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SEED: Sketch-Based 3D Model Deformation

Xin Bao Toby L. J. Howard

School of Computer Science, The University of Manchester

{baox, toby} (at) cs.man.ac.uk

Abstract
Traditional techniques for deforming virtual 3D models require the user to explicitly define a set of control
points, a region of interest (ROI), and to define precisely how to deform the ROI using the control points.
In this paper we present SEED, a sketch-based 3D model deformation approach, which allows the user to
perform a deformation using only a single control stroke, eliminating the need to explicitly select control
points, the ROI and the deforming operation.

1 Introduction

In 3D modelling software, deformations are usually
used to add, to remove, or to modify geometric fea-
tures of existing models to create new models with
similar but slightly different details. To perform a
deformation, the user is usually required to explic-
itly define where – the region of interest (ROI) – and
how – the control points and the deforming opera-
tion – the deformation will take place. However, the
explicit selection of these elements makes the defor-
mation process somewhat unintuitive, especially for
people with little experience of 3D modelling. As
applications requiring virtual 3D model processing
become more and more widespread, it becomes in-
creasingly desirable to lower the “difficulty of use”
threshold for users.

When people sketch with pen and paper, obser-
vation shows that they naturally “over-sketch”: they
redraw a slightly different curve from their original
one, near the part of the drawing where they wish to
make a modification [1]. Inspired by the idea of over-
sketching, we propose a sketch-based deformation ap-
proach, SEED (Silhouette-Expanding Easy Deforma-
tion), which utilises the strokes that users sketch to
guide the deformation of the silhouette of 3D models.
In contrast to existing approaches which require the
user to select the control points and the ROI manu-
ally, SEED estimates this information from a single
stroke made by the user.

This paper describes the structure and operation
of the SEED system, and covers the following main

features: (1) the system uses a sketch-based 3D model
deformation approach that performs a deformation to
an existing 3D model with only one stroke that the
user sketches. The selection of control points, ROI
and deforming operation are done implicitly; (2) the
system smooths geometric silhouettes so that they
can be used as control points in the deformation di-
rectly, and eliminates unnecessary details in the geo-
metric silhouettes which will otherwise affect the de-
formation; (3) we automatically detect the ROI, us-
ing the matched silhouette segments as the seeds of
ROI selection in a foreground growing algorithm in-
volved in the mesh segmentation; (4) we perform two-
stage ROI remeshing, which firstly subdivides the
ROIs before deformations, to ensure enough vertices
participate in deformations, and then restores the
original vertex density after deformation, to main-
tain a consistent look between the ROI and the rest
of the mesh; and (5) we exploit the GPU to opti-
mise our algorithms, which makes SEED responsive
enough for real-time interaction.

1.1 Related Work

Gesture-driven user interfaces, rooted in natural hu-
man action, have gained significant attention in re-
cent years. Since the appearance of Igarashi et al’s
“Teddy” in 1999 [2], many approaches have been pro-
posed to utilise sketching operations in the creation
and the modification of virtual 3D models. Our ap-
proach falls in this category, and in particular we fo-
cus on modifying existing 3D models through intu-



Figure 1: The working procedure of SEED as described in Section 2. (b), (c) and (g) are the block in (a)
observed after rotating the model π/2 around the y-axis.

itive and fast interaction. In many sketch-based 3D
model deformation approaches, such as [3, 4, 5, 6],
the selection of the ROI is explicit, where the user
is required to sketch a set of strokes, to give the al-
gorithms enough information to define the required
deformations. In order to reduce the strokes needed
in the interaction, one possible solution is to estimate
the ROI from information implied in the underlying
geometric features of the models. A key idea is inter-
active mesh segmentation, which uses relatively small
sets of user interactions as hints for dividing a mesh
into geometrically meaningful sub-meshes. In the fol-
lowing sections, we will review related work.

Sketch-Based 3D Model Deformation

We begin our review with the work of Draper [3], who
proposed a 3D deformation approach which used a
user-sketched stroke as a “handle”, which the user
drags to deform the model elastically according to a
grid of control points around the handle. Cherlin [7]
used a similar user-stroke as the shape of the cross-
section of a rotating surface. Kara [4, 8] proposed
approaches that used two strokes with one indicat-
ing the original shape of the silhouette and the other
guiding the algorithm to deform the surface. Sim-
ilarly, Kho’s work [5] also uses a two-stroke defor-
mation, separately indicating the control points and
the deformation. While the above approaches utilise
user strokes to deform a model, they do not use the
idea of “over-sketching”. In comparison, Nealen’s [6,

9] and Zimmermann’s [10] approaches more directly
reproduce the over-sketching concept in 3D model
deformation, in which pieces of silhouette segments
extracted from models are used to guide a detail-
preserving Laplacian deformation.

While most of these approaches require the user to
explicitly select the control points and/or the ROI [3,
4, 5, 6], Zimmermann’s [10] technique requires only
one stroke to detect the corresponding control points
and ROI, which is similar to our approach.

Interactive Mesh Segmentation

Like sketch-based modelling, interactive mesh seg-
mentation has recently become a fruitful area of study
because of the popularity of touch-based devices. Fan,
in his comparative study [11], points out that there
are generally four types of interactive mesh segmen-
tation approaches: sketching along the segmentation
boundary [12], foreground and background sketch-
ing [13, 14], sketching crossing the segmentation bound-
ary [15, 16], and foreground-only sketching [17, 18].
While most of these approaches require more than
one stroke, or a particular type of stroke (such as
along-boundary, or crossing-boundary sketching), fore-
ground sketching approaches, which use only one stroke,
are the most pertinent to our own research. As a
result, we adopt Fan’s foreground sketching segmen-
tation approach [17], which gradually adds similar
patches to the foreground collection while the stroke
continues, while the similarity is measured by the



Gaussian mixture model of the shape diameter func-
tion (SDF) [19] of the mesh.

2 System Overview

SEED is a sketch-based 3D model deformation ap-
proach, with an interface inspired by Teddy [2]. The
user’s input stroke csk is used to guide different phases
of the deformation algorithm, as shown in Figure 1.
When csk is received (Figure 1a), we first extract
(Figure 1b) and smooth (Figure 1c) the geometric
silhouette curves of the model from the orientation
viewed by the user. Next, the silhouette is segmented
according to visibility, with hidden silhouette seg-
ments being removed from the segment set. Then, csk
is used to match the nearest visible silhouette curve
segment c∗sil, which will be processed according to csk
to create the expected new silhouette shape ctgt (Fig-
ure 1d). At the same time, the shape diameter func-
tion of the mesh is computed (Figure 1e), and used
to fit two Gaussian mixture models (GMM) (Fig-
ure 1f). According to the GMMs, a region-growing-
based binary cut is performed to detect the ROI (Fig-
ure 1g). Following that, the ROI is deformed by
moving c∗sil towards ctgt using Laplacian deformation
(Figure 1h). Optionally the ROI can be remeshed
before and after the deformation to avoid narrow tri-
angles (triangles with angle smaller than π/6, here-
inafter) in the result. Figure 2 shows some examples
of the deformation process described above.

The concept of Zimmermann’s [10] approach is
similar to SEED, using only a single stroke to extract
silhouette curves, to match silhouette segments, and
to detect and to deform the ROI. However, there are
several differences between SEED and Zimmermann’s
approach. Firstly, SEED uses geometric silhouettes
as control points, which naturally contain the depth
information needed in the deformation, while Zim-
mermann uses the image silhouette, needing a helper
scheme to maintain the depth information. Secondly,
we adopt a foreground painting mesh segmentation
approach [17] to detect the ROIs according to the
characteristic of the vertices, while the ROI selection
in Zimmermann’s approach is done by asking the user
to sketch particular shaped strokes that imply the
size of the ROIs, according to which the ROIs are
marked by intersecting a series of spheres with the
meshes. However, this ignores the geometric infor-
mation of the mesh, such that the size of the ROI is
based on strokes rather than the mesh; further, the
particular shape of the strokes also reduces the in-
tuitiveness of the approach, since the strokes do not
resemble over-sketched strokes. Lastly, SEED allows
the detected ROI to be remeshed before and after the

deformation phase, which is useful when the vertex
count of the ROI is too low and direct deformation
may lead to unpleasant artefacts with stretched and
non-uniformly distributed triangles.

3 Silhouette Processing

Functioning as the guide of the ROI detection and
Laplacian deformation, the silhouette plays an im-
portant role, and it is used throughout the processing
phases. In this section, we introduce the main opera-
tions in the silhouette processing phase, including the
extraction and smoothing of the silhouette, hidden
silhouette removal, searching for silhouette segments
which match the stroke user csk, and establishing a
mapping between the matched silhouette segments
and the stroke.

3.1 Extraction and Smoothing

The geometric silhouette of a 3D model is a set of
curves which separates the front-facing parts of the
model from the back-facing parts. Hertzmann pro-
posed an approach [20, 21] for approximating the ge-
ometric silhouette as curves on a triangle mesh by
connecting silhouette points obtained by interpolat-
ing vertices around the ground truth of the silhou-
ette. Considering the relationship between the ver-
tices and edges of a triangle mesh S and its silhouette
Csil, there are three situations (viewed in orthogonal
projection from the positive z-axis):

1. A vertex v ∈ S is on Csil (Figure 3-1), if the z-
component of the normal of the vertex satisfies
nz = 0; or

2. An edge e(v0,v1) ∈ S intersects Csil at a point
p∗ (Figure 3-2), if the z-components of the nor-
mals of the edge’s two endpoints satisfy n0,z ·
n1,z < 0; otherwise

3. v or e is not related to Csil.

Assuming that the normals of the points on e changes
linearly, the intersection p∗ in the second situation
can be approximated as

p∗ = αv0 + (1− α)v1 , (1)

where α =
n1,z

n1,z−n0,z
. Thus, we have two types of sil-

houette points: vertex-based silhouette points, which
are located at v in the first situation, and edge-based
silhouette points, which are located at p∗ in the sec-
ond situation. By connecting each silhouette point
to its neighbour, we obtain a set of curves which ap-
proximate the true silhouette, as shown in Figure 3.



Figure 2: Some examples of deformation with SEED. The red curves are the deforming strokes; the blue
curves are the original silhouette; the deformed regions are shown in orange.

Figure 3: Three types of relationships between the
silhouette and the mesh elements. +/-/0: the signs
of the z-components of the normals of the vertices.
Magenta lines: the trace of the silhouette.

These curves can be used directly as silhouette curves
in silhouette deformation [6], however, as shown in
Figure 1b, sometimes they are not suitable for the
deformation when there are a lot of small geomet-
ric details on the surface, since it is difficult to find
a unique mapping from the silhouette points to the
points on the stroke, which is required for an intuitive
deformation.

From experiments with users, we observed that
when asked to illustrate the silhouettes of 3D mod-
els, they tended to ignore fine details and preferred
smoother curves. With this in mind, and the re-
quirement of establishing a unique mapping between
silhouette points and stroke points, we smooth the
silhouette curves by relaxing the silhouette criterion
nz = 0. We introduce two energy functions for each
silhouette point p:{

Egeo(p) = |np,z|
Esmth(p) = θ⊥(p)

, (2)

where the operator θ⊥(·) ∈ [0, π] computes the an-
gle between the two neighbouring silhouette points
by projecting them onto the plane perpendicular to
the normal of the given point. Egeo(·) describes the

distance of the silhouette approximation C̃sil from
the ground truth Csil, and Esmth(·) describes the

smoothness of C̃sil, as shown in Figure 4. To smooth
C̃sil, we maximise Esmth(·), while allowing Egeo(·)
to vary, while not exceeding the threshold ε ∈ R+.
Through experiment we have found setting ε = 0.2
gives good results.

Figure 4: The energy terms used in silhouette
smoothing. pi, pi−1 and pi+1 (blue dots) are sil-

houette points. P⊥ is a plane perpendicular to the
normal npi

of pi. p⊥i , p⊥i−1 and p⊥i+1 (red dots) are

the projections of pi, pi−1 and pi+1 on P⊥.



To apply the energy optimisation, we adopt a
greedy Snake algorithm [13] to iteratively improve the

smoothness of C̃sil. The algorithm, like a snake ad-
justing its posture to better adapt to its environment,
takes a set of points (known as “snaxels”) approxi-
mating a curve, and gradually adjusts their locations
to improve the energy distribution of the curve. At
the beginning of the optimisation, we associate each
silhouette point with a snaxel. According to the type
of corresponding silhouette point, a snaxel may be
vertex-based or edge-based, determined according to
Equation 1. To optimise the energy of the snaxels, we
iteratively relocate, split or remove them with respect
to Egeo(·) and Esmth(·), as well as their relationship
to neighbouring snaxels, as follows:

1. A snaxel si will be removed from the mesh (Fig-
ure 5a), if itself and its two neighbour snaxels,
si−1 and si+1, are within the same triangle; or,

2. a vertex snaxel si will be split into several edge
snaxels s′i located at corresponding edges con-
necting si according to si−1 and si+1 (Figure 5b),
if Esmth(si) < π; or,

3. an edge snaxel si will be relocated along its
edge (Figure 5c) so that Esmth(si) is maximised
while keeping Egeo(si) < ε; if doing so si is
moved to an endpoint of its edge, si will be
converted to a vertex snaxel.

Figure 5: Snaxel operations: (a) snaxel removal,
(b) snaxel splitting, and (c) snaxel relocation. The
blue/red/purple dots are respectively the origi-
nal/modified/new snaxels.

Starting from an end point of a given silhouette
curve, we apply the above operations to the curve
iteratively until no further splitting or removing oc-
curs. Since there might be more than one silhouette
curve comprising Csil, the iterative optimisation is
applied to each curve separately.

3.2 Hidden Silhouette Removal

As we have mentioned, in traditional hand illustra-
tion, users often over-sketch. To accommodate this

natural tendency, we remove invisible silhouette seg-
ments before matching the silhouette curves to the
sketch. Hertzmann pointed out [20] that the visibil-
ity changes in silhouette curves happen at key points
such as cusps and self-intersections, as well as at in-
tersections between different silhouette curves on the
image plane, as shown in Figure 6. Correspondingly,
to remove hidden silhouette segments, we firstly de-
tect these key points on the image plane. (We de-
fine a cusp as occurring when 3 consecutive silhou-
ette points form an angle smaller than π/2 on the
image plane.) With these key points, the silhouette
curves can be divided into a collection of silhouette
segments, each of which has the same visibility. How-
ever, due to the smoothing operation performed prior
to this step, there may be some points, which were
originally visible but are now covered with triangles.
To avoid such “false invisibility”, we assume that a
curve is visible if and only if there is at least one point
on it which is visible. This assumption is reasonable
since the affected segments are those curves that are
originally visible, so originally invisible curves will
not become visible.

Figure 6: Hidden silhouette removal: (a) the model;
(b) the silhouette; (c) the silhouette after removing
invisible segments. The red circles indicate the points
at which the visibility changes.

In order to test the visibility of these silhouette
segments, the visibility of each silhouette point must
be tested, which involves traversing the triangles of
the mesh. Because SEED is based on orthogonal pro-
jection, the test can be simplified to a 2D triangle-
point containment test. Thus, we first use a simple
bounding box test to cull irrelevant triangles; for the
remaining candidate triangles, the triangle-point con-
tainment test is performed. We implement this test
on the GPU, with a separate thread for testing each
triangle and silhouette-point. We have found that a
GPU-based test is twice as fast as a multi-threaded
CPU counterpart.



3.3 Matching Silhouette Segments

Again taking into account our observations of tra-
ditional sketching, we assume that the user’s stroke
is intended to control the deformation of the nearest
silhouette segment to the stroke. We define the dis-
tance D between a silhouette segment csil and the
user’s stroke csk as the average of the image plane
distance between the closest silhouette/stroke point
pair:

D(csil, csk) =
1

n

n∑
i=1

||pi,q
∗
i ||⊥ , (3)

where n is the number of points in the stroke; || · ||⊥
computes the image plane distance between two 3D
points; pi is a stroke point; and given pi, q∗i is a
point that is the closest to pi in csil. With this defi-
nition, we compute the distance between every silhou-
ette segment and the stroke, and choose the closest
one, from which we retrieve the matched silhouette
segment c∗sil which is between the closest silhouette
points of the two endpoints of the stroke.

3.4 Mapping Matched Silhouette Seg-
ment to Stroke

The points of the matched silhouette segment c∗sil can
be used directly as the control points in the deforma-
tion, and to guide the movement of the control points
we need to establish a mapping between these points
and the points on the stroke csk. Thus, we search
the closest points on csk from c∗sil by using relative
positions. Given the points pi of a given curve c, its
relative position rci on c is defined as:

rci =
l(0,i)

lc
, (4)

where l(0,i) is the length of the curve from one end-
point p0 of c to pi; and lc is the length of the whole
curve. The use of the relative positions in mapping
one curve to another mimics the behaviour of an elas-
tic rope: the curve will deform uniformly when an
outside force is applied to the curve, as shown in Fig-
ure 7.

Once the relative positions of points on c∗sil and
csk are computed, we map a silhouette point qj to

a stroke point pi if their relative positions rsil∗j and

rski are the same. Usually there will not be a direct
match, in which case we interpolate the closest stroke
points of qj , in term of relative position, to obtain the
matched point p∗j on csk, as follows:

p∗j = αpi + (1− α)pi+1 , (5)

Figure 7: Searching silhouette/sketch point pairs
with (a) Euclidean distance and (b) relative positions.
Blue/red curve: silhouette segment/sketched stroke.

where the coefficient α =
rski+1−r

sil
j

rski+1−rski
.

After matching a stroke point for each silhou-
ette point, we then assign the matched stroke points
with the depth value of their corresponding silhouette
point, to derive the target curve ctgt. Since there is
a gap between c∗sil and ctgt, we merge the position
of the point pair pi ∈ ctgt and qi ∈ c∗sil to achieve
a smooth transition according to their relative posi-
tions ri, as shown in Figure 1e:

p′i = f(ri)pi + [1− f(ri)]qi , (6)

where the merging ratio f(ri) is defined as

f(ri) =

 g(ri/ω) ri < ω
g(ω − ri/ω) ri > 1− ω
1 otherwise

; (7)

where g(·) is a monotonically increasing mapping from
[0, 1] to [0, 1]; and the threshold ω > 0 controls the
degree of merging. Through experiment, we choose
ω = 0.2 and use the square root function for g(·).

4 Automatic ROI Detection

The goal of SEED is to require the user to sketch as
few strokes as possible to deform a 3D model. We
note that in traditional illustration, an over-sketched
stroke not only gives information on how the illustra-
tion will be deformed, but also hints where to deform
and the size of the region of interest (ROI). How can
we mimic human recognition in order to estimate the
ROI, based on the stroke sketched by the user ? One
way to solve this problem is to use mesh segmentation
techniques, which use implied geometric information
to separate different parts of a mesh. Inspired by
Fan’s work [17], we utilise the shape diameter func-
tion [19] to compute a mesh segmentation on the fly,
according to which the ROI can be estimated.



4.1 GPU-Based Shape Diameter Func-
tion Evaluation

The Shape Diameter Function (SDF) is a volume
metric used in mesh segmentation. It gives a mea-
sure of the “thickness”, or diameter, of a given vertex
in a mesh, by casting a set of rays, typically around
30, from the vertex towards the opposite direction of
its normal, as shown in Figure 8. The rays cast are
constrained to a cone, typically with an angle of 60
degrees, in order to eliminate noise caused by small
details of the mesh.

Figure 8: SDF evaluation. Green dot: a vertex vi of
the mesh, with normal nvi . Purple lines: rays cast
from vi. Magenta/purple dots: the intersections of
the rays and the triangles of the mesh.

Because the evaluation of the SDF is computation-
ally expensive due to the ray casting process, we sub-
divide the space using an octree, which greatly im-
proves the run-time performance; however, the ray
casting algorithm is still relatively slow (Table 1: CPU).
To make the algorithm fast enough for real-time in-
teraction, we adopt a GPU-based algorithm to accel-
erate the ray casting, vectorising the octree to store in
GPU memory. Instead of looping through every ver-
tex and every ray, we create a thread for each vertex-
ray combination. According to the GPU used in our
implementation, 32 rays are used for each vertex to
fit in a thread warp, within which the performance of
global memory accessing can be boosted with a coa-
lesced access mechanism [22]. The performance is at
least twice as fast as its CPU-based counterpart in
our experiments (Table 1: GPU), including the time
to vectorise the octree.

Table 1: Run-time performance of the ray casting
for SDF evaluation.a

Model CPU GPU

Lo-Res Bunnyb 56.5 ms 34.2 ms
Mid-Res Bunnyc 558 ms 261 ms
Hi-Res Bunnyd 4.93 s 2.04 s

a.The timing data in the table are obtained by averaging
the duration of 100 executions. The CPU used in our
tests is an Intel Core i7-3630QM; the GPU is an
NVIDIA GeForce GT-650M. The settings are
consistent throughout our experiments.

b. 5k facets, hereinafter the same.
c. 30k facets, hereinafter the same.
d. 180k facets, hereinafter the same.

4.2 Gaussian Mixture Model Fitting

Once the SDF values of the mesh vertices have been
computed, we can use the values to guide the mesh
segmentation. To extract similar geometric features,
we fit the SDF values to two Gaussian mixture mod-
els (GMM): one for the whole model, and the other
for the “foreground” of the selection, as shown in Fig-
ure 1g. For the GMM of the whole model, we sample
2048 SDF values from the entire mesh to do the fit-
ting; for the foreground, we use the vertices around
the matched silhouette segment, or seeds, to do the
fitting. For some low resolution models with a small
vertex count, the number of seeds may be too low to
be used in fitting the GMM. To solve this issue, we
expand the seed area to the vertices whose geodesic
distance to the nearest seed vertex is within a toler-
ance (we experimentally use 0.1), as shown in Fig-
ure 9.

Figure 9: The original (blue) and the expanded (pur-
ple) seed region. The red curve is the matched sil-
houette segment.

To fit the GMMs, we employ a greedy expectation-



Table 2: Run-time performance of CPU-based
greedy GM (4 components) algorithm and its GPU-
based counterpart.

Test Case CPU GPU

Random Numbersa 356 ms 23.6 ms
Lo-Res Bunnyb 250 ms 9.51 ms
Mid-Res Bunnyb 241 ms 9.04 ms
Hi-Res Bunnyb 261 ms 12.0 ms

a. 2048 random numbers uniformly distributed in [0, 1].
b. 2048 samples from the SDF.

maximisation (EM) algorithm [23, 24]. The main op-
erations here are summing up values and finding ex-
treme values, which can be greatly accelerated with a
reduction-based algorithm on the GPU [25]. In such
an algorithm, the memory used to share temporary
results (the “workspace”) must be synchronised be-
tween all the threads. Restricted by the GPU specifi-
cation [26], the maximal number of threads that can
be synchronised internally during a single GPU pro-
gram call is 1024, beyond which the synchronisation
of threads must be done externally by CPU schedul-
ing, which is expensive. Considering this, we use (at
most) 2048 SDF samples to fit the GMM, so that
each thread will handle 2 samples, which maximises
the potential of GPU memory usage and results in a
performance gain as much as 20 times compared to
using the CPU (Table 2).

4.3 Detecting the ROI

The goal of ROI detection is to mark some vertices as
“selected”, while leaving other vertices alone. This is
a binary cut problem, which labels the whole vertex
set with two different colours by optimising appropri-
ate energy functions. We adopt the energy function
scheme of [17], which uses a connectivity term Ec and
a smoothness term Es to define the energy function
to be minimised:

E =
∑
v∈S

Ecv + λ
∑
v∈S

Esv (8)

where S is a triangle mesh; v is a vertex in S; and λ is
the weight of mixing the two terms. We set λ to 0.2
throughout our experiments to balance the aggres-
siveness of the ROI expansion and the smoothness of
the border of the ROI. With the energy function, we
use a simple region growing algorithm starting from
the foreground seeds to detect the ROI: by traversing
the unselected neighbour vertices of the foreground,
we compare the energy of assigning a vertex to the
background against the energy of assigning it to the

foreground. If the energy of foreground is smaller
than the background energy, we mark it as “selected”.
The algorithm stops when the border vertices of the
ROI reach a balance of foreground and background
energy.

4.4 Smoothing the border of the ROI

The result of the above ROI detection could be a
border which is a zigzag. In order to smooth the
border such that the ROI and the rest of the mesh
maintain a smooth transition, we adopt a greedy al-
gorithm. We categorise the vertices in the ROI into
three types based on their neighbouring vertices, and
process them accordingly:

1. An ROI vertex is called “convex” if it has no
more than two neighbouring ROI vertices, as
shown in Figure 10a. All convex ROI vertices
will be removed from the ROI.

2. An ROI vertex is called “concave”, if it has only
one neighbouring vertex that is not an ROI ver-
tex, as shown in Figure 10b. All non-ROI neigh-
bour vertices of concave ROI vertices will be
added to the ROI.

3. Otherwise, nothing will be done.

A priority queue is used to store the convex and the
concave vertices and their neighbours. While the
queue is not empty, we pop the first element from
the queue, and process it according to its type. Once
a convex or concave vertex is processed, all its neigh-
bour vertices are added to the queue. The process
continues until there are no convex or concave ver-
tices in the queue. A demonstration of the effect of
the algorithm is shown in Figure 10c.

5 Deforming and Remeshing ROI

Inspired by [6], we adopt a Laplacian mesh editing [27,
28] approach to move the matched silhouette segment
to the target curve, while keeping the boundary of the
ROI attached to the rest of the mesh. The nature
of Laplacian deformation is to stretch the mesh to fit
the target points, which will result in narrow triangles
when deforming a mesh which has a relatively small
vertex count, or is not evenly-triangulated. To obtain
a deformation with a consistent and smooth look, we
remesh the ROI before and after the deformation, in
case the direct deformation result is unsatisfactory
due to an irregular triangulation.



Figure 10: ROI border smoothing: (a) deselecting
a convex vertex; (b) selecting all neighbour vertices
of a concave vertex; (c) and (d) ROI smoothing ex-
ample. In (a) and (b), the orange/white triangles
are ROI/unselected regions; the red dots are the
convex/concave vertices; the red/green triangles are
newly deselected/selected ROI triangles. In (c) and
(d), the orange regions are the original ROIs, and
the red/green triangles are the deselected/additional
ROI triangles after applying smoothing.

5.1 Laplacian Deformation

Laplacian deformation involves solving a linear sys-
tem trying to satisfy deforming constraints, while
keeping the Laplacian coordinate of each vertex un-
changed as much as possible. The matrix of the linear
system is a sparse matrix, since the computation of
Laplacian coordinates only depends on a small collec-
tion of vertices neighbouring a given vertex. There-
fore, we employ a direct solver [29] to solve the lin-
ear system, the matrix of which is constructed us-
ing cotangent operator [30]. Since the operator only
uses weighted connection information of a given ver-
tex, there is no correlation between the three com-
ponents of the space/Laplacian coordinates. As a
result, we can decompose the linear system to obtain
three smaller-sized sub- linear systems for each co-
ordinate component independently, without affecting
the solution of the original linear system. By using
three threads to solve the sub- linear systems simul-
taneously, the duration of solving Laplacian system
can be shortened (Table 3: ST & MT).

Nealen suggested to adjust the orientations of the
vertices to improve the quality of the mesh after de-
formation [6, 9]. However, this will include a rota-
tion for each vertex in the deformation, which will

Table 3: Run-time performance of solving linear sys-
tems with different methods.a

Model AdjNormb STc MTd

Lo-Res Bunny 28.3 ms 3.71 ms 2.24 ms
Mid-Res Bunny 146 ms 35.0 ms 19.4 ms
Hi-Res Bunny 2.41 s 364 ms 161 ms

a.Deforming the bunny models with the stroke shown in
Figure 2a.

b.Deforming and adjusting the orientations of the
vertices.

c.Single-threaded deformation.
d.Multi-threaded deformation.

result in a denser matrix; what’s more, the coordi-
nate components are no longer uncorrelated, so that
we cannot decompose the matrix into smaller matri-
ces for multi-threaded acceleration. As a result, to
adjust vertex orientation, the duration of the defor-
mation will be much longer than deforming without
it (Table 3: AdjNorm). Since run-time performance
is more important than mesh quality in our system,
we do not adjust vertex orientation by default, and
leave it as an option to users.

5.2 ROI Remeshing

An issue of Laplacian deformation is that it only
stretches the vertices to perform the deformation,
without adjusting the connectivity and the number of
the vertices. This is generally acceptable when deal-
ing with a well-triangulated mesh and/or the scale
of the deformation is relatively small. For meshes
not well-triangulated or for a relatively massive de-
formation, however, the resulting mesh can be full
of narrow triangles, which will affect the appearance
of the mesh. In order to overcome this problem, we
remesh the ROI before and after the deformation. To
do this, we firstly retrieve the average edge length of
the ROI, according to which the remeshing algorithm
will be guided. For the remeshing before the defor-
mation (Figure 11c), the average edge length will be
scaled according to the “degree of stretching”, which
is defined by the ratio of the length of the matched
silhouette segment to the length of the target curve.
The purpose of scaling the guide edge length is to
try to maintain the average edge length of the ROI
after the remeshing. Since the deformation will al-
ways introduce stretched triangles (Figure 11d), we
perform another remeshing after the deformation try-
ing to restore the average edge length of the original
ROI (Figure 11e). The remeshing technique we use is
incremental remeshing [31, 32], which gradually op-
timises the connectivity and the distance of the ver-



tices, leading to a uniformly distributed mesh.

Figure 11: ROI remeshing and deformation: (a) de-
forming stroke; (b) the ROI; (c) remeshing before de-
formation; (d) deformation result; (e) remeshing after
deformation; (f) deformation without remeshing.

6 Usability Study

We recruited 24 subjects to participate in a usability
study, during which each subject was asked to per-
form a series of tasks, split into three “modules”, and
to rate their satisfaction with the outcome of their
tasks.

6.1 Silhouette Smoothing

The first test module evaluated the user experience
of the silhouette smoothing. We prepared a series
of models to demonstrate a part of the silhouette
curve with and without smoothing. The subjects
were shown these models, the sequence of which was
randomised. For each model both the smoothed and
unsmoothed silhouette segments were presented to

Table 4: Average user expectation ratings from our
usability study of SEEDa .

Test Rating

1
without smoothing with smoothing
2.63(±0.48) 3.28(±0.18)

2.1 3.04(±0.42)

2.2
manual automatic
2.10(±0.31) 3.66(±0.09)

3.1 2.97(±0.32)

3.2 3.17(±0.31)

a.On a scale of 0 to 4, see text for definition. The
numbers in parentheses are the standard deviation of
the data.

1.Satisfaction of silhouette extraction.
2.1.Satisfaction of ROI detection.
2.2.Ease of use of ROI selection.
3.1.Satisfaction of deformation.
3.2.Responsiveness of system.

the user without revealing which was which. After
displaying each model and the corresponding silhou-
ette segment, the subjects were asked to rate how
the presented silhouette segment met their expecta-
tion, from 0 (totally unexpected) to 4 (exactly as ex-
pected). The result (Table 4: 1) shows consistency
in preference of the smoothed silhouette segment us-
ing our algorithm, which implies that people tend to
ignore small details in the silhouette, and that the
sacrifice of accuracy in favour of smoothness is a rea-
sonable strategy.

6.2 ROI Detection

The second module evaluated the user experience of
the ROI detection. Similar to the silhouette extrac-
tion experiment, a subject was presented with ran-
dom models showing the detected ROI. They were
asked to rate whether the detected ROI met their ex-
pectation, using the same scale as above. In addition,
we asked the subjects to use both the sketch-based
ROI detection and traditional paint and lasso, sketch-
ing operations, to perform given ROI selection tasks,
after which they were asked to rate the ease of use,
from 0 (extremely awkward) to 4 (extremely easy), of
both selection approaches. The results (Table 4: 2.1
and Table 4: 2.2) indicate that the shape of ROIs de-
tected with our algorithm are generally acceptable to
the users, and also that the ROI detection algorithm
required less effort than the manual selection.



6.3 Sketch-Based Deformation

The third module evaluated the overall user experi-
ence of SEED. In this part of the experiment, the
subjects were asked to complete tasks to apply spe-
cific deformations to given models, after which they
were asked to rate the compliance of the deformed
shape to their expectation, as well as the speed of the
real-time experience, rating both from 0 (extremely
unacceptable) to 4 (excellent). The results, which we
find encouraging, are summarised in Table 4: 3.1 and
Table 4: 3.2.

7 Conclusion and Future Work

We have presented SEED, a system for intuitive real-
time deformation of 3D models. While the system
performs robustly, and has been favourably assessed
in our usability studies, there are a number of areas
where improvements can be made. One drawback
of our ROI detection algorithm is that sometimes
it tends to produce a ROI larger than the user ex-
pects, and we are investigating alternative mesh seg-
mentation techniques to give more intuitive results,
while not sacrificing performance. Again consider-
ing performance, we have used the GPU to greatly
improve the run-time performance of the ray cast-
ing involved in the evaluation of the shape diameter
function. However, the performance could be further
improved if the octree could be directly generated on
GPU, speeding up not only the creation phase itself,
but also reducing the time for vectoring and loading
the octree to the GPU. We also intend to further ex-
ploit the GPU by implementing a GPU-based direct
sparse linear system solver, in contrast to iterative
solvers such as Cusp [33], to speed up our deforma-
tion solving phase.

In our current system, the user can only deform
the silhouette of a given model. We intend to exper-
iment with deforming feature lines, as in, for exam-
ple [6]. The challenge here is to detect the feature
lines according to the user’s sketch, while maintain-
ing real-time performance.
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