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Abstract We give the cumulative distribution function of Mn, the maximum of a
sequence of n observations from a first order moving average. Solutions are first
given in terms of repeated integrals and then for the case, where the underlying inde-
pendent random variables have an absolutely continuous probability density function.
When the correlation is positive,

P(Mn ≤ x) =
∞∑

j=1

βj,x νn
j,x ,

where {νj,x } are the eigenvalues (singular values) of a Fredholm kernel and βj,x are
some coefficients determined later. A similar result is given when the correlation is
negative. The result is analogous to large deviations expansions for estimates, since
the maximum need not be standardized to have a limit. For the continuous case the
integral equations for the left and right eigenfunctions are converted to first order
linear differential equations. The eigenvalues satisfy an equation of the form

∞∑

i=1

wi(λ − θi)
−1 = λ − θ0

for certain known weights {wi} and eigenvalues {θi} of a given matrix. This can be
solved by truncating the sum to an increasing number of terms.
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1 Introduction and summary

Many authors have considered extreme value theory for moving average processes,
see Rootzén (1978), Leadbetter et al. (1983, page 59), Davis et al. (1985), Davis
and Resnick (1985, 1989, 1991), Rootzén (1986), O’Brien (1987), Resnick (1987,
page 239, 1988), Deheuvels (1988), Park (1992), Albin (1997), Hall (2001, 2003),
Hall and Scotto (2003), Scotto and Ferreira (2003), Hall et al. (2004, 2010),
Martins and Ferreira (2004), Fasen (2005, 2006), Klüppelberg and Lindner (2005)
and Hall and Moreira (2006). However, the results either give the limiting extreme
value distributions or assume that the errors come from a specific class (for example,
integer-valued, exponential type, periodic type, stable type, heavy tailed, light tailed,
regularly varying tailed, etc). We are aware of no work giving the exact distribution
of the maximum of moving average processes.

This paper gives a powerful method for deriving the exact distribution of extremes
of n correlated observations as weighted sums of nth powers of associated eigen-
values. Withers and Nadarajah (2011) illustrated this method for a first order
autoregressive process. Here, the method is illustrated for a first order moving
average process.

Let {ei} be independent and identically distributed random variables from some
cumulative distribution function (cdf) F on R. Consider the first order moving
average,

Xi = ei + ρei−1, (1.1)

where ρ �= 0. In Section 2, we give expressions for the cdf of the maximum Mn =
maxn

i=1 Xi in terms of repeated integrals. These expressions are obtained via the
recurrence relationship

Gn(y) = I (ρ < 0)Gn−1(∞)F (y) + KGn−1(y), (1.2)

where

Gn(y) = P(Mn ≤ x, en ≤ y), (1.3)

Kr(y) = sign(ρ)

∫ y

r((x − w)/ρ)dF (w), (1.4)

and I (A) = 1 or 0 for A true or false. So, K is an integral operator depending on x.
Here, the dependence of K on x is suppressed. We shall use this kind of suppression
throughout the paper for the sake of simplicity.

For Eq. 1.2 to work at n = 1 we define M0 = −∞ so that G0(y) = F(y). In
Sections 3 and 4, we consider the case when F is absolutely continuous with prob-
ability density function (pdf) f (x) with respect to Lebesque measure. In this case,
we show that corresponding to K is a Fredholm kernel K(y, z). We give a solution
in terms of its eigenvalues and eigenfunctions. This leads easily to the asymptotic
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results stated in the abstract. In Section 4, we also discuss a numerical example with
F taken to be a standard normal cdf.

Our expansions for P(Mn ≤ x) for fixed x are large deviation results. If x is
replaced by xn such that P(Mn ≤ xn) tends to the generalized extreme value cdf,
then the expansion still holds, but not the asymptotic expansion in terms of a sin-
gle eigenvalue, since this may approach one as n → ∞. Various conditions for
P(Mn ≤ xn) to tend to the generalized extreme value cdf for moving average pro-
cesses are gven in Rootzen (1978, 1986), Leadbetter et al. (1983, page 59), Davis
et al. (1985), Davis and Resnick (1985, 1989, 1991, 1998), O’Brien (1987), Resnick
(1987, page 239, 1988), Deheuvels (1988), Park (1992), Albin (1997), Hall (2001,
2003), Hall and Scotto (2003), Scotto and Ferreira (2003), Hall et al. (2004, 2010),
Martins and Ferreira (2004), Fasen (2005, 2006), Klüppelberg and Lindner (2005),
and Hall and Moreira (2006).

The conditions for P(Mn ≤ xn) to tend to the generalized extreme value cdf are
not always satisfied; that is, P(Mn ≤ xn) may not always tend to a non-degenerate
limit as n → ∞. See Nadarajah and Mitov (2002) and references therein for sev-
eral examples. An attractive feature of results in this paper is that the expansion
for P(Mn ≤ xn) holds for every finite n even if P(Mn ≤ xn) does not have a
non-degenerate limit as n → ∞.

Another attractive feature is that our results give the exact distribution of Mn for
every finite n, especially for small n. Traditionally, the cdf of Mn is set equal to the
generalized extreme value cdf for some n considered large even if Mn suitably nor-
malized does not have a non-degenerate limit. There are statistical tests for checking
if an extreme value limit exists, but these tests are hardly used in published applica-
tions. Furthermore, data sets are often small, so n may not be large enough to justify
the use of the generalized extreme value distribution. So, one would expect a model
based on the derived expansion to provide a better and a more legitimate fit than the
traditional model. In Section 5, we illustrate this fact using two real data sets.

The numerical results in Sections 4 and 5 make use of the main results in
Section 2 (Theorem 2.2), Section 3 (Theorem 3.1), and Section 4 (Theorems 4.2,
4.3 and 4.4), so illustrating the main contributions of the paper. The final section
(Section 6) discusses usefulness of the method developed for other time series.

Throughout, we set
∫

r = ∫
r(y)dy. We shall denote the first derivative of a

function, say ω(·), by ω̇.

2 Solutions using repeated integrals

Our goal in this section is to determine

un = P(Mn ≤ x) = Gn(∞).

Theorem 2.1 gives un in terms of

vn = [KnF (y)]y=∞.



C.S. Withers, S. Nadarajah

For example,

v1 = −
∫

F(z)dF (x − ρz) = −I (ρ < 0) +
∫

F(x − ρz)dF (z). (2.1)

As noted, the behavior of un falls into the two cases: ρ > 0 and ρ < 0. In the case
ρ < 0, Theorem 2.2 provides an explicit solution for un in terms of Bell polynomials.

Theorem 2.1 The case ρ > 0: For n ≥ 1,

un = vn. (2.2)

The marginal cdf of X1 is u1 = v1 given by Eq. 2.1.
The case ρ < 0: For n ≥ 0,

un+1 = vn+1 +
n∑

i=0

viun−i (2.3)

with the initial value u0 = 1. The marginal cdf of X1 is u1 = 1 + v1 of Eq. 2.1.

Proof For n ≥ 1, Gn of Eq. 1.3 satisfies

Gn(y) = P(Mn−1 ≤ x, en + ρen−1 ≤ x, en ≤ y)

= P(Mn−1 ≤ x, en−1 ≤ (x − en)/ρ, en ≤ y) if ρ > 0

=
∫ y

Gn−1((x − w)/ρ)dF (w)

= P(Mn−1 ≤ x, en−1 ≥ (x − en)/ρ, en ≤ y) if ρ < 0

=
∫ y

[Gn−1(∞) − Gn−1((x − w)/ρ)]dF (w)

= Gn−1(∞)F (y) −
∫ y

Gn−1((x − w)/ρ)dF (w).

That is, for n ≥ 1, Eq. 1.2 holds. In the case ρ > 0, Eq. 2.2 follows since Gn(y) =
KnF (y). In the case ρ < 0, set ai(y) = KiF (y) and ai = ai(∞). By Eq. 1.2,
for n ≥ 0,

Gn+1(y) = unF (y) + KGn(y) =
n∑

i=0

ai(y)un−i + an+1(y).

Putting y = ∞ gives the recurrence solution (2.3).

Theorem 2.2 Set wn = vn−1 and w = (w1, w2, . . .). In the case ρ < 0,

un = B̂n(w) ⊗ vn (2.4)

for n ≥ 0, where

B̂n(w) =
n∑

j=0

B̂n,j (w)
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is complete ordinary Bell polynomial in w and B̂n,j (w) is the partial ordinary Bell
polynomial in w tabled on page 309 of Comtet (1974). Furthermore, an ⊗ bn =∑n

j=0 ajbn−j is the discrete convolution of an and bn.

Proof Define the generating functions

U(t) =
∞∑

n=0

unt
n, V (t) =

∞∑

n=0

vnt
n.

Multiplying Eq. 2.3 by tn and summing from n = 0 gives (U(t) − V (t))/t =
U(t)V (t), so that U(t) = (1 − W(t))−1V (t), where W(t) = tV (t) = ∑∞

n=1 wnt
n.

By definition, for j = 0, 1, . . .

W(t)j =
∞∑

n=j

B̂n,j (w)tn.

So,

(1 − W(t))−1 =
∞∑

n=0

B̂n(w)tn.

So, Eq. 2.4 follows.

Some simplification for B̂n,j (w) follows using w1 = 1: set δ(t) = V (t) − 1 =∑∞
n=1 vnt

n. Then δ(t)k = ∑∞
m=k B̂m,k(v)tm, k ≥ 0. Now expand W(t)j = tj (1 +

δ(t))j and take the coefficient of tn to obtain

B̂n,j (w) =
j∑

k=0

(
j

k

)
B̂n−j,k(v), n ≥ j ≥ 0.

For example, either way one obtains the leading un as

u0 = 1, u1 = v1 + 1,

u2 = v2 + 2v1 + 1,

u3 = v3 + 2v2 + v2
1 + 3v1 + 1,

u4 = v4 + 2v3 + v2(2v1 + 3) + 2v2
1 + 4v1 + 1,

u5 = v5 + 2v4 + v3(2v1 + 3) + v2(v2 + 5v1 + 4) + v3
1 + 6v2

1 + 5v1 + 1,

u6 = v6 + 2v5 +v4(2v1 + 3) +2v3(v2 + 2 + 2v1 + 2) + v2(3v2 + 3v2
1 + 6v1 + 5)

+ 4v3
1 + 10v2

1 + 6v1 + 1.

In-built routines for computing Bell polynomials are widely available. For exam-
ple, BellY in Mathematica and IncompleteBellPoly in Matlab.
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3 The absolutely continuous case

Our solutions (2.2) and (2.3) do not tell us how un behaves for large n. Also they
require repeated integration. Here, we give solutions that overcome these problems,
see Theorem 3.1. This theorem expresses the distribution of the maximum in terms
not depending on repeated integration. The solutions use Fredholm integral theory
given in Appendix A in Withers and Nadarajah (2011). Write Eq. 1.4 in the form
Kr(y) = ∫

K(y, z)r(z)dz, where K(y, z) = ρI (x ≤ y + ρz)f (x − ρz). Since

||K||22 =
∫ ∫

K(y, z)K(z, y)dydz

= ρ2
∫ ∫

I (x < y + ρz)I (x < z + ρy)f (x − ρz)f (x − ρy)dydz

< ρ2
∫ ∫

f (x − ρz)f (x − ρy)dydz = ρ2, (3.1)

K(y, z) is said to be a Fredholm kernel with respect to Lebesgue measure, allowing
the Fredholm theory of Appendix A of Withers and Nadarajah (2011) to be applied, in
particular the functional forms of the Jordan form and singular value decomposition.
If say, 0 < ρ < 1, then one can show that ||K||22 = ∫

F(xt)dF (t) ↑ 1 as x ↑ ∞,
where xt = min(x − ρt, (x − t)/ρ). Let {λj , rj , lj : j ≥ 1} be its eigenvalues
(singular values) and associated right and left eigenfunctions ordered so that |λj | ≤
|λj+1|. By Appendix A of Withers and Nadarajah (2011) these satisfy λjKrj = rj ,
λj ljK = lj and

∫
rj lk = δj,k , where δj,k is the Kronecker function and we write∫

a(y)b(y)dy = ∫
ab. So, {rj (y), lk(y)} are biorthogonal functions with respect to

Lebesgue measure. Set νj = 1/λj . By Eq. 3.1 and Eq. A.3 in Withers and Nadarajah
(2011), 1 > ||K||22 = ∑∞

j=1 ν2
j , where νj are the singular values, or if the Jordan

form is diagonal, the eigenvalues. (We shall use these terms interchangeably.) So,
|νj | < 1 and 1 + νj > 0.

Theorem 3.1 The case ρ > 0: For n ≥ 1,

un =
∞∑

j=1

βj ν
n
j , (3.2)

where

βj = rj (∞)

∫
F lj or lj (∞)

∫
Frj . (3.3)

The case ρ < 0: For n ≥ 0,

un = vn ⊗ wn = vn ⊗ Nn ⊗ Dn(−1)n/n!, (3.4)

where vn, wn and Nn are given by

vn =
∞∑

j=1

βjν
n
j , (3.5)

1 − tV (t) = N(t)/D(t) (3.6)
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and

N(t)−1 =
∞∑

n=0

Nnt
n, (3.7)

where

D(t) =
∞∏

j=1

(1 − νj t), N(t) =
∞∏

j=1

(1 − wj t). (3.8)

Furthermore, Dn is given by

Dn/n! =
∑

1≤j1<···<jn

νj1 · · · νjn = [1n], (3.9)

the augmented symmetric function, in the notation of Table 10 of Stuart and Ord
(1987).

Proof Consider the case, where the Jordan form is diagonal. Suppose that the
eigenvalue λ1 of smallest magnitude has multiplicity M (typically 1). Set

B =
M∑

j=1

βj . (3.10)

Then, by Eq. A.4 in Withers and Nadarajah (2011), for n ≥ 1,

vn =
∞∑

j=1

βjν
n
j = Bνn

1 (1 + εn),

where εn → 0 exponentially as n → ∞. So, for n ≥ 1, by Eq. 2.2, for ρ > 0, we
have Eq. 3.2.

Now suppose that ρ < 0. By Eq. 3.5, for max∞
j=1 |νj t| < 1, V (t) = 1 +∑∞

j=1 βjνj t/(1 − νj t). (
∑∞

j=1 βj may diverge.) So, 1 − tV (t) can be written as
Eq. 3.6 with N(t) and D(t) taking the forms given by Eq. 3.8. Note that D(t) is
the Fredholm determinant of K(x, y). So, by Eqs. 3.7, 3.8 and the partial fraction
expansion, assuming that {wj } are all different,

Nn =
∞∑

j=1

c−1
j wn

j ,

where

cj =
∏

k �=j

(1 − wk/wj ).

Also by Fredholm’s first theorem—see, for example, Pogorzelski (1966, page 47),

D(t) = 1 +
∞∑

n=1

Dn(−t)n/n!,
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where Dn is given by Eq. 3.9. Table 10 of Stuart and Ord (1987) gives [1n] in terms
of the power sums (r) = ∑∞

j=1 νr
j . For example, [13] = 2(3) − (2)(1) + (1)3. In

our case

(r) =
∫

Kr(x, x)dx =
∞∑

j=1

νr
j ,

where, by Eq. A.2 in Withers and Nadarajah (2011),

Kr(x, y) = Kr−1K(x, y) =
∞∑

j=1

νr
j rj (x)lj (y).

So, [1n] has the form

[1n] =
n∑

k=1

∑

n1+···+nk=n

A(n1, . . . , nk)(n1) · · · (nk).

We have (1− tV (t))−1 = D(t)/N(t) so that wn = Nn ⊗Dn(−1)n/n!, giving finally
Eq. 3.4.

Note that ν1 is given by Eq. A.6 in Withers and Nadarajah (2011) with μ Lebesgue
measure. When ρ = 0 then Eq. 3.2 holds with βj = δj,1, ν1 = F(x). So, we expect
that ν1 → F(x) as ρ ↓ 0.

Note that Eq. 3.4 does not give its behavior for large n. However, Eq. 3.4 will be
useful for large n if Dn also has an expansion of the form (3.5). To date we have not
been able to show this directly. One can show that Dn = (−1)nBn(d), where Bn(d) is
the complete exponential polynomial, dr = −(r −1)!w(n), and w(n) = ∑∞

j=1 wn
j =

(n) for w. We conjecture that if dn = ∑∞
j=1 ajw

n
j , where |wj | is strictly decreasing

and |aj | > 1, then Bn(d) ≈ dn ≈ a1w
n
1 as n → ∞.

An alternative approach (for finding an explicit expression for un in the case ρ <

0) is to try a solution for un of the form (3.5), say

un =
∞∑

j=1

γj δ
n
j , (3.11)

where δj decrease in magnitude. Assuming that {δj , νj } are all distinct, substitution
into the recurrence relation (2.3) gives us the following elegant relations. Note that
{δj } are the roots of

∞∑

k=1

βk/(δ − νk) = 1

and βk are given by Eq. 3.3. Having found {δj }, {γj } are the roots of

∞∑

j=1

γj/(δj − νk) ≡ 1.
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The last equation can be written Aγ = 1, where Ak,j = 1/(δj −νk) and A = (Ak,j : k,

j ≥ 1). So, a formal solution is γ = A−11. Numerical solutions can be found
by truncating the infinite matrix A and infinite vectors 1, γ to N × N matrix and
N -vectors, then increasing N until the desired precision is reached.

For ρ > 0, Eq. 3.2 implies un ≈ Bνn
1 and ν1 > 0, where B is given by Eq. 3.10.

Also ν1 is given by Eq. A.6 in Withers and Nadarajah (2011) with Lebesgue measure
μ. Now suppose that ρ < 0. By Eq. 3.11, un = γ1δ

n
1 (1 + ε′

n), where ε′
n → 0

exponentially as n → ∞ and δ1 has the largest magnitude among {δn}. The case
where multiple δn exist of magnitude |δ1| requires an obvious adaptation.

4 Expressions for eigenfunctions and eigenvalues

Theorem 4.1 derives differential equations for the left and right eigenfunctions as
well as for the resolvent discussed in Section 3. Theorem 4.2 gives a formal solution
of the differential equation for the right eigenfunction. Theorem 4.3 provides a simi-
lar solution, giving an equation for the j th left eigenfunction in terms of its value at
an arbitrary point, taken as x. Theorem 4.4 derives the equation for the eigenvalues
mentioned in the abstract. An alternative to this equation is provided by Theorem 4.5.

Theorem 4.1 The right eigenfunctions satisfy the non-standard linear first order
differential equation

νj ṙj (y) = sign(ρ)f (y)rj ((x − y)/ρ) (4.1)

with the initial value rj (−∞) = 0. Similarly, the left eigenfunctions satisfy

νj (d/dz)[lj (z)/f (x − ρz)] = ρ2lj (x − ρz). (4.2)

The resolvent satisfies the first order partial differential equations

(∂/∂y)[{K(y, z, λ) − K(y, z)}/λ] = sign(ρ)f (y)K((x − y)/ρ, z, λ),

(∂/∂z)[{K(y, z, λ) − K(y, z)}/{λf (x − ρz)}] = ρ2K(y, x − ρz, λ). (4.3)

Proof The right eigenfunctions satisfy νj rj = Krj ; that is,

νj rj (y) = Krj (y) = sign(ρ)

∫ y

rj ((x − w)/ρ)dF (w). (4.4)

For example, νj rj (∞) = ρ
∫

rj (z)f (x − ρz)dz. Differentiating gives Eq. 4.1.
Similarly, the left eigenfunctions satisfy νj lj = ljK; that is,

νj lj (z) =
∫

lj (y)K(y, z)dy = ρf (x − ρz)

∫

x−ρz

lj (y)dy. (4.5)

So,

lj (−∞) = 0 if ρ > 0, lj (∞) = 0 if ρ < 0, (4.6)

and by differentiating, we obtain Eq. 4.2. The resolvent satisfies

[K(y, z, λ) − K(y, z)]/λ = KK(y, z, λ) = K(y, z, λ)K.
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So, K(−∞, z, λ) = 0, K(y, ∞, λ) = 0 if ρ < 0, K(y, −∞, λ) = 0 if ρ > 0 and by
differentiation the resolvent satisfies Eq. 4.3.

Note that Eq. 4.3 may involve the Dirac function δ(x) since with xz = x − ρz, we
have (∂/∂y)K(y, z) = ρf (xz)δ(y − xz) and (∂/∂z)K(y, z) = ρ2f (xz)δ(y − xz) −
ρ2I (xz < y)ḟ (xz).

For special cases, it is possible to solve Eq. 4.4 or Eq. 4.5 explicitly. Suppose that
F(y) = a exp(ay) on (−∞, 0], where a > 0, and that νj < 0, ρ < −1, y ≤ x.
Taking rj (0) = 1, a solution of Eq. 4.4 is rj (y) = exp(bjy), where bj |νj |/a =
exp(bjx/ρ) and bj > 0.

Theorem 4.2 Set r(y) = rj (y). Suppose that f and r have Taylor series expansions
about zero. Denote the ith derivatives of f (y) by f·,i(y). Set fi = f·,i(0), f′ =
(f0, f1, . . .) and Y′

y = Y′ = (y, y2/2!, . . .). For l, k ≥ 1, set Ql,k = ql−1,k with
Q = (Ql,k : l, k ≥ 1), where

qi,k = ρ−k

min(i,k)∑

b=0

(
i

b

)
fi−b(−1)bxk−b/(k − b)!.

We have

rj (y)/rj (0) = 1 + Y′(dj I − Q)−1f, (4.7)

where dj = νj sign(ρ).

Proof Set c = λj sign(ρ) and ri = r·,i (0). Expanding ṙ(y) = cf (y)r((x − y)/ρ)

about zero, for i ≥ 0, the coefficient of yi/i! is

ri+1 = c
∑

a+b=i

(
i

a

)
far·,b(x/ρ)(−ρ)−b = c

∞∑

k=0

qi,krk = cfir0 + c

∞∑

k=1

qi,krk.

Set R′ = (r1, r2, . . .). So, R = fcr0 + cQR, R = (I − cQ)−1fcr0. But r(y) −
r(0) = Y′R. So, we obtain the j th right eigenfunction in terms of its value at zero:
r(y)/r(0) = 1 + Y′(c−1I − Q)−1f; that is, Eq. 4.7.

The formal solution of Eq. 4.1 given by Eq. 4.7 is in terms of rj (0). The value
zero is arbitrary: a similar solution can be obtained in terms of rj (y0) for any y0.

For the extreme value cdf F(x) = exp {− exp(−x)}, f = (1/e)(1, 0, −1, −1,
−7/288, −31/4, . . .)′.

Since rj is unique only up to a constant multiplier, we may take rj (0) ≡ 1. The
solution (4.7) can now be implemented by successive approximations. For N ≥ 1, set
rN,j (y)/rj (0) = 1+Y′

N(dj IN −QN)−1fN , where YN , fN are the first N elements of
Y, f and QN is the upper left N ×N elements of Q. Then one expects that rN,j (y) →
rj (y) as N → ∞, giving the j th left eigenfunction.
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Theorem 4.3 Set c = ρ2λj , l = lj , e(y) = f (y)−1, Y′
y = Y′ = (y, y2/2!, . . .),

Dr = diag(ri : i ≥ 1) and r = −ρ. Set W = (Wi,j : i, j ≥ 1), where

Wi,j =
min(j,i+1)∑

a=0

(
i + 1

a

)
e·,i+1−a(x)(−ρ)i+1−a(−x)j−a/(j − a)!.

Finally, set Ui = Wi,0 = e·,i+1(x)(−ρ)i+1. We have

l(z)/ l(x) = 1 + Y′
z−x(cDr − W)−1U, (4.8)

where the multiplier lj (x) = l(x) is determined by Eq. A.1 in Withers and Nadarajah
(2011).

Proof By Taylor expansions,

l(z)e(x − ρz) =
∞∑

i=0

(zi/i!)
∑

a+b=i

(
i

a

)
l·,a(0)e·,b(x)(−ρ)b.

By Eq. 4.2, l satisfies (d/dz)[l(z)e(x − ρz)] = cl(x − ρz). Taking the coefficient of
zi/i!, for i ≥ 0,

∑

a+b=i+1

(
i + 1

a

)
l·,a(0)e·,b(x)(−ρ)b = cl·,i(x)(−ρ)i. (4.9)

By another Taylor expansion,

l·,a(0) =
∞∑

k=0

l·,k+a(x)(−x)k/k!.

So, the left hand side of Eq. 4.9 is
∑∞

j=0 Wi,j l·,j (x) = Vil(x) + (WL)i , where
Lj = l·,j (x), L′ = (L1, L2, . . .) and Vj = W0,j . So, Eq. 4.9, for i ≥ 1, can be
written Ul(x) + W = cDrL so that L = (cDr − W)−1Ul(x), giving

l(z) − l(x) = Y′
z−xL = Y′

z−x(cDr − W)−1Ul(x).

That is, l(z) is given by Eq. 4.8.

Theorem 4.4 In the notation of Theorem 4.3, an equation for the eigenvalues is

∞∑

i=1

wi(c − θi)
−1 = c − θ0 (4.10)

for certain weights {wi}, where { θj , j ≥ 1} are the eigenvalues of W.

Proof Substituting into Eq. 4.9 at i = 0, that is, W0,0l(x) + V′L = cl(x), we obtain
V′(cDr −W)−1U = c−W0,0. The roots c of this equation are just {ρ2λj }, so Eq. 4.10
follows.
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If {cN,j , j = 1, . . . , N + 1} are the roots of the N dimensional approximation
of Eq. 4.10, say V′

N (cDr,N − WN)−1 UN = c − W0,0, a polynomial in c of degree
N + 1, then cN,j → cj = ρ2λj as N → ∞. Having obtained an eigenvalue, one can
substitute it into Eqs. 4.7 and 4.8 to obtain the corresponding eigenfunctions up to
constants l(x) and r(0). As noted in Appendix A of Withers and Nadarajah (2011),
either of these but not both can be arbitrarily chosen. The conditions r(−∞) = 0 and
Eq. 4.6 can be verified numerically.

Suppose that f = φ, the pdf of a standard normal N (0, 1) random variable. Then
e·,j (x) = φ(x)−1H ∗

j (x), where

H ∗
j (x) = E

[
(x + N (0, 1))j

] =
∑

k

(
j

2k

)
xj−2km2k

is the modified Hermite polynomial and m2k = (2k)!/k!2k is the (2k)th moment of
N (0, 1). See Withers and McGavin (2006). Now, using Theorems 2.2, 3.1, 4.2, 4.3
and the numerical methods discussed above, one can calculate un = P(Mn ≤ x) for
the case f is a standard normal pdf. Figures 1 and 2 show plots of un for n = 1000
and ρ = −0.9, −0.8, . . . , 0.8, 0.9. As expected, the distribution of un becomes more
dominant as ρ goes from 1 to 0 (Fig. 1) and as ρ goes from −1 to 0 (Fig. 2).

Theorem 4.5 Set c = ρ2λj , e(y) = f (y)−1, Dr = diag(ri : i ≥ 1), r = −ρ,
xk = xk/k!, U′ = (x1, x2, . . .), Ai,a = l·,a(0) [e·,b(x) (−ρ)b]b=i+1−a , A = (Ai,a :
i, a ≥ 1) and Vi = Ai,0 = [e·,b(x) (−ρ)b]b=i+1. Set X to be a matrix with its ith row
(0i−1, x0, x1, . . .) and B = cDrX − A, where 0i denotes the row i-vector of zeros.
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Fig. 1 Plot of un = P(Mn ≤ x) versus x for n = 1000 and ρ = 0.1, 0.2, . . . , 0.9 when F is a standard
normal cdf. The curves from the left to right correspond to increasing values of ρ
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Fig. 2 Plot of un = P(Mn ≤ x) versus x for n = 1000 and ρ = −0.9,−0.8, . . . ,−0.1 when F is a
standard normal cdf. The curves from the left to right correspond to increasing values of −ρ

We have

A0,0 + A0,1(B−1V)1 = c + cU′B−1V, (4.11)

where A0,0 = −ρe·,1(x) and A0,1 = e(x).

Proof Expand the right hand side of Eq. 4.9 about x = 0, giving c(−ρ)i(l(0)+U′L),
where Lj = l·,j (0) and L′ = (L1, L2, . . .). For i ≥ 1, Eq. 4.9 gives

Vil(0) + (Ai,1, . . . , Ai,i+1, 0, 0, . . .)L = c(−ρ)i(0i−1, x0, x1, . . .)L.

That is, Vl(0)+AL = cDrXL. So, L = B−1Vl(0), where l(y)/l(0) = 1 +Y′
yB−1V

and Y′
y = Y′ = (y, y2/2!, . . .). Note that X is upper triangular, while A is lower

triangular except for the first super-diagonal. For i = 0, Eq. 4.9 gives

1∑

a=0

A0,ala = c

∞∑

k=0

lkxk = cl(0) + cU′L.

So, we obtain Eq. 4.11.

Unfortunately, Appendix A of Withers and Nadarajah (2011) cannot be applied
with μ = F since KG(y) = sign (ρ)

∫ y
G((x − w)/ρ) dF (w) is not of the

form
∫

K(y, z)G(z)dF (z). It would be of great interest, and in particular allow a
unified approach if Fredholm’s theory can be extended to the system KOr = νr ,
K∗O∗l = νl, l∗i Orj dμ = δi,j for K an A × B integral operator with kernel
K(y, z) : R × R → C with respect a measure μ, O a B × A operator, ∗ the trans-
pose of the complex conjugate, and ν the complex conjugate of ν. For our problem,
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one could then apply the theory with μ = F , K(y, z) = sign(ρ)I (z < y), and
OG(w) = G((x − w)/ρ).

5 Application

The aim of this section is to illustrate the usefulness of the derived expansion for
P(Mn ≤ x). Traditionally, the distribution of Mn is modeled by the generalized
extreme value cdf. So, what we seek here is a comparison of models based on the
derived expansion and the generalized extreme value cdf.

We use the annual maximum daily rainfall data for the years from 1907 to 2000
for two locations in west central Florida: Clermont and Gainesville. The data were
obtained from the Department of Meteorology in Tallahassee, Florida. Withers and
Nadarajah (2011) also considered annual maximum daily rainfall data for the years
from 1907 to 2000 for west central Florida, but for two different locations.

We would like to emphasize that the aim here is not to provide a complete sta-
tistical modeling or inferences for the data sets involved. We refer the readers to
Nadarajah (2005) for a comprehensive analysis of the data sets used.

We fitted models based on the derived expansion and the generalized extreme
value cdf to the annual maximum rainfall from each of the two locations. The
maximum likelihood procedure was used.

Suppose Mn,1, Mn,2, . . . , Mn,N denote the observations on Mn, where n = 365
and N denotes the number of years of data available. Then the likelihood function
for the model based on the generalized extreme value cdf is

L(μ, σ, ξ) =
N∏

i=1

[
1

σ

(
1 + ξ

Mn,i − μ

σ

)−1/ξ−1

× exp

{
−

(
1 + ξ

Mn,i − μ

σ

)−1/ξ
}]

, (5.1)

where −∞ < μ < σ is a location parameter, σ > 0 is a scale parameter, and
−∞ < ξ < ∞ is a shape parameter.

Let ω denote an intercept parameter for the moving average model in Eq. 1.1.
Then the likelihood function for the model based on the derived expansion is

L(ρ, ω) =
N∏

i=1

d

dx

⎡

⎣
∞∑

j=1

βjν
n
j

⎤

⎦

∣∣∣∣∣∣
x=Mn,i−ω

I {ρ > 0}

+
N∏

i=1

d

dx

[
vn ⊗ Nn ⊗ Dn(−1)n/n!]

∣∣∣∣
x=Mn,i−ω

I {ρ < 0}, (5.2)

where βj , νj , vn, Nn, Dn are given by Eqs. 3.5, 3.6–3.9, the required right eigenfunc-
tions are given by Eq. 4.7, the required left eigenfunctions are given by Eq. 4.8 and the
required eigenvalues are given by Eq. 4.10. The cdf F and its derivatives (required,
for example, by Theorems 4.2 and 4.3) were computed empirically. The derivatives
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of the kind needed in Eq. 5.2 were computed numerically. Numerical methods were
used to approximate the various infinite sums, infinite matrices and infinite vectors.
The computer code used for implementing the maximum likelihood procedure can
be obtained from the corresponding author.

While constructing both Eqs. 5.1 and 5.2, we have assumed Mn,1, Mn,2, . . . , Mn,N

are independent observations. But Durbin and Watson tests (Durbin and Watson
1950, 1951, 1971) show there is a significant evidence of serial dependence in
Mn,1, Mn,2, . . . , Mn,N for both locations. In practice, ignoring serial dependence
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Fig. 3 Autocorrelation coefficient plot (top) and partial autocorrelation coefficient plot (bottom) for daily
rainfall from Clermont
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does not affect parameter estimates. Only standard errors are underestimated (Cox
and Hinkley 1974). A future work is to see how the two models can be fitted by
accounting for serial dependence in Mn,1, Mn,2, . . . , Mn,N .

The optimize function in the R package (R Development Core Team 2012) was
used to maximize Eqs. 5.1 and 5.2. The standard errors of the parameter estimates
were based on asymptotic normality; that is, they were obtained by inverting the
observed information matrices. For each maximization, the optimize function was
executed for a wide range of initial values. This sometimes resulted in more than
one maximum, but at least one maximum was identified each time. In cases of more
than one maximum, we took the maximum likelihood estimates to correspond to the
largest of the maxima.

Remarkably, the model based on the derived expansion provided a significantly
better fit for Clermont and Gainesville—in spite of the fact the model has only
two unknown parameters, ρ and ω, one less than the number of parameters for the
generalized extreme value distribution. We now give the details:

• The autocorrelation coefficient plot and the partial autocorrelation coefficient
plot for Clermont are shown in Fig. 3. It is clear that the data can be modeled
by a first order moving average process. In fact, use of the arma function in the
R package produces the residual plot in Fig. 4 which appears reasonable. The
model based on the derived expansion yielded log L = −320.0 with the maxi-
mum likelihood estimates ρ̂ = 0.394(0.174) and ω̂ = 4.014(1.693), where the
numbers within brackets are the standard errors. The generalized extreme value
model yielded log L = −341.4. For the latter model, the maximum likelihood
estimates and their standard errors were μ̂ = 3.219(0.128), σ̂ = 1.186(0.104)

and ξ̂ = 0.001(0.073).
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Fig. 4 Residual plot of the fit of a first order moving average to daily rainfall from Clermont
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• The autocorrelation coefficient plot and the partial autocorrelation coefficient
plot for Gainesville are shown in Fig. 5. It is again clear that the data can be
modeled by a first order moving average process, a fact supported by the residual
plot in Fig. 6. For this data, the model based on the derived expansion yielded
log L = −265.8 with the estimates ρ̂ = 0.079(0.011) and ω̂ = 3.635(1.178).
The generalized extreme value model yielded log L = −272.7. For the latter
model, the estimates and their standard errors were μ̂ = 3.085(0.092), σ̂ =
0.852(0.073) and ξ̂ = 0.002(0.107).
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Fig. 5 Autocorrelation coefficient plot (top) and partial autocorrelation coefficient plot (bottom) for daily
rainfall from Gainesville
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Fig. 6 Residual plot of the fit of a first order moving average to daily rainfall from Gainesville

The conclusion based on the likelihood values can be verified by means of
probability-probability plots and density plots. A probability-probability plot plots
the observed probabilities against probabilities predicted by the fitted model.
The probability-probability plots for the two fitted models and for the two loca-
tions are shown in Figs. 7, 8, 9 and 10. We can see that the model based on
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Fig. 7 Probability–probability plot for the fit of the model based on the derived expansion for the annual
maximum rainfall data from Clermont
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Fig. 8 Probability–probability plot for the fit of the generalized extreme value model for the annual
maximum rainfall data from Clermont

the derived expansion has the points much closer to the diagonal line for each
location.

A density plot compares the fitted pdfs of the models with the empirical his-
togram of the observed data. The density plots for the two locations are shown in
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Fig. 9 Probability–probability plot for the fit of the model based on the derived expansion for the annual
maximum rainfall data from Gainesville
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Fig. 10 Probability–probability plot for the fit of the generalized extreme value model for the annual
maximum rainfall data from Gainesville

Figs. 11 and 12. Again the fitted pdfs based on the derived expansion appear to
capture the general pattern of the empirical histograms much better.

The model based on the derived expansions provides better fits because it is able
to capture the features of extreme values for finite n. The generalized extreme value
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Fig. 11 Fitted pdfs of the two models for the annual maximum rainfall data from Clermont. The smooth
and broken curves correspond to the models based on the derived expansion and the generalized extreme
value cdf, respectively
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Fig. 12 Fitted pdfs of the two models for the annual maximum rainfall data from Gainesville. The smooth
and broken curves correspond to the models based on the derived expansion and the generalized extreme
value cdf, respectively

model assumes n is infinity. It tries to capture the features for finite n by assuming
n is infinity. So, the former model can be used to make better predictions of future
extreme rainfall.
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Fig. 13 Return levels and their 95 % confidence intervals for the two models for the annual maximum
rainfall data from Clermont. The curves in black and red correspond to the models based on the derived
expansion and the generalized extreme value cdf, respectively
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Fig. 14 Return levels and their 95 % confidence intervals for the two models for the annual maximum
rainfall data from Gainesville. The curves in black and red correspond to the models based on the derived
expansion and the generalized extreme value cdf, respectively

Furthermore, the model based on the derived expansions has one less parameter
than the generalized extreme value model. So, the predictions can also be expected to
be more accurate (for example, narrower confidence intervals, narrower confidence
bands, better power functions, and so on) than those based on the generalized extreme
value model. The latter model usually leads to distressingly wide confidence intervals
for high quantiles. We now illustrate this by computing the return levels. The return
level of period T , say xT , for the generalized extreme value model is

xT = μ − σ

ξ

[
1 − {− log(1 − 1/T )}−ξ

]
. (5.3)

The return level, xT , for the derived model is the root of

∞∑

j=1

βjν
n
j

∣∣∣∣∣∣
x=xT −ω

= 1 − 1/T (5.4)

if ρ > 0 and is the root of

vn ⊗ Nn ⊗ Dn(−1)n/n!∣∣
x=xT −ω

= 1 − 1/T (5.5)

if ρ < 0. Plots of Eqs. 5.3, 5.4, and 5.5 versus T are shown in Figs. 13 and 14. The
plots also show the 95 % confidence intervals computed by the delta method (Rao
1973, pages 387–389). We see that these intervals are a lot narrower for the derived
model. The return level estimates do not appear to differ much between the models.

The proposed model may be computationally more expensive than the generalized
extreme value model. But being computationally expensive is not a major problem in
this day and age.
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Finally, we like to mention that method used to derive the proposed model can be
extended for other processes, including processes (for example, long memory pro-
cesses) for which standard extreme value theory does not apply. This is explained in
the next section.

6 Future work

The method of this paper can be applied to derive the exact distribution of Mn for
other time series like the: (1) higher order moving average processes; (2) higher order
autoregressive processes; (3) ARMA processes; (4) multivariate ARMA processes;
(5) long memory processes; (6) discrete versions. The method can also be applied to
derive the exact joint distribution of the maximum and minimum for these processes.
Another aspect to consider is statistical inference for the derived distributions.
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