and
bank holidays when the currency markets were closed.
The proposed SOMAR network was trained on the
first 2,000 consecutive points and the performance
was validated on the following 100 points and the
prediction was tested on the last 100 points. Both
the training and testing (including validation) sets
were windowed with the length of 15 points to form
input segments.17,18 The validation of the model order
was done by finding out the optimal order of each
trained local model in repeated experiments by BIC.
The results show that more than 80% of the result-
ing optimal orders are indifferent to the initially vali-
dated order, 14.This result suggests that the proposed
SOMAR model implies a mixture of homogeneous
local models for the data. The performance of the
SOMAR in predicting FX returns and rates are shown
in Fig. 9.
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Fig. 6. The dashed line represents the original data points, the solid line represents the prediction by the SOMAR
network on the Mackey-Glass data.
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Table 2. The performance of number of sunspots
predicted in terms of mean-square-error (between
the predicted values and the observed val-
ues) and error variance by various methods.

Prediction MSE of MSE
model prediction variance

SOMAR 14.75 2.30
SOAR 16.46 3.56
VSOM 16.23 3.74
RSOM 16.16 3.36
RecSOM 16.12 2.71
NeuralGas 15.71 3.03
SOM-SVM 15.88 3.56
GARCH 16.61 3.53
ARIMA 16.72 3.60

To compare with other regressive models, we con-
ducted the following two types of tests:

Predicted return (x′
t = ln xt+1

xt
) The correct pre-

diction percentage is used as a criterion to check
whether the prediction is made in the right direc-
tion. In other words, we calculate the percentage of

the predicted returns that have the same ‘direction’
as their corresponding actual returns. The correct
prediction percentages are shown in Table 3.

Predicted rate The mean-square-error between
the actual FX rates and their predictions in the
testing set.

The results of the SOMAR network from the two
tests (predicted FX return and predicted FX price)
are compared to that of vector SOM, SOAR, recur-
rent SOM, recursive SOM, neural gas, SOM with
SVM regression, and GARCH model and are shown
in Table 3. It can be seen that the SOMAR outper-
forms other temporal SOMs, other local regressive
models and GARCH model, ARIMA model. It shows
that SOMAR is an efficient method to accommodate
the non-stationarity of the FX rates by means of mul-
tiple underlying linear processes. Furthermore, the
ADF test shows that the localised FX rate segments
in all clusters can reject the null hypothesis of the
existence of a unit root.d The rejection of the exis-
tence of a unit root indicates that the SOMAR model

dThe FX rate vectors are tested against the hypothesis of existence of a unit root using the Matlab function developed
by Ludwig Kanzler in the Department of Economics, University of Oxford in March 1998.
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Fig. 9. Prediction of FX return and FX rate in comparing with the original time series on 100 trading days. The dashed
lines represent the original data and the solid lines represent the predictions.

Table 3. Overall predicted FX returns in percentage (%) and FX prices* (10−2) of various methods
on the FX rates.

GBPvs USD % USD −2 Euro % Euro −2 HKD % HKD −2

SOMAR 59.93 3.83 56.26 4.07 56.32 4.20
SOAR 53.01 4.33 52.56 4.68 53.56 4.69
VSOM 52.65 4.25 51.98 4.42 53.96 4.75
RSOM 52.20 4.38 53.01 4.62 53.87 4.75
RecSOM 52.65 4.71 53.20 4.97 54.02 4.95
NeuralGas 54.23 4.21 54.25 4.52 54.21 4.45
SOM-SVM 53.52 4.04 54.23 4.68 54.14 4.58
GARCH 53.15 4.25 53.01 4.70 53.73 4.51
ARIMA 50.23 4.95 50.65 4.89 51.36 4.76

* The prices are divided by the mean exchange rate of that pair over the testing period for a fair
comparison.

is efficient in transforming non-stationary FX rates
into a number of stationary processes.

4. Conclusions

A semi-parametric, mixture approach to tack-
ling non-stationarity of real-world time series has
been proposed by using the self-organising mixture
autoregressive (SOMAR) network. It consists of a

number of local autoregressive models and is organ-
ised and learnt by the neural gas and adaptive
LMS algorithms, so forming a topologically ordered
mixture of local regressive models. The proposed
autocorrelation-based similarity measure makes the
network more effective and robust in identifying cor-
rect local models given input segments, compared
to the error-based measures. The SOMAR network
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combines (local) regression and clustering in a joint
estimation, and is proven better than the two-stage
approaches. Furthermore, the joint estimation effec-
tively reduces the associated computational cost.
The experiments with various data sets show that
the proposed model can correctly detect and uncover
underlying regressive models. The results also show
that the proposed method outperforms other SOM-
based methods in modelling and prediction of non-
stationary FX rates time series.
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