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Objective: Waiting longer to receive pain increases its perceived unpleasantness by inducing ‘dread’.
However, it is not clear how unpredictability in the timing of the impending pain stimulus interacts with
dread and whether the two factors show differential effects on the neural generators of the pain-evoked
response.
Methods: We manipulated the duration of anticipation of laser-induced pain independently of unpredict-
ability of stimulus delivery timing, to observe the relative effect on P2 amplitudes of the laser-evoked
potential (LEP) response and its estimated sources.
Results: Subjects (n = 12) reported increased pain ratings after longer pain anticipation, irrespective of
unpredictability in the timing of stimulus delivery. By contrast, unpredictability in stimulus timing
increased the amplitude of the P2 irrespective of anticipation duration. The modulation of P2 amplitude
by unpredictability was localized to midcingulate cortex (MCC) and ipsilateral secondary somatosensory
(S2) areas. Greater anticipation duration increased activity in a hippocampal-insula-prefrontal network
but not in MCC areas.
Conclusions: Distinct neural networks contribute to the P2 and are differentially affected by pain antici-
pation duration and unpredictability in stimulus timing.
Significance: ERP research into dread should be careful to appreciate the neural generators of pain-evoked
responses and their potential modulation by unpredictability.
� 2008 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
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R1. Introduction

The experience of pain integrates sensory information about the
intensity, timing and location of the stimulus with cognitive and
affective information (Melzack and Wall, 1965; Craig, 2003). Pain
is mediated through a network of distributed areas in the brain,
the pain matrix (Melzack, 2001). The pain matrix consists of the
medial pain system associated with processing the affective and
motivational aspects of pain and the lateral pain system responsi-
ble for encoding sensory-discriminative information and motor co-
ordination responses (Jones et al., 2003; Vogt, 2005). Although
these two pain systems can be differentiated (Kulkarni et al.,
2005; Rainville et al., 1999), it is clear that changes in the sensory
characteristics of pain modulate the affective value of the stimulus
(Price, 2000).

One way in which the affective characteristics of pain can be
modified is by altering the timing of the stimulus. As is common
in dealing with unpleasant events, most people would choose to
78

79

80
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09.022
have a painful stimulus delivered quickly rather than wait for it
(Berns et al., 2006). This phenomenon extends to choosing to
have a more painful stimulus given sooner rather than wait for
a less painful one (Berns et al., 2006). Behavioral models (Caplin
and Leahy, 2001) assume this occurs because there is a cost to
waiting, i.e., dread. Using functional magnetic resonance imaging
(fMRI), the neural correlates of dread during anticipation of pain
have been localized to key areas of the pain matrix including
midcingulate cortex, primary and secondary somatosensory corti-
ces, and posterior insula cortex. A further study utilized the tem-
poral resolution of electro-encephalography (EEG) and magneto-
encephalography (MEG) to specifically look into the effects of
longer anticipation periods on the pain-evoked response (Hauck
et al., 2007). It showed that longer pain anticipation durations in-
crease the amplitude of the P2 component, which is known to be
generated mainly from the midcingulate cortex (Bentley et al.,
2003; Garcia-Larrea et al., 2003), in addition to augmenting pain
experience. However, research has also revealed potential sources
of the P2 in posterior parietal, medial temporal and anterior insu-
lar regions (Bentley et al., 2001; Valeriani et al., 2000). It is
not clear which P2-generating brain regions contribute to the
ed by Elsevier Ireland Ltd. All rights reserved.
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increased pain unpleasantness resulting from longer pain antici-
pation durations.

One factor that may interact with the length of anticipation and
its associated dread is unpredictability in the timing of the painful
event. Predictability in general determines the level of uncertainty
with which a pain stimulus is anticipated, and may take the form
of uncertainty about the intensity, location, timing or type of a
stimulus. Predictability has an adaptive value, in that it allows
organisms to develop behavioral control strategies, and like con-
trol, predictability can modulate the extent to which aversive stim-
uli induce stress and anxiety (Miller, 1981).

No study to date has controlled for the possible modulatory
influences of unpredictability in stimulus timing when investigat-
ing the effects of anticipation duration on pain responses. Atten-
tion may be modulated by unpredictability in a way that
modifies the pain-evoked response. The importance of attention
in modulating the pain response is widely acknowledged (Buffing-
ton et al., 2005; Keefe et al., 2004; Bantick et al., 2002; McCaul and
Haugtvedt, 1982; Hauck et al., 2007; Kulkarni et al., 2005). Both
theoretical considerations and evidence suggests that that any kind
of uncertainty (Dayan and Abbott, 2001; Brown et al., 2008), and
specifically uncertainty in the timing of pain (Carlsson et al.,
2006), modulates attention to the stimulus. Research using fMRI
has shown that varying the unpredictability of stimulus timing
causes differential brain responses in areas associated with atten-
tion and affective processing (Carlsson et al., 2006). Hence it is
important to control as far as is practical for the effect of attention
in order to accurately ascertain the effects of uncertainty and antic-
ipation period duration on pain responses.

The aim of this study was to investigate the effects of both
anticipation duration and unpredictability of stimulus timing on
pain-evoked responses and perceived pain, whilst controlling for
possible modulatory effects of attention. We manipulated the
unpredictability in the timing of pain delivery, independently of
the anticipation duration, allowing us to determine the main ef-
fects of each. We predicted that increasing the anticipation dura-
tion would increase the perceived painfulness of the stimuli,
independently of their unpredictability. We expected this effect
to be associated with increased pain-evoked responses in areas
of medial pain system associated with pain unpleasantness, includ-
ing midcingulate cortex. We further expected that manipulation of
the unpredictability of pain would modulate attention-related
activity in midcingulate cortex independently of anticipation
duration.

2. Methods

2.1. Subjects

Twelve healthy, right-handed subjects, free of psychiatric, neu-
rological, cardiovascular or autonomic disorders, participated in
the study (mean age 21.25 ± 2.0). Subjects gave informed written
consent, and the study was approved by Oldham Local Research
Ethics Committee.

2.2. Experimental procedure

Laser heat stimuli of 150 ms duration and a beam diameter of
15 mm were applied to the dorsal surface of the subjects’ right
forearm using a CO2 laser stimulator. Between stimuli, the laser
was moved randomly over an area 3 cm � 5 cm to avoid habitua-
tion, sensitization or skin damage. Subjects wore protective laser
safety goggles during the experiment.

An initial psychophysics procedure was performed using a 0–10
sensory rating scale, which was anchored such that a level 0 indi-
cated no sensation, level 4 indicated the pain threshold and a level
Please cite this article in press as: Clark JA et al., Dissociating nocicept
physiol (2008), doi:10.1016/j.clinph.2008.09.022
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7 indicated moderately painful. Participants were told to regard
‘moderately’ painful as halfway between pain threshold and the
maximum they could tolerate (which also corresponds to how
the level 7 is defined on the scale – halfway between level 4
(threshold) and 10 (tolerance)). A ramping procedure was repeated
three times to determine laser intensities rated as a level 7, for
each subject. Subjects’ ratings of the intensity level were then
tested through a series of laser pulses and the intensity levels were
adjusted to achieve an appropriate level of sensation.

The start of each trial was indicated by the presentation of a vi-
sual stimulus on a computer screen. Participants were made aware
that the laser stimulus would be delivered at either 3, 6, 9, or 12 s
and that there was an equal probability of any trial occurring.
Three seconds was chosen as the minimum anticipation duration
to remain consistent with our previous studies (Brown et al.,
2008; Brown et al., in press; Brown and Jones, in press), in which
we aimed to separate early and late anticipatory processes. By
maintaining this separation for the shortest anticipation periods
in the present study we ensured no overlap of early anticipatory
processes and those related to pain processing. Multiples of 3 s
were used for further conditions so that anticipation duration
could be regarded as a linear variable in statistical analyses.

There were two experimental conditions, predictable and
unpredictable, that differed according to the subject’s knowledge
of the timing of the laser stimulus. In both conditions a number
was displayed in a blue triangle prior to the stimulus delivery,
but only in the predictable condition did the number indicate the
timing (in seconds) prior to the stimulus: numbers were displayed
within a downwards-pointing triangle, which counted downwards
starting at 3, 6, 9, or 12 (representing the number of seconds until
stimulus delivery) until the delivery of the laser stimulus at time
zero. By contrast, in the unpredictable condition there was no clue
as to when the pain stimulus would be given. The unpredictable
condition was represented by blue triangles pointing upwards, in
which the numbers counted upwards beginning with the number
1, and ending on 3, 6, 9, or 12 depending on the anticipatory period
duration. Hence, in both conditions the anticipatory visual stimuli
changed once every second until stimulus delivery. Our design
therefore prevents attentional lapses that may occur during longer
anticipatory periods when there is a relative lack of novel sensory
input. We reasoned that such lapses in attention may inadvertently
influencing pain responses. Such exogenous cues have in the past
been used to maintain attention, showing measurable effects on
attention areas in the brain (O’Connor et al., 2005).

Following the laser stimulus (given at the pre-determined level
7 in all trials) there was a 3-s resting period, during which time
participants were asked to remain still and focus on the screen
ahead, awaiting the next prompt. This allowed EEG recording of
the LEP. The participant was then prompted to rate the painfulness
of the stimulus by the appearance of the 0–10 pain scale on the
computer screen. The experimental design is schematically repre-
sented in Fig. 1.

Each of the 8 trial conditions (i.e. the 4 anticipation durations
(3 s, 6 s, 9 s, and 12 s) �2 predictability conditions) was presented
20 times across 4 blocks lasting approximately 10 min each. Trials
were presented in a pseudo-random order with each block con-
taining 5 of each trial type. This ensured that each condition was
evenly distributed through the experiment and prevented habitu-
ation interfering with condition effects. Subjects were made aware
that the probability of receiving each condition was the same on
each trial.

EEG recordings were taken from 61 scalp electrodes placed
according to an extended 10–20 system (Easycap coupled with
Neuroscan amplifiers). Electrodes were referenced to the ipsilateral
(right) earlobe, and recordings were also taken from the contralat-
eral (left) earlobe for off-line conversion to linked ears reference.
ive modulation by the duration of pain anticipation ..., Clin Neuro-
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Fig. 1. Experimental design. Each trial was marked by the presentation of a visual anticipation cue that indicated one of two conditions: a predictable condition (indicated by
a downwards-facing blue triangle), in which the length of time before a laser pain stimulus would be delivered was initially displayed, counting downwards until stimulus
delivery; or the unpredictable condition (indicated by an upwards-facing blue triangle), in which the number ‘1’ was initially displayed which counted upwards until stimulus
delivery. Anticipation durations were varied randomly on each trial. After laser stimulus delivery subjects rated their perception of the pain on a 0–10 scale (see 2). (For
interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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Electrode impedance was kept lower than 5 kX. Two electro-ocu-
lographic (EOG) channels were used to monitor eye-movements
and blinking, this allowed off-line reduction of blink and eye-
movement artifacts. Bandpass filters were set at DC-100 Hz, with
a sampling rate of 500 Hz and gain of 500. A notch filter was set
to 50 Hz to reduce electrical interference.

2.3. Behavioral data analysis

The behavioral data obtained from the subject’s ratings of pain
intensity were normalized by subtracting each subject’s mean pain
rating (across all conditions) from their ratings for each individual
trial. This was done to correct for any variation between subjects
resulting from different interpretations of the pain scale during
the psychophysics procedure. No two participants are equal and
their individual responses often demonstrate large variability.
Measuring trial effects relative to the average response made by
that subject (across all trials) allows subjects to serve as their
own control. Thus, variability in the average response resulting
from experimental error can then be eliminated (Reed, 2004).
The resulting data was tested for normality before conducting a re-
peated measures ANOVA to determine the effects of subject, pre-
dictability, and anticipation duration on the normalized
behavioral data. Post hoc paired t-tests were then used to deter-
mine where the main effects were in the results.

2.4. Electroencephalographic (EEG) data analysis

The EEG data were analyzed using Neuroscan Edit 4.3 (Compu-
medics USA Ltd.) and Matlab 7.1 (Mathworks Inc.). The data were
filtered to remove slow potentials below 0.005 Hz and down-
sampled from 500 Hz to 125 Hz. Independent component analysis
(ICA) was used to remove vertical and horizontal eye movement
artifacts, which has previously been shown to be a successful
method in analyzing ERPs (Jung et al., 2000b; Jung et al.,
2000a). The data was epoched into single trials from 500 ms be-
fore the first visual stimulus to 1500 ms after the painful stimu-
lus. Epochs were visually inspected for further artifacts (e.g.
excessive muscle activity) that had escaped ICA removal, and de-
leted if necessary. Linear trends over the whole epoch were re-
moved using the entire epoch to calculate the linear component
in all channels. Each epoch was then baseline corrected to the
500 ms interval preceding the first visual anticipation cue. Trials
were then averaged separately for each condition. Data were ref-
Please cite this article in press as: Clark JA et al., Dissociating nocicept
physiol (2008), doi:10.1016/j.clinph.2008.09.022
E
D

P
R

erenced to the common average before proceeding further with
data analysis, although ERP waveforms are presented according
to the linked ears reference.

The P2 component of the Laser-Evoked Potential (LEP) was ana-
lyzed. P2 latencies were determined at Cz (where the P2 was at
maximum amplitude over the whole group) for each subject and
condition. A 16-ms window of LEP data was then extracted cen-
tered on the subject-specific latency for each condition. The P2
peak amplitude was analyzed using a repeated measures ANOVA
(with Greenhouse-Geisser corrections) that consisted of three fac-
tors: anticipation duration, unpredictability of stimulus timing and
electrode. The electrodes used in this analysis (F7, F3, FZ, F4, F8, T7,
FCZ, C3, CZ, C4, T8, CPZ, P7, P3, PZ, P4, P8, O1, O2) were selected to
include the midline electrodes and provide a good distribution
across the head. FCz, Cz, and CPz electrodes were then selected
for further repeated measures ANOVAs to look at the main effects
of predictability and anticipation duration. These results were ad-
justed using Greenhouse-Geisser and corrected for multiple com-
parisons using Bonferroni’s correction.

We further analyzed the data from electrode CPz by performing
Pearson’s correlations between the main effects of unpredictability
of stimulus timing and anticipation duration on P2 amplitude. Spe-
cifically, we compared the main effect of P2 amplitudes for [unpre-
dictable – predictable] conditions (averaged across the different
anticipation durations) vs. the difference in P2 amplitudes for dif-
ferent anticipation durations in the unpredictable condition (e.g.
[12 s–9 s], and [9 s–3 s]). These results were adjusted using Green-
house-Geisser and corrected for multiple comparisons using Bon-
ferroni’s correction.

2.5. Source analysis

Sources of the P2 were estimated with low-resolution electro-
magnetic tomography (LORETA), using the LORETA-KEY software
(Pascual-Marqui et al., 2002). There is considerable evidence to
suggest that LORETA is accurate in localizing the sources of EEG
data, even in some deeper structures. Work has shown substantial
similarity between intra-cerebral recordings and source localiza-
tion foci (Seeck et al., 1998; Trebuchon-Da Fonseca et al., 2005),
including LORETA analyses of deep mesial temporal/hippocampal
and subcallosal cingulate foci (Zumsteg et al., 2005). Moreover, in
two EEG/fMRI studies LORETA localizations were, on average
16 mm (Mulert et al., 2004) and 14.5 mm (Vitacco et al., 2002)
from fMRI activation loci, including loci buried in the depths of
ive modulation by the duration of pain anticipation ..., Clin Neuro-
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Fig. 2. The effect of anticipation duration on pain perception. Pain ratings were
normalized to each individual’s mean pain rating and statistically compared
between the four anticipation durations (averaged over predictable and unpredict-
able conditions). Longer anticipation durations induced significantly greater
perception of pain.
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the insula. Similar results have been reported elsewhere (Benar
et al., 2005).

The LORETA software uses a three-shell spherical head model
registered to the Talairach anatomical brain atlas (Talairach and
Tournoux, 1988), although the electrode coordinates used were
determined from a co-registration between spherical and realistic
head geometry that created a best-fit model (Towle et al., 1993).
LORETA estimates ERP sources in grey matter volume to a 7-
mm3 grid resolution (2394 voxels in total) using the digitized
MNI probability atlas (Mazziotta et al., 2001). Time-domain EEG
files were converted to current density vector field magnitude
using this technique. The resulting LORETA solutions were log-
transformed at each voxel; this approximates LORETA solutions
to a Gaussian distribution for parametric statistical analysis as pre-
viously demonstrated (Liu and Perfetti, 2003; Kiebel et al., 2005).

LORETA solutions were converted to SPM image format using a
modified version of LOR2SPM (http://www.ihb.spb.ru/~pet_lab/
L2S/L2SMain.htm). During this process LORETA solutions were
intensity-normalized in order to eliminate subject-to-subject glo-
bal variations. Statistical maps were then created using SPM5
(http://www.fil.ion.ucl.ac.uk/spm/software/spm5) running on
Matlab 7.1. The data were analyzed as follows. Firstly, the predict-
able and unpredictable conditions were compared (averaged
across all anticipation durations) using paired samples t-tests. Sec-
ondly, the effect of increasing the anticipation duration was con-
sidered (with predictable and unpredictable averaged together)
using an analysis in which the anticipation duration was entered
as the covariate (i.e. 3, 6, 9, or 12). This showed areas of the brain
more active after longer anticipatory period durations. Thirdly, a
regression analysis was used to correlate brain activity with behav-
ioral data. To do this we took each participant’s average pain rating
for trials with a 12-s anticipatory period duration and subtracted
their average rating in the 3-s trials. This gave us a measure of
how much their pain ratings were affected by increasing the antic-
ipatory period duration. Correlating this with LORETA data aver-
aged over all conditions revealed which areas of the brain were
more active in participants who were more affected by anticipation
duration. Results were considered statistically significant at a
threshold of p < 0.001 (uncorrected) for areas known to mainly
contribute to the amplitude of the P2 LEP peak (namely, midcingu-
late and insular/S2 cortices), and p < 0.05 (FDR corrected) for all
other areas, with 5 contiguous voxels above the threshold.
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R3. Results

3.1. Behavioral data

Pain ratings of the laser stimuli (Fig. 2) increased significantly as
the duration of the anticipatory period increased (F = 5.14,
p < 0.003). This effect occurred more in some participants than oth-
ers: there was an interaction between anticipation duration and
subject (F = 1.49, p < 0.04). Post hoc paired t-tests revealed signifi-
cant differences in pain ratings when making comparisons be-
tween 3 s and 9 s (t = 2.40, p < 0.04), 3 s and 12 s (t = 2.30,
p < 0.04), and 6 s and 9 s (t = 2.60, p < 0.03) anticipation durations.
There were no other main effects or interactions; notably there
was no effect of unpredictability of stimulus timing on the pain
ratings.

3.2. EEG results

The amplitude of the P2 was modulated by unpredictability
(F = 13.1, p < 0.004) and electrode (F = 23.9, p < 0.001). Significant
interaction effects were observed between unpredictability and
electrode (F = 6.1, p < 0.008), anticipation duration and electrode
Please cite this article in press as: Clark JA et al., Dissociating nocicept
physiol (2008), doi:10.1016/j.clinph.2008.09.022
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electrode F = 2.8, p < 0.03). Topographic plots and waveform plots
were drawn to visualize these effects (Fig. 3). The topographic plots
show that the main effects of unpredictability were around the
central midline electrodes, with greater unpredictability in the
timing of the pain increasing P2 responses at electrodes FCz
p < 0.04), Cz (p < 0.03), and CPz (p < 0.00).

The effect of unpredictability was considered in more detail at
electrode CPz, where the largest main effect of unpredictability
was found. Fig. 4a shows that in the unpredictable condition there
was a general increase in P2 amplitude from 3 s to 9 s with a de-
crease between 9 s and 12 s. To consider whether the difference
between the 9 s unpredictable trial and the 12 s unpredictable trial
was due to a change in predictability we correlated this difference
with the main effect of predictability on the P2 peak, i.e. the aver-
age difference (across all anticipation durations) between the pre-
dictable and unpredictable conditions. A significant correlation
was found (r = 0.64, p < 0.03). A correlation of 9 s–3 s in the unpre-
dictable condition and the overall effect of predictability on the P2
was not significant.

The LORETA results are presented in Fig. 5 and Table 1. The
main effect of unpredictability showed greater activation in the
secondary somatosensory cortex (S2) and posterior midcingulate
cortex (MCC). Longer anticipation durations were associated with
greater activation in bilateral posterior insulae, left anterior insula,
right hippocampus/parahippocampal gyrus and right frontal pole,
but not in the MCC. Activity in the anterior MCC correlated with
the increase in pain ratings resulting from longer anticipation
durations.

4. Discussion

In this study we sought to identify whether the duration of
anticipation influences behavioral and brain responses to pain
independently of the unpredictability of stimulus delivery time,
whilst controlling for attention. Our behavioral results support
the hypothesis that greater durations of anticipation increase pain
perception, consistent with previous findings (Berns et al., 2006;
Hauck et al., 2007). However, contrary to our expectations, the
P2 amplitude did not vary with the duration of anticipation, but
rather with unpredictability in stimulus timing. Instead, longer
anticipation durations increased activation of bilateral insulae
and hippocampal areas, whereas subjects whose pain ratings were
the most influenced by anticipation duration showed greater acti-
ive modulation by the duration of pain anticipation ..., Clin Neuro-
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vation of anterior midcingulate cortex (MCC). These findings sug-
gest a more specific network mediating the effects of anticipation
duration on pain than previously thought.

There was no interaction between the unpredictability of stim-
ulus timing and the duration of anticipation in the behavioral re-
sults, suggesting that unpredictability has little impact on
subjective pain perception. However, unpredictability of stimulus
timing increased the P2 of the pain-evoked response. This is con-
sistent with previous results showing similar modulation of the
P2 during oddball tasks when pain stimuli are novel (Legrain
et al., 2002). We localized the sources of this modulation of the
P2 to the MCC and ipsilateral secondary somatosensory cortex
(S2), areas commonly identified as the major sources of the P2
(Iannetti et al., 2005; Bentley et al., 2002; Tarkka and Treede,
1993; Garcia-Larrea et al., 2003; Bentley et al., 2002; Valeriani
et al., 2000). These areas have also been shown to be involved with
Please cite this article in press as: Clark JA et al., Dissociating nocicept
physiol (2008), doi:10.1016/j.clinph.2008.09.022
attentional orientation to pain (Peyron et al., 1999; Peyron et al.,
2000).

Previous studies have investigated the effects of increasing the
duration of pain anticipation on subsequently perceived pain and
its corresponding brain activity. A combined EEG and MEG study
showed that longer anticipatory period durations were associated
with larger P2 amplitudes (Hauck et al., 2007). However, the study
did not separate out the possible effects of unpredictability of stim-
ulus timing from anticipation duration as was performed in the
current study. We also considered it important to control for pos-
sible changes in attention over time, which has not been done pre-
viously. For example, if subjects are not cued to maintain attention
during pain anticipation, reduced attention would occur during
longer anticipatory periods relative to shorter ones, resulting in
greater attentional orientation to the pain stimulus once it arrives.
Given that the P2 is generated from the MCC (Garcia-Larrea et al.,
ive modulation by the duration of pain anticipation ..., Clin Neuro-
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2003), an area thought to represent attentional orientation to-
wards a pain stimulus (Peyron et al., 1999), increased P2 ampli-
tudes may occur with increasing anticipation duration as a result
of changes in attention and not anticipation duration per se. Our
paradigm attempted to control for attention by repeatedly present-
ing novel exogenous cues over the course of the anticipation peri-
od. A limitation of our study was that we did not take steps to
monitor attention during the anticipation period. Adding in probes
at random times during anticipation on some trials that require an
immediate response, and then comparing reaction times, would
have been fruitful in determining the effectiveness of repeated
anticipation cues in maintaining attention. Even though we took
no measures to measure attention, evidence suggests that the re-
peated presentation of exogenous cues improves the ability to sus-
tain attention over time (O’Connor et al., 2005). We therefore
regard this as an improvement on previous designs looking at
anticipatory effects on the P2.

Contrary to previous data in which attention and unpredictabil-
ity of stimulus timing were not controlled for, our results showed
no modulation of the P2 by anticipation duration.

This also contrasts with our behavioral findings, where pain rat-
ings increased with anticipation duration. Our findings may be per-
haps considered surprising given that the P2 is the most robust
temporal component of the LEP, and would be expected to be mod-
ulated by anticipation duration along with pain ratings. However,
we suggest that the effects of anticipation duration on the P2 in
previous studies were an artifact of changes in attention over time,
and that the neural generators of the P2 are more closely related to
processing attentional orientation to pain than intensity coding of
the stimulus.

An attentional, rather than intensity coding, role for the neural
generators of the P2 has been previous suggested (Garcia-Larrea
et al., 1997) and elaborated (Peyron et al., 2000). Evidence for this
hypothesis is twofold: firstly, the P2 is mostly generated from the
MCC, which has been shown not to be involved with intensity cod-
ing (Peyron et al., 1999; Casey et al., 2001; Derbyshire et al., 1997),
but rather is likely to be involved with attentional orientation to-
wards pain (Peyron et al., 1999). Secondly, we have shown in the
present study that unpredictability of stimulus timing modulates
the amplitude of the P2 and current density within the MCC, with-
out affecting pain perception. Previous work has suggested that
uncertainty is a modulator of attention, with greater uncertainty
(or greater unpredictability of stimulus timing in this case) stimu-
Please cite this article in press as: Clark JA et al., Dissociating nocicept
physiol (2008), doi:10.1016/j.clinph.2008.09.022
E
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lating attention and learning (Dayan and Abbott, 2001; Brown et al.,
2008). Hence there is theoretical basis for considering the relation-
ship between P2 and unpredictability of stimulus timing to be a
function of attention.

Further results from the current study present additional evi-
dence that the neural processes which give rise to the P2 are more
closely related to unpredictability or attention than to the pain-
enhancing effects of anticipation duration. We showed that there
was a drop in amplitude of the P2 in the unpredictable condition
after the longest pain anticipation duration relative to the shorter
ones. We reasoned this drop was probably caused by an increase
in the predictability of the pain stimulus timing: for trials contain-
ing 12 s anticipatory periods the pain stimulus was effectively pre-
dictable. As confirmation of this, the drop in P2 amplitude from the
9 s to the 12 s anticipation duration correlated with the main effect
of predictability on the P2 peak across subjects. In other words, the
best explanation for the change in P2 amplitude as anticipation
duration increased was a change in unpredictability of stimulus
timing.

If greater anticipation durations increase pain ratings without
affecting the attentional functions indexed by the P2 of the LEP,
by what mechanism do longer anticipation durations influence
pain perception? The results of our LORETA analysis, in which we
co-varied sources of the P2 with anticipation duration, shed light
on this issue. With increasing anticipation duration, greater cur-
rent density was found in bilateral insulae and hippocampal areas.
Consistent with the lack of effects of time on the P2, these areas are
not commonly thought to be the major generators of the P2 (Gar-
cia-Larrea et al., 2003), but there is nevertheless evidence for their
involvement (Bentley et al., 2001; Valeriani et al., 2000) and they
are important modulators of pain experience. In fact, the insulae
are one of the most important regions of the brain for the intensity
coding of a nociceptive stimulus (Ploghaus et al., 2001; Coghill
et al., 1999; Casey et al., 2001; Derbyshire et al., 1997). Our obser-
vation of activation in hippocampal and parahippocampal areas is
of interest considering the large body of evidence that these areas
serve important mnemonic functions (Milner et al., 1998), and are
thought to be closely related to anxiety (Gray and McNaughton,
2000). An insula-hippocampal network has been implicated in
the exacerbation of pain by anxiety (Ploghaus et al., 2001), whereas
lesions of the dorsal hippocampus have anxiolytic effects (McHugh
et al., 2004). Previous studies have also identified memory func-
tions for the right frontal pole, and specifically in coding for pro-
ive modulation by the duration of pain anticipation ..., Clin Neuro-
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Uspective memory, i.e. memory for intended behaviors that will be
realized in the future (Burgess et al., 2001; Okuda et al., 2003).
The co-activation of insula cortices with (para)hippocampal areas
and the right frontal pole suggests that longer anticipation periods
may be augmenting pain perception via the activation of memory
networks. Hence we suggest that anticipation duration affects the
perception of pain via a hippocampal-insula-prefrontal cortical
network, which operates independently of the degree of atten-
tional orientation towards the stimulus (mediated by the midcin-
gulate cortex).

A further LORETA analysis showed that anterior MCC (i.e. a re-
gion more anterior to the MCC generator of the P2) was activated
Please cite this article in press as: Clark JA et al., Dissociating nocicept
physiol (2008), doi:10.1016/j.clinph.2008.09.022
more in subjects whose pain ratings were most influenced by the
anticipation duration. This is consistent with previous work, in
which ‘extreme dreaders’ (i.e. people who find it the most unpleas-
ant to wait longer anticipation durations preceding pain) showed
greater anticipatory increases in activity in the midcingulate cortex
relative to ‘mild dreaders’ (Berns et al., 2006). It has been noted
that the more posterior regions of MCC do not have affective func-
tions and are likely to be more involved with skeleto-motor orient-
ing, whereas the more anterior regions are responsive to affective
influences (Vogt, 2005). In particular, the anterior MCC is a region
known to be important for processing pain unpleasantness (Tolle
et al., 1999; Kulkarni et al., 2005; Rainville et al., 1999), in addition
ive modulation by the duration of pain anticipation ..., Clin Neuro-
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Table 1
Brain regions showing variations in current density with unpredictability, pain anticipation duration, and anticipatory enhancement of pain perception.

Brain region Area MNI coordinates t value p value (Uncorr)

x y z

Main effect of unpredictability
S2/insular cortex R 13 39 �25 22 3.53 0.000
Midcingulate cortex L 24 �3 �18 36 3.11 0.001

Main effect of longer pain anticipation
Frontal pole R 10 25 66 8 4.90 0.000

R 10 11 66 22 4.32 0.000
Posterior insula L 21 �38 �11 �6 4.81 0.000

R 13 39 �18 1 4.03 0.000
Anterior insula L 13 �31 10 8 3.53 0.000
Hippocampus R 25 �39 1 3.99 0.000
Parahippocampal gyrus R 30 11 �39 1 3.91 0.000

R 35 18 �32 �13 3.78 0.000
Correlation with increased pain ratings
Midcingulate cortex L 32 �10 10 36 6.96 0.000

R 32 11 10 36 6.85 0.000

Uncorr, uncorrected P values. Area, Brodmann’s area.
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to anticipatory and pain-related anxiety (Kalisch et al., 2005; Simp-
son et al., 2001; Ploghaus et al., 2001). We therefore suggest that
participants who experienced the greatest dread were susceptible
to cognitive enhancement of pain perception via an independent
mechanism from the anxiety induced by the hippocampal-insula-
prefrontal network. The nature of this cognitive enhancement,
however, is unclear. One possibility, suggested previously (Berns
et al., 2006), is that greater dread enhances attention to pain. How-
ever, we must be careful when discussing attention to consider
how pain processing can be modified by placing attention on dif-
ferent pain components and different points in time. Activation
of anterior midcingulate is consistent with a greater attentional fo-
cus on the affective component of pain (Raij et al., 2005; Derby-
shire et al., 2004; Rainville et al., 1997; Kulkarni et al., 2005), and
possibly a future-oriented rather than present-oriented focus
(Ploghaus et al., 2003; Ploghaus et al., 1999). This is in contrast
to posterior midcingulate activations that can be best character-
ized by an attentional orientation to present stimuli (exemplified
by the P2), which is not directly involved with affective functions.
Hence we would speculate that ‘extreme dreaders’ have a more fu-
ture-oriented and/or emotionally-focused style of attention.

To conclude, the present study demonstrates that the increase
in perceived pain resulting from greater anticipation durations
are not related to changes in unpredictability of stimulus timing
or attention, and are mediated by a hippocampal-insula-prefrontal
network. Unpredictability in the timing of pain is likely to increase
attentional orientation to pain without any corresponding increase
in pain perception, via midcingulate and S2 cortex. More anterior
regions of midcingulate cortex may further enhance the effects of
longer anticipation durations in individuals who are susceptible
to experiencing dread.
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