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The procedure of curling a ribbon by running it over a sharp blade
is commonly used when wrapping presents. Despite its ubiquity, a
quantitative explanation of this everyday phenomenon is still lacking.
We address this using experiment and theory, examining the de-
pendence of ribbon curvature on blade curvature, the longitudinal
load imposed on the ribbon, and the speed of pulling. Experiments
in which a ribbon is drawn steadily over a blade under a fixed load
show that the ribbon curvature is generated over a restricted range
of loads, the curvature/load relationship can be nonmonotonic, and
faster pulling (under a constant imposed load) results in less tightly
curled ribbons. We develop a theoretical model that captures these
features, building on the concept that the ribbon under the imposed
deformation undergoes differential plastic stretching across its
thickness, resulting in a permanently curved shape. The model iden-
tifies factors that optimize curling and clarifies the physical mech-
anisms underlying the ribbon’s nonlinear response to an apparently
simple deformation.
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Bend a ribbon over a scissor blade by pressing it firmly down
with your thumb and pull the ribbon over the blade. This is

the commonplace method for curling ribbons for decorative gift
wrapping. But what is the mechanism by which ribbon coils are
produced? How does the coil depend on the speed of pulling, the
shape of the blade, and the tension in the ribbon? We address
these questions using a combination of experiments and theory,
showing how curling arises via a plastic deformation that is regu-
lated by both spatial and temporal effects.
A familiar example of curvature generation in thin materials is

the bimetallic strip (or thermocouple), for which curvature arises
from differential thermal expansion of two adherent layers of
elastic material; the strip bends on heating but recovers its ini-
tially straight configuration on cooling to its original temperature
(1). Some biological materials exploit the same principle, but
with expansion driven by water fluxes: Reversible differential ex-
pansion arises in bilayer plant tissues such as the anther (2), pine
cone scale (3), or wet paper (4), whereas irreversible differential
cell expansion drives the bending of roots and shoots (5).
In contrast to these examples, a ribbon is a homogeneous ma-

terial, at least before curling. Further, the curling deformation is
permanent, pointing to the fact that a part of the material undergoes
yield during the deformation process. Accordingly, the experiments
we report below reveal that a threshold load must be applied to
induce curling, whereas excessive loading may prevent curling or
even tear the ribbon completely. Similar plastic deformation is in-
advertently applied by rolling up paper scrolls for storage, resulting
in curled edges that have plagued Chinese scrolls for centuries (6);
however, the generation of this widthwise curvature is negligible in
our narrow ribbons. Unlike prior studies of the bending of elasto-
plastic beams under a stationary transverse load (7, 8), our study
addresses dynamic stress relaxation effects and shows how curling is
modulated by an axial load. Our work also differs from studies of
bending of soft viscoplastic threads, for which yield surfaces are
orthogonal, rather than parallel, to the thread axis (9).

Somewhat surprisingly, our experiments show that the maxi-
mum ribbon curvature is typically generated at an intermediate
load. We develop a theoretical model to explain the nonmonotonic
relationship between curvature and load. The central idea is that as
a material element of ribbon passes onto the blade and is forced into
a configuration with high curvature it undergoes yield in a region
near its outermost surface; however, as the ribbon element leaves
the blade, there can be a further deformation involving irreversible
stretching of the ribbon close to its inner surface. The former de-
formation promotes curling, and the latter reduces it. Curvature is
modulated further by the pulling speed, which determines how the
transit time of the element over the blade compares to the stress
relaxation time of the material. Our model captures the key ele-
ments of this robust phenomenon and demonstrates how the curling
process provides insight to the shear response of thin, stiff sheets of
polymer that yield under relatively low loads.

Results
Experimental Results. A schematic side-view diagram of the ex-
perimental apparatus is shown in Fig. 1A. A polymer ribbon (10)
of thickness H* = 100± 3 μm and width W p = 10.0± 0.3 mm,
made from PVC transparency film, is pulled steadily over a blade
at a prescribed rate (by attaching the ribbon to a rotating drum)
and under a prescribed load (provided by a weight attached to
one end). We used machined blades with radius of curvature
R* = 1, 1.5, and 2 mm and a fourth “sharp” blade with a much
higher curvature (R* < 0.1 mm). Pulling imprints a permanent
curvature on the ribbon, which is measured after the ribbon is
removed from the blade (Fig. 1C) (SI Appendix).
Images of the experimental ribbon configurations over each blade

are shown in Fig. 1B for loads in the range 50 g ≤m* ≤ 1,530 g. In
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each case, the ribbon’s resistance to bending led to slightly different
ribbon geometries over the blade for increasing loads. This was most
significant for the sharp blade where the ribbon configuration varied
significantly over the entire range of loads and could not conform to
the radius of curvature of the blade. Measurable changes in con-
figuration were also found for the R* = 1 mm blade over this range
of loads; for R* = 1.5 mm and R* = 2 mm, the ribbon approximately
adopted the curvature of the blade at m* = 1,030 g and m* = 510 g,
respectively, so that the geometry of the ribbon remained unchanged
for higher loads.
Dimensional permanent curvature measurements are shown

using symbols in Fig. 2A, as a function of axial load applied to the
ribbon for each of the four blades. The data corresponding to
experiments with the sharp and R* = 1 mm blades exhibit a
characteristic triangular shape, where curvature increases ap-
proximately linearly with increasing load to a maximum in cur-
vature that is larger the sharper the blade. The curvature then
decreases monotonically upon further increase of the load. In
both cases, the maximum load applied was determined by the
smallest value of curvature that could be reliably measured at
high loads. In contrast, for R* = 1.5 mm and 2 mm, the curvature
increased monotonically up to a maximum load, beyond which
the ribbon ruptured. For R* = 1.5 mm, the curvature seems to
have reached a maximum, whereas for R* = 2 mm only a small
increase in curvature could be observed before the load exceeded
its threshold value for rupture. The threshold load was found to
increase as the curvature of the blade was reduced (Fig. 2A). The
four sets of experimental data also suggest that a critical load
needs to be exceeded in order for the ribbon to curl, and this
critical load increases significantly with reduction in blade

curvature. Hence, the modest loads required to bend the rib-
bon over the sharp and 1-mm blades meant that the ribbon
geometry varied with load over the entire range investigated
(Fig. 1B), whereas the larger loads required to bend the ribbon
over the R* = 1.5-mm and 2-mm blades exceeded the values at
which the ribbon geometry reached a constant configuration. The
effect on ribbon curling of the pulling speed was investigated for
R* = 1 mm and two applied loads (m* = 960 and 689 g). Experi-
mental data shown with symbols in Fig. 2B indicate that the cur-
vature of the ribbon curl decreases monotonically with linear
pulling speed.
To inform comparison with the theoretical model, the material

properties of the PVC ribbon were measured with uniaxial ten-
sile tests performed using an Instron 3345 (L2957) universal
testing system. The Young’s modulus E* was determined by
linear least-square fit of average stress-strain curves measured in
the elastic regime to take a value of E* = 2.5± 0.4 GPa. The
viscoplastic behavior of the material was investigated with creep
experiments, where stress was applied to six different ribbon sam-
ples in successive step changes of variable magnitude. The aver-
age rate of plastic strain creep was determined with a linear fit to
the time variation of strain data following each step change in
applied stress. The average strain rate is shown in Fig. 2C as a
function of applied stress, where each symbol indicates experi-
ments performed on an individual ribbon sample. The strain rate
is approximately zero below a critical yield stress and increases
approximately linearly above this threshold. A linear fit to the
data above the plastic yield threshold in Fig. 2C gave a viscosity
coefficient of Φ* = 92± 4 GPa·s, and extrapolation of the curve to
zero average strain rate provided an estimate of a yield stress of

A B

C

Fig. 1. Experimental setup for ribbon curling. (A) Side-view schematic diagram of the experimental apparatus. (B) Side-view photographs of the experi-
mental ribbon shapes bending over the blade for different ribbon tensions imposed by hanging weights m* = 50 g (gray), 265 g (yellow), 510 g (green), 1,030 g
(blue), and 1,530 g (red) as shown in A. From top left to bottom right: sharp blade, blade radius R* = 1 mm, R* = 1.5 mm, and R* =2 mm. In all cases except for
R* = 1 mm, the rotating cylinder and top edge of the blade are positioned at the same height. For R* = 1 mm (top right image), the cylinder position is higher than
the blade so that the ribbon under tension is oriented with an angle of 14° with respect to the horizontal direction, and the contact area of the ribbon with the
blade is reduced. (C) Measurement of the curl radius: top-view photograph of a single curl where the edge of the ribbon rests on a perspex sheet, and superposition
of the ribbon outline obtained using edge-finding and the Hough transform onto the curled ribbon.
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Y * = 39± 1 MPa. However, as shown in Fig. 2C, small but mea-
surable plastic strain rates were also found below this estimate of
the yield stress for applied stress values larger than 32 MPa. Fi-
nally, tensile stress relaxation experiments performed by rapidly
ramping the strain imposed on a sample ribbon to a fixed value
and recording the reduction in stress that followed (SI Appendix)
yielded maximum rates of plastic stress relaxation that increased
weakly up to 1.8 MPa/s at 1.6% imposed strain and then more
sharply and approximately linearly to 8 MPa/s for 4.4% imposed
strain, relaxing to stresses in the range 28–36 MPa, with evidence
of yield taking place even at strains below 1%. In summary, the
ratio Y *=E* K 0.016 measured under extensional deformation
indicates that the ribbon is a stiff material with a relatively low
(but poorly defined) yield threshold, and estimates of stress re-
laxation time range from below 1 s to ∼40 s.

Physical Interpretation. Fig. 3 illustrates the mechanism that we
propose to explain ribbon curling. The ribbon’s complex consti-
tutive properties are idealized by treating it as an isotropic
elastic/viscoplastic material with a yield stress Y * and a stress-
relaxation timescale tpp, such that the material behaves elastically

over timescales much less than tpp but stresses in excess of Y * relax
over a timescale tpp via irreversible deformation of the material;
in line with experimental observations, we allow ourselves
some latitude in defining precise values of Y * and tpp. We ignore
friction between the ribbon and the blade, so that the ribbon
bears a uniform load along its length and remains isothermal.
We consider the motion of an element of ribbon as it passes
onto, over, and off the blade. In doing so, the curvature of the
element (i) rises smoothly while the ribbon is off the blade, (ii)
adopts the curvature of the blade while in contact with it, and
then (iii–v) falls once off the blade (Fig. 3, Top), giving rise to
stress distributions across the ribbon illustrated in Fig. 3 for low
and high loads (cases A and B, respectively). Although the rib-
bon adopts a steady shape, material elements experience a time-
varying curvature as they pass over the blade. The off-blade
curvature distributions (i and iii–v) are regulated by a balance
between the ribbon’s bending resistance (which we assume is un-
affected by any plastic deformation) and the imposed axial load.
We assume that, as it passes over the blade, the ribbon ele-
ment experiences a transverse strain gradient proportional to its
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Fig. 2. Comparison between experimental measurements and theoretical predictions. (A) Symbols show experimental measurements of the permanent
curvature of the curled ribbon as a function of stress applied to the end of the ribbon (see Fig. 1A) for the four blades: sharp blade (green diamond),
R* = 1 mm (blue circle), R* = 1.5 mm (red square), and R* = 2 mm (black triangle). In all cases, curling is observed above a threshold value of the applied load
that depends on the radius of curvature of the blade. For the sharp blade, R* = 1 mm and R* = 1.5 mm, the curvature increases approximately linearly above
the threshold load to a maximum value that decreases as R* is increased. The curvature then decreases approximately linearly with applied load, and for
R* = 1 mm, the minimum values of curvature measurable experimentally are recovered. The vertical dotted lines correspond to the typical loads at which the
ribbon ruptured on the blade. For R* = 1.5 mm, the rupture load is very close to the maximum of curvature, so the decrease of curvature with load cannot be
observed. For R* = 2 mm, the curvature does not show evidence of a maximum below the rupture load. The pulling speed is V* = 4.9 mm/s. Lines show model
predictions using parameters V* = 4.9 mm/s and E* = 2.5 GPa. Values of the yield stress and plastic relaxation time were adjusted to Y* = 28, 30, 31, and 40 MPa and
tp*= 0.15, 0.18, 1.0, and 0.9 s for the sharp, 1-mm, 1.5-mm, and 2-mm blades, respectively. The angles at which the ribbon is pulled are similar to those shown in
Fig. 1B. (B) Symbols show experimentally measured curvature as a function of pulling speed V* for two different weights:m* =689 g (blue circles) andm* = 960 g
(magenta diamonds), using the blade with radius R* = 1 mm. The curvature decreases approximately by a factor of three over the range of speeds investigated.
Lines show model predictions using parameters for the 1-mm blade. (C) Average strain rate (symbols) measured as a function of applied stress during uniaxial
tensile creep tests. A linear fit to the growing part of the curve (solid line) is extrapolated to zero strain rate to determine the yield stress Y* = 39MPa. Each type of
symbol denotes a series of measurements performed on an individual ribbon sample. In each of these experiments, the imposed stress was incremented from zero
in steps, and the strain was allowed to creep upward at each step until it reached an approximately constant value. An average strain rate was estimated at each
step by a linear fit to the data.
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instantaneous curvature, stretching the ribbon on its outer surface
and compressing it (relatively) at its inner surface. Thus, upstream
of the blade (i), the curvature-induced strain induces a transverse
gradient of stress through an initial elastic response, which acts in
addition to the axial loading on the ribbon. Where the stress ex-
ceeds Y *, however, the ribbon starts to yield irreversibly (i and ii in
Fig. 3); initially, this takes place close to the ribbon’s outer surface.
As the stress in the yielded region relaxes, the yielded region
widens in order that the ribbon element can support a constant net
axial load. Passing off the blade, the stress in the yielded region
relaxes toward Y *, leaving the ribbon irreversibly elongated at its
outer surface (iii in Fig. 3).
Passage of the element further off the blade leads to a reduction

in curvature and hence in the transverse strain gradient. Thus, via
an initial elastic response, there is a corresponding reduction in
the transverse stress gradient; this may be visualized as counter-
clockwise pivoting of the stress distribution about the ribbon’s
midline. If the yielded region remains confined to the upper half
of the ribbon (iv and v in case A, Fig. 3), then no further yielding
occurs. However, if the yielded region penetrates into the lower
half of the ribbon, pivoting of the stress lowers the stress near the
outer wall but creates a new zone near the ribbon’s midline where
the stress exceeds Y *, (iv in case B, Fig. 3). This, in turn, induces a
second phase of stress relaxation, involving widening of the cen-
tral yielded region (v in case B, Fig. 3), and further irreversible
elongation of the ribbon; this process is promoted by further
curvature reduction as the ribbon element straightens out. Ulti-
mately, the yielded region extends to the inner surface of the ribbon,

reducing the gradient of irreversible strain. When unloaded, the
curvature of the ribbon element is determined by the overall gra-
dient of the net plastic strain; this gradient grows as the ribbon
yields near its outer surface (v in case A, Fig. 3) but falls if there is
additional yielding near the inner surface (v in case B, Fig. 3).
The minimal load required to induce a curl (Fig. 2A) can there-

fore be associated with the threshold required to induce yield at the
ribbon’s outer surface; the increase of curvature with load is as-
sociated with thickening of this yielded region (i–iii in case A, Fig.
3), and the reduction of curvature with load at higher load is due to
the compensating yield near the inner surface (iv and v in case B,
Fig. 3). The reduction of curvature with pulling speed (Fig. 2B)
arises because the ribbon element has limited time in which to
undergo stress relaxation while on the blade. Curling is maximized
by driving the on-blade yield surface to the ribbon centerline (but
not beyond), and by ensuring the ribbon moves slowly enough for
the stress to relax fully before leaving the blade.
We can use experimentally measured parameters to estimate

the load required to induce curling. We represent the load as an
axial stress Σ* and define the ratio of the ribbon’s thickness H* to
the blade radius of curvature as e≡H*=R*, where e � 1. The
ribbon will conform tightly to the blade if the bending length
L*
b ≡ ðE*H*2=Σ*Þ1=2 (treating the ribbon as a loaded elastic

beam) is small compared with R*, that is, Σ* � e2E*. Preblade,
we require Σ* <Y * (to avoid large-scale yielding) and the mean
axial strain is OðΣ*=E*Þ. The additional strain at the outer ribbon
surface induced by curving the ribbon over the blade is OðeÞ,
inducing an elastic stress OðeE*Þ. For yielding to take place, we

Fig. 3. Diagram illustrating the evolution of curvature, stress and plastic deformation of the ribbon for two parameter sets A and B, corresponding to
the distinct regimes of behavior identified in the model. The parameters used in the calculations are tp*= 0.35 s, Y* =35 Mpa, E* = 2.5 GPa, H* = 100 μm, and
R* = 1mm, with applied loads Σ* = 10MPa in A and Σ* = 30MPa in B. (Top) Depiction of the curvature κ of a material element of ribbon as a function of time
as the element passes over the blade showing (i) preblade, (ii) on-blade, and (iii–v) postblade states. In these examples the ribbon comes into line contact with
the blade, with its maximum curvature 1=R* matching that of the blade. Increasing the axial load on the ribbon (going from A to B) reduces the lengthscale L*b
over which the curvature decays off the blade and increases the width of the contact region. (A and B) Depictions of profiles across the ribbon cross-section of
the axial stress distribution σ (blue) and the axial plastic strain ep (red). Black lines show σe, the total axial strain times Young’s modulus; its transverse gradient
is determined by the instantaneous curvature of the ribbon element. The shaded regions indicate the yielding domain, denoting regions where σ exceeds the
yield stress (indicated with a dashed line). In i, the increasing curvature raises σ above yield close to the outer surface of the ribbon; the material begins to
relax, decreasing σ below σe and promoting a gradient in ep. (ii) The stress integrated across the ribbon supports the constant imposed load, moving the yield
surface toward the inner surface of the ribbon as the stress field relaxes. (iii) Just after leaving the blade, the yielded region is confined to the upper half of
the ribbon under lower loads (A), but extends into the lower half of the ribbon under higher loads (B). (iv) The lowering curvature pivots the stress distri-
bution around the ribbon midline: In A this lowers σ below the yield threshold, whereas in B the yielding region propagates further into the lower half of the
ribbon. (v) As the ribbon element straightens, in A the final plastic strain is confined to the upper half of the ribbon, whereas in B the entire ribbon cross-
section has undergone yield, leading to net axial stretch (see Movies S1 and S2).
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therefore require Σ* to lie in a window of width of order eE*

below Y *. This explains why the threshold for curling is lower for
sharper blades (Fig. 2A) but does not explain why the load
leading to maximum curling falls for sharper blades. To address
such questions, we now turn to a quantitative model, summarized
briefly below and explained more fully in Materials and Methods
and SI Appendix.

Model Predictions. Model predictions are shown using lines in Fig.
2A. The model predicts that curling takes place for loads satisfying

Σ* >Y * −
1
2
κmaxE*, [1]

where the dimensionless curvature κmax is the minimum of the
curvature of the blade H*=R* (which arises at higher loads, when
the ribbon is in line contact with the blade, as in Fig. 3A) and the
maximum beam curvature

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48Σ*=E*

p
(this arises at lower loads,

when the ribbon is bent through 90° and in point contact with
the blade).
The predicted ribbon curvature is composed of two curves,

one rising with load and the second falling (Fig. 2A). On the
rising curve, yield is confined to the upper half of the ribbon
cross-section; on the falling curve, yield extends into the lower
half of the cross-section. The threshold between the curves de-
pends on geometric and material parameters and the speed at
which the ribbon passes over the blade. Choosing values of Y *

and tp* (within the range of experimentally determined values) to
match measurements of peak curvature, the model underesti-
mates the minimum load for the onset of curling (although it
provides a qualitative explanation for this behavior). Just as stress
relaxation measurements reveal a range of yield stress values (SI
Appendix), it was not possible to identify a single parameter set
appropriate for all four blades, reflecting limitations of the con-
stitutive model. The minimum load for curling is closely related to
the assumed yield stress (see Eq. 1); experimental data show that
the sharp blade induces yielding at a lower effective yield stress,
which is reflected by choosing a lower value of Y *. Curling is
promoted by allowing for full stress relaxation while the ribbon is
on the blade. Because independent uniaxial tensile tests (SI Ap-
pendix, Fig. S1) show stress relaxation occurring more rapidly for
larger strains, we adopt a smaller relaxation time for the experi-
ments with sharper blades.
Lines on Fig. 2B show how the curvature is predicted to fall

with increasing speed for a fixed load, using parameters for the
1-mm blade. The rate of decay of curvature with speed is captured
reasonably well, and the model confirms that greater curvature
may generally be achieved at lower speeds (and higher loads) by
allowing for complete stress relaxation in the upper half of the
ribbon. Although not evident in the experimental data, the model
predicts that this effect may be offset at very low speeds (to the left
of the kink in predicted curves), where the yield surface penetrates
the lower half of the ribbon: In this case the model suggests that
slightly greater curvatures can be achieved under lower loads.
The model predicts net axial elongation (in addition to curling)

that undergoes a transition from modest to steep increase with
load at approximately the load required for maximum curvature
(Fig. 2A). Hence, net axial elongation is most significant along the
falling part of the curvature–load curve. The experimental data
confirm this prediction (SI Appendix, Fig. S2).

Discussion
Perhaps the most surprising feature of the experimental data
reported here is the nonmonotonic dependence of curvature on
load, showing that the applied load must be carefully tuned to
maximize permanent ribbon curvature when using a blade of
given radius. The load applied to the ribbon serves multiple
purposes: It wraps the ribbon over the blade, forcing it to curve; it

elevates the axial stress in the ribbon toward the yield stress; and
it regulates the pattern of plastic deformation across the cross-
section of the ribbon. When the ribbon is curved, stretching of the
ribbon at its outer surface may be sufficient to induce plastic
deformation locally. This deformation is applied to a length of
ribbon by running the ribbon over the blade, at a speed that is
sufficiently slow for part of the ribbon’s cross-section to stretch
irreversibly. If the stress relaxes while the ribbon is in a curved
configuration, then straightening of the ribbon as it leaves the
blade elevates the stress on the inner surface of the ribbon. If the
load is sufficiently great, this can induce further plastic defor-
mation, reducing the transverse strain gradients that lead to
permanent curvature.
Experiments characterizing the material properties of the ribbon

under elongation demonstrate surprisingly complex constitutive
properties that we have not attempted to represent in full detail,
choosing instead to work within the framework of a relatively simple
(quasi-one-dimensional elastic–viscoplastic) constitutive model. Our
semiquantitative predictions are sufficient to provide the physical
insight needed to rationalize ribbon curling, during which exten-
sional, shear, and viscous effects interact. Our model discounts
frictional effects that may induce heating or surface deforma-
tions; these may contribute to curling in other circumstances.
The experimental protocol described here offers insights into

material properties under shear of thin materials that are stiff
but that yield at relatively low loads. The yield stress and re-
laxation time can be hard to define unambiguously for the
polymer materials that often constitute ribbons, even in sim-
ple extensional tests. However, estimated geometric, material,
and dynamic parameters (H*=R*, Y *=E* and V *t*p=R*) help define
the range of loads over which curling arises and the tightness of
the resulting curls.

Materials and Methods
Model Description. A full description of the mathematical derivation and
solution of the model can be found in SI Appendix. The following highlights
the model’s key aspects.

To allow physical insight, our model seeks to capture the essential features
of the experiment using aminimal number of parameters. We impose a strain
field on a ribbon element as it moves from state to state and compute the
resulting stress field.We calculate strain profiles bymodeling the ribbon as an
Euler–Bernoulli beam that is subject to an applied load and the constraint
that it wraps around the blade for a portion of its length. This yields a
curvature profile that is uniform on the blade and decays over a distance
Lb
* = ðE*H*2=Σ*Þ1=2 off it (Fig. 3, Top). The ribbon element experiences a
transverse strain gradient, induced by the imposed curvature, superimposed
on a transversely uniform axial strain. As shown in SI Appendix, the ribbon is
found to be in point contact with the blade at low loads (when Lb

* ≥
ffiffiffiffiffiffi
48

p
R*,

where the maximum curvature is
ffiffiffiffiffiffi
48

p
=Lb
* ); it is in point contact with maxi-

mum curvature 1=R* for slightly higher loads and in line contact with max-

imum curvature 1=R* for Lb
* <R*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð2− ffiffiffi

2
p Þ

q
. Given a ribbon speed V*, this

yields the curvature history κ*ðt*Þ of a material element. Examples are
shown in SI Appendix, Figs. S4–S6.

Given the imposed strain, we compute the stress bymodeling the ribbon as
a elastic/perfectly viscoplastic (Bingham–Maxwell) material, parametrized by
a stiffness E*, a yield stress Y*, and a relaxation time tp*. We adopt a sim-
plified representation for which the dominant stress and strain components
in a ribbon element are purely axial and dependent on the transverse co-
ordinate H*h (with −1=2<h< 1=2), responding parametrically to changes in
the element’s curvature. Because we do not use a fully 3D formulation, we
cannot expect estimates of the material parameters from unidirectional
extensional deformations, which themselves show significant variability (Fig.
2C and SI Appendix), to transfer precisely to the more complex shear de-
formations associated with the curling experiment. Instead, we use the
measured transit speed V*, set E* = 2.5 GPa (as measured) and adjust Y* and
tp* where they are used in the model within tightly defined ranges to fit the
model to data. Having computed irreversible stretching of the ribbon ele-
ment, its final curvature is computed by seeking its equilibrium configura-
tion under zero load and moment.

To model plastic deformation, we nondimensionalize lengths by the
ribbon thickness H*, stresses by the yield stress Y*, and time by πR*=2V*, the
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time taken to pass over the blade. The dimensionless compliance parameter
η=Y*=E* is assumed small. In terms of the transverse coordinate h, directed
from the inner to the outer wall of an element of ribbon, the axial strain
distribution is assumed to take the form eðh, tÞ= eðtÞ+ κðtÞh, with eðtÞ the
element’s uniform stretch and κðtÞ=H*κ* the ribbon’s centerline curvature.
With κðtÞ prescribed, eðtÞ adjusts to accommodate plastic deformations.
Before any plastic deformation, eðtÞ= ηΣ, where Σ=Σ*=Y* represents the
net axial load on the ribbon. We assume a linear-elastic/plastic strain de-
composition eðh, tÞ= ησðh, tÞ+epðh, tÞ, with σ the axial stress and ep the
plastic strain. The Bingham–Maxwell elastic/perfectly viscoplastic constitutive
law (11) is

de
dt

≡ η
dσ
dt

+
dep
dt

= η
dσ
dt

+ϕðσ− 1ÞHvðσ− 1Þ, [2]

where ϕ= πR*η=ð2V*tp*Þ is an extensibility parameter and Hv the Heaviside
function. We adopt a quasi-one-dimensional formulation, disregarding shear
stresses so that h appears as a parameter in Eq. 2; there is plastic deformation
wherever σ > 1. The axial stress resultant balances the imposed load, giving

Z 1=2

−1=2
σðh, tÞdh=Σ. [3]

As shown in SI Appendix, this system can be reformulated as an integro-
differential equation for ep

dep
dt

=
ϕ

η
f
�
ep

�
H
�
f
�
ep

��
,

f
�
ep

�
=
Z 1=2

−1=2
epdh+ κh+ ηðΣ− 1Þ− ep,

[4]

which was solved numerically up until a time at which the stress had fully
relaxed. Once the load is removed from the ribbon, each element relaxes to
form a coil with the ribbon’s centerline having a constant equilibrium cur-
vature κc and average strain ec = ec + κch. The blade-induced residual strain
epðhÞmeans the stress in this state is σðhÞ= ðecðhÞ−epðhÞÞ=η, and we enforce
force and moment balance under zero applied load and couple,

Z 1=2

−1=2
σdh= 0,   and 

Z 1=2

−1=2
hσdh= 0, [5]

to give ec and κc.
Solutions of the numerical model are shown in Fig. 3 and SI Appendix, Figs.

S7–S10. These are conveniently categorized by values of the dimensionless
curling number, C≡H*E*=R*Y*. When C< 2, curling takes place in a narrow
window of loads with the ribbon conforming tightly to the blade and the
maximum equilibrium ribbon curvature is comparable in magnitude to that
of the blade. The curvature of the ribbon at the lower threshold for curling is
set by the blade, and the cutoff (Eq. 1) lies at ð1− ðC=2ÞÞY*. For larger C, the
curling window extends to low loads [the load threshold being OðH*Y*=R*Þ],
encompassing (at the lowest loads) the case in which the ribbon bends
gently over the blade. For sufficiently large C, the resulting maximum
equilibrium curvature is limited by the bending length of the ribbon to be of
magnitude 1=ðR*CÞ=Y*=ðH*E*Þ [i.e., 1=Lb* with E*ðH*=Lb

*Þ=OðY*Þ]. These es-
timates can be sharpened in the limit of rapid stress relaxation, when Eq. 4
can be simplified to yield an analytic approximation for the rising part of the
curve relating equilibrium curvature κc and imposed load Σ, namely

κc
κmax

= 1+ 2
�
2ηð1−ΣÞ

κmax

�3=2

− 3
�
2ηð1−ΣÞ

κmax

�
, [6]

where κmax =minðe, ffiffiffiffiffiffiffiffiffiffiffi
48Ση

p Þ, for κmax=8< ηð1−ΣÞ< κmax=2 (SI Appendix and SI
Appendix, Fig. S11). In this limit the ribbon is predicted to be entirely in
point contact with the blade for C> 8, with maximum κ* = 4=CR*, whereas
for C<8 the maximum predicted curvature is κ* = 2=R* with the ribbon in
line contact with the blade. In practice, the ribbon curvature lies below these
upper bounds if the on- or off-blade transit time falls beneath the stress-
relaxation timescale, that is, for V*tp*JminðR*, Lb*Þ.
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