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The coupled cluster method (CCM) is applied to the spin-half XXZ model on the hon-
eycomb lattice. Hierarchical CCM approximation schemes are applied in order to obtain
the ground-state properties. The possible critical behavior of this model is also examined.
Reasonably good results for the ground-state energy and the staggered magnetization
are obtained, in comparison to the results from Monte Carlo simulations, spin-wave
techniques, series expansions, and finite lattice diagonalizations, that have already been
performed on this model.

1. Introduction

There are no conclusive results for the spin-half XXZ (or anisotropic Heisenberg)
model on two-dimensional lattices. A rigorous treatment by Bethel has only been
possible for the one-dimensional case. However, there has been extensive work car-
ried out in the particular case of the two-dimensional square lattice, using a number
of techniques including the coupled cluster method (CCM) considered here. This
has produced convincing, if not completely definitive, results that suggest that the
square lattice has a Neel-ordered ground state.2 The situation for the honeycomb
lattice is in more doubt, however, because less attention has been paid to it, and
hence there are less results for comparison.

The honeycomb lattice case is a bipartite system, as the lattice can be split into
two identical sub-lattices. Frustrated models, such as the triangular lattice case, do
not have this property. Nevertheless, they have also been examined by the CCM.3
The honeycomb lattice also has the least possible co-ordination number of any
regular two-dimensional lattice. The ID chain, which has the smallest co-ordination
number possible for any lattice, suffers from the greatest quantum effects, to such
an extent that it has no long-range order (LRO). The co-ordination number of the
honeycomb lattice is larger than that of the ID chain, but smaller than that of
the square lattice. Thus, the quantum fluctuations present in the honeycomb case
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are expected to be less than those in the 1D chain case, but greater than those
in the 2D square lattice case. Hence, there is an a priori possibility that quantum
fluctuations may destroy antiferromagnetic (AFM) LRO in the honeycomb case.

However, from previous work done on the honeycomb lattice case, it is believed
to possess a eel-ordered ground state. Strong indications of the survival of LRO
initially came from the spin-wave approximations of Anderson and Kubo4 in 1952
and Oguchi'' in 1960, which apply to any two-dimensional lattice. More recently,
a Monte Carlo simulation by Reger, Riera, and Young," extrapolations of finite
lattice diagonalizations, performed by Oitmaa and Betts," series expansions around
the Ising limit,S and a spin-wave calculation by Zheng, Oitmaa, and Hamer.? have
all indicated that although quantum fluctuations on the honeycomb lattice case
are certainly stronger than on the square lattice case, the system does still possess
Neel order.

The CCM has already been successfully applied to the spin-half XXZ model
on the one-dimensional chain and square latticc'" and on the frustrated triangular
lattice." In this paper the CCM is applied to the honeycomb case, in order to
calculate the ground-state energy and the staggered magnetization. We shall see
that it also provides an indication of a phase transition in this model.

Since a detailed description of the CCM formulation has been given elsewhere, 11

only the essential components for calculating the ground-state properties of a system
will be given here. The CCM parametrization of the ground ket state is given by:

"'" tS= ~ SICI·
I

The correlation operator, S, is decomposed solely in terms of the multiconfigura-
tional creation operators, C}, over a complete set of the many-body configurations,
{I}, defined by a set-index I which describes the set of spins which are flipped with
respect to those contained in a suitably chosen, normalised, model state 14». The
prime on the sum in Eq. (1) excludes the null set, I -+ 0, corresponding to the
identity operator CJ == Il. The Schrodinger equation can be expressed as:

e-s HeSI4» = Egl4» .

(1)

(2)

Consequently, the ground-state energy may be obtained by taking the inner product
of Eq. (2) with the model state I¢):

(¢Ie-s Hesl¢) = Eg. (3)

The coupled set of microscopic nonlinear equations for the unknown c-number coef-
ficients SI may be obtained by taking the inner product of Eq. (2) with the complete
set of states {Cil¢)}:

I i= 0. (4)

The similarity transformed Hamiltonian, e-s HeS, may be expressed as the follow-
ing nested commutator expansion:

1e-s H eS = H + [H, Sj + --,-[[H, S], Sj + ... . (5)
2.
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This expansion always terminates at finite order, as a consequence of the correla-
tion operator being composed solely of creation operators, provided only that the
Hamiltonian is finite order in the single-body operators. Thus, only the correlation
operator, S, needs to be approximated.

The parametrization of the ground bra state+' is equally straightforward. The
bra-state wave function is parametrized as:

§= 1+L' SIC] ,
]

where S is solely constructed in terms of multiconfigurational destruction operators,
defined with respect to the model state I¢). An arbitrary ground-state observable in
the CCM is now completely specified by the set of parameters {8], S]}. An arbitrary
expectation value, A, can thus be expressed as:

(6)

(7)
In this way all ground-state properties of the system can be obtained.

2. The CCM Analysis of the Spin-Half XXZ Model
Antiferrornagnet

The Hamiltonian for the spin-half XXZmodel antiferromagnet, defined with respect
to a Neel-ordered ground state, where all the spins have been (mathematically)
rotated to the down position, which is the chosen model state, is given by:

HI", [~ Z Z + + - - ]
= -4 s: -:t'i Cli+p + Cli Cli+p + «, Cli+p ,

',p
where ~ is the anisotropy parameter and the summation is over all the lattice sites,
i, and nearest neighbors p. We restrict the values of ~ to those that produce the
AFM ground state, and hence the total z-component of spin, ST' must have the
value ST = O. To express the XXZ model Hamiltonian in the form shown, a spin
rotation has been performed on the up-spin sub-lattice, via the transformation a" ~
_Clx, ClY ~ ClY, a" ~ =a", Equivalently, the single-spin creation and destruction
operators are defined as Cl± == ~ (ClX ± iClY) on the down-spin sub-lattice, and hence
by e= == ~ (-ClX ± iuY) on the up-spin sub-lattice.

Classically, the spin-half AFM on the honeycomb lattice has perfect Neel order-
ing for all values ~ > 1. Quantum-mechanically, such perfect ordering occurs only
in the Ising limit, ~ ~ 00. The same Hamiltonian of Eq. (8) yields the Heisenberg
model at ~ = 1 and the XY model at ~ = O. In order to apply the CCM to a
particular case, the correlation operator, S, needs to be approximated. Various such
truncation schemes are considered below.

(8)

2.1. The full SUB2 scheme

The particular CCM approximation scheme that will first be implemented here is
the so-called full SUB2 scheme,12 which includes all two-body correlations built
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on top of the model state 14». The full SUB2 correlation operator thus has the
following form:

S --+ SSUB2 == L Sp;qa: at '
p,q

(9)

where the vectors p and q are vectors from an origin to points on each of the two
sub-lattices, respectively. By making use of the lattice symmetries, the correlation
operator can thus be alternatively expressed as:

SSUB2 = Lbra:a:+r,
p,r

(10)

where the vector r denotes a vector joining the up-spin sub-lattice to the down-spin
sub-lattice.

By applying Eqs. (3) and (4) respectively from the CCM formulation with the
defined correlation operator, S, the ground-state energy can be shown to be given
as follows,

(11)

and the required nearest-neighbor pair correlation coefficient, b1, can be shown to
be given by,

b1 = 3v'! r K [1- )1 - Pb(q)12] dq,
8IT lei (12)

where

K == .6. + 2b1,
k2 = 1+ 2.6.b1 + 2bi

- (.6. + 2bd2
(13)

The coefficient b: and the function -y(q) are defined as follows,

1" .-y(q) == 3L etp.q,
p

(14)

where p is a nearest neighbor vector joining any site on the honeycomb lattice
to anyone of its three nearest neighbors. The integral in Eq. (12) is performed
over the reciprocal lattice primitive cell C'. Details of the derivation are given in
Appendix A. The full SUB2 ground-state energy per spin for the Heisenberg model
is given in Table 1.

Table 1. The ground-state energy per spin at the Heisenberg point, t:::. = 1, under various CCM
schemes, compared with the results of a Monte Carlo simulation.P and of a series expansion.f

full SUB2 LSUB4 full SUB2+LSUB4 Series Expansion Monte Carlo

-0.528 -0.532 -0.537 -0.547 -0.545 ± 0.001
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Equation (12) is a self-consistent relation from which a terminating point can
be obtained, as the factor inside the square root can be shown to be negative for
values of the anisotropy, .6., less than some terminating value, .6.c, The computed
SUB2 terminating value is at .6.c :::: 0.70983. There are indications that at this
point, within the SUB2 approximation, there may be a phase transition. Primarily,
evidence for this comes from the asymptotic behavior of the ket state correlation
coefficient, as [r] ---t 00:

(15)
.6. = .6..c ,

where br == Sp;p+n and where the vector r joins a site from one of the two equivalent
sub-lattices to the other. The spin-spin correlation function can be expressed in
terms of the full SUB2 correlation coefficient.I" The changeover from exponential
to algebraic decay of the ket-state correlation coefficient, br, at the terminating
point .6..c :::: 0.70983 is thus seen to be characteristic of the expected behavior at a
phase transition.

The anisotropy susceptibility defined as:

d?E
A== d.6..2' (16)

where E == Ed N is the ground-state energy per spin, provides further evidence of a
phase change at the full SUB2 terminating point. A phase transition is characterized
by singular behavior of the thermodynamic quantities at the critical point. As .6. ---t
.6.c, the anisotropy susceptibility, A, tends to infinity, therefore exhibiting singular
behavior, as shown in Fig. 1. Thus, there is strong evidence that the terminating
point may correspond, within the limitations of the SUB2 approximation, to the
physical transition point of the Hamiltonian between Ising-like to XY-like phases.

As stated earlier, the sub-lattice magnetization can also be calculated. Details
of the technique have been published elsewhere.U A comparison of results appears
in Table 2, and Fig. 2 exhibits the full SUB2 terminating point for the sub-lattice
magnetization.

Table 2. The staggered magnetization as a fraction of the saturation value, from a Monte Carlo
simulation.P a finite lattice diagonalization," a series expansion calculation.P and a spin-wave
theory (SWT) calculation.P at the Heisenberg point. The CCM full SUB2 result is given at Llc·

CCM full SUB2 Series Expansion SWT Finite Lattice Diag. Monte Carlo

0.52 0.52 0.5 0.46 0.44
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Fig. 1. The anisotropy susceptibility, A, of the spin-half XXZ model on the honeycomb lattice
as a function of the anisotropy, ~, near the terminating point, from the results of the full SUB2
approximation scheme.
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Fig. 2. The sub-lattice magnetization, MZ, for the spin-half XXZ model on the honeycomb lat-
tice, as a function of the anisotropy, ~, from the results of the full SUB2 scheme. The termination
point is shown by the solid circle.

2.2. The LSUB4 scheme

The localized LSUB4 scheme retains up to and inclucting four-body correlations,
but restricted only to those which occur over all configurations of four adjacent
lattice sites. The full SUB4 correlation operator, S, is expressed as:

(17)
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~a)

9 (e)
4

Fig. 3. An illustration of the five fundamental configurations present in the 2D LSUB4 scheme
on the honeycomb lattice. The dots indicate the flipped spins with respect to the model Neel state.

If the symmetries in the honeycomb lattice, as well as the restriction Sf = 0, are
taken into account, there are only five independent LSUB4 configurations, as shown
in Fig. 3. Therefore, the approximated correlation operator is defined schematically
as follows:

S S - b ~ + + + b(a) ~ + + b(b) ~ + +~ LSUB4 - 1 ~ O"pO"p+p 3 Z:: O"pO"p+R + 3 ~ O"pO"p+P
p,p p,R p,P

(18)

where the vector p denotes the set ofthree nearest-neighbor vectors p = {PI, P2, P3}.
The sets R, P and v, denote respectively the vectors R = {R1, R2, R3}, with
three symmetries, P = {Pl,P2,P3,P4,P4,PS,P6}, with six symmetries, and v =
{Vl,V2,V3,V4,V5,VS}, with six symmetries in the lattice, as shown in Fig. 4.

From Eq. (4) the correlation operator produces five independent coupled equa-
tions, which need to be solved numerically in order to obtain the ground-state
energy,

o = 1 - 4~bl - 5bi + 4blb~a) + 4blb~b) + 2b~(a) + 4b~(b)

+ 8b~a)b~b) + 4g~a) + 4g~b) , (19)
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Fig. 4. An illustration of the vectors belonging to the sets, R, P, v, and p respectively.

o = -6Llb~a) - 6blb~a) + 4blb~b) + 6b~b)2 + b~ + 4b~a)b~b) + 2gia) ,

o = -6Llb~b) - 4blb~b) + 2blb~a) + 2b~a)2 + 2b~b)2 + b~

+ 2b~a)b~b) + g~b) ,

(20)

(21)

o = Ll(3g~a) - 2blb~a) - b~) + 5blgia) + b1gib) + b~a)gia)

_ b(b) (b) _ b(b) (a) + 2b b(a)b(b) + 2b b(a)2 + 2b2b(b)
3 g4 3 g4 I 3 3 1 3 I 3 , (22)

o = Ll(3g~b) - 2blb~b) - b~) + 6blgi
b) + blgia) + 2blb~b)2

- 2b~a)gia) - b~b)gia) + 2blb~a)b~b) + 2blb~(a) + 2b~b~a) . (23)

Numerically, we find that the configuration responsible for most of the quantum
fluctuations present in this case is the bl configuration in Fig. 3. The other four con-
figurations are of roughly equal importance. Results for the LSUB4 approximation
are shown in Table 1.

2.3. The full SUB2+LSUB4 scheme

The results for the ground-state energy from the full SUB2 scheme are comparable
with those from the LSUB4 scheme. Thus, we are led to suspect that the full
SUB2 scheme can be improved by additionally taking into account the localized
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four-body corrections from the LSUB4 scheme. The resultant full SUB2+LSUB4
approximation scheme might also be expected to produce a more accurate value
for the terminating point than that from the full SUB2 scheme. From the CCM
formulation in Eq, (4) a set of six equations is obtained. Those equations are again
solved numerically to find the ground-state energy:

- I\b b2 "'b b (a) (b)o - 1 - 4u 1 - 10 I + ~ t:' +t:'+Pl +p + 494 + 494 , r = PI, (24)
r',p

I\b(a) b b(a) '" b b (a)0= -6u 3 - 12 I 3 + ~ R1+r'-Pl -r'+Pl+p + 294 , r = RI, (25)
r' ,p

(26)
r-' ,p

(27)
r',p

_ b(b) (b) _ b(b) (a) + 2b b(a)b(b) + 2b b(a)2 + 2b2b(b)
3 g4 3 g4 1 3 3 1 3 1 3 , (28)

o = .6.(39ib) - 2blb~b) - bi) + 6b19i
b) + b19i

a) + 2bIb~b)2

- 2b~a)gia) - b~b)gia) + 2blb~a)b~b) + 2b1b;(a) + 2bib~a) ,

where bs« == b~a) and bv == b~b), as shown in Fig. 5

(29)

-0.50 -

-- SUB2
LSUB4+SUB2 -

---- LSUB4
-0.45 :.

E,IN -0.55-

-0.60

-0.65 ~

!
-0.70 Li ---------'

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
L1

Fig. 5. The ground-state energy per spin for the spin-half XXZ model on the honeycomb lattice,
as a function of the anisotropy, 6., from the results of the LSUB4, full SUB2, and full SUB2+ LSUB4
approximation schemes. The solid circles indicate the respective termination points, 6.c,
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As expected, this approximation scheme produces the most accurate value for
the ground-state energy, of the three CCM schemes implemented here, as shown in
Table 1. The full SUB2+LSUB4 value for the terminating point, at ~c r--- 0.746, is
also closer to the expected value of unity than the corresponding full SUB2 result
at ~c r--- 0.710.

3. Discussion and Conclusion

In this paper, various CCM approximation schemes have been implemented suc-
cessfully for the particular case of the spin-half XXZ model on the honeycomb
lattice. From the full SUB2 scheme, there is evidence of a phase transition in
this model, because this approximation scheme includes arbitrarily long-range two-
body correlations. The LSUB4 scheme also produces reasonably good values for
the ground-state energy. Thus, the full SUB2+ LSUB4 scheme combines the best
features of both these schemes. It obtains improved estimates for both the ground-
state energy and the terminating point. This demonstrates the capacity of the CCM
for systematic improvement.

Application of the CCM to the honeycomb lattice case produces results which
are in accordance with the expected behavior of this model. The honeycomb lattice
has the smallest co-ordination number of any 2D lattice. Thus, quantum fluctuations
in the honeycomb lattice should be greater than in the square lattice case but less
than in the ID chain. However, unlike the ID chain case, LRO survives. Therefore,
the low-order approximation schemes, implemented here, obtain the qualitative
behavior of the spin-half honeycomb case.

The CCM has again been seen to be capable of obtaining some critical proper-
ties of this model. The algebraic decay of the correlation coefficients and the sin-
gular behavior of the anisotropy susceptibility at the full SUB2 terminating point
are characteristics of a phase transition. The ability of such an ab initio method
to yield evidence, even if not completely conclusive, of phase transitions, and to
give accurate values of the energy and staggered magnetization, for values of the
anisotropy parameter over a wide range, including the phase transition point, is
certainly encouraging.

The CCM ground-state energies and sub-lattice magnetization, given in Tables 1
and 2 respectively, are not yet at the same level of accuracy as the Monte Carlo
simulations. However, for such low-order approximations, reasonable results are
obtained for very little computing time. However, we also note that results of the
same order of accuracy as Monte Carlo simulations have been obtained for the XXZ
model on other lattices from high-order CCM schemes.V Therefore, the future for
the CCM must lie in high-order approximation schemes, in order to produce results
at least as good as Monte Carlo simulations+' and to investigate critical behavior
in more depth. Such high-order schemes can be implemented through the use of
computer algebra. Work along these lines is currently in progress. So far, high-
order results for anisotropic spin-half antiferromagnets have only been obtained
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for the one-dimensional chain13 and for the two-dimensional square and triangular
lattices.l? Reference 14 describes a rather general procedure for implementing the
CCM to high orders for a broad class of spin lattice models.
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Appendix A

The ground ket-state equation, in the CCM formulation, is obtained from Eq. (4)
by using the full SUB2 correlation operator of Eq. (10) to give:

0= L [(1 + 2~bl + 2bD8p,r - 2(~ + 2bl)br +L brlbr-rl+p] , (A.l)
p ~

where the sum over p runs over the three nearest neighbor lattice vectors. The
indices rand r' belong to the set {r i,j }, where r i,j = Xi - Xj for Xi and Xj the
co-ordinates of a site on the i-sub-Iattice and the j-sub-Iattice, respectively. From
the above definition of the vectors, r, the appropriate transform is a sub-lattice
Fourier-transform, which is defined for the coefficients, br, by the relation:

(A.2)
r

where q = (qx, qy) are the points in the Brillouin zone on the sub-lattice, and the
sum on r runs over all distinct sub-lattice vectors which join points on opposite
spin sub-lattices. Thus, the Fourier-transformed ket-state equation is given by:

0= (1 + 2~bl + 2bih(q) - 2(~ + 2b1)B(q) + ,(_q)B2(q), (A.3)

where

1",,0 1(0 i J3),(q) == 3" L: e,poq = 3" e,qy + 2e-"2q" cos Tqx .

Equation (A.3) is of the form of a quadratic equation. It can be solved simply as
follows:

B(q) = K ± K )1- k2,(-qh(q) ,
,(-q)

(AA)

where

k2 = 1+ 2~bl + 2bi
- (~+ 2bl)2

As ~ --+ 00 in the Ising limit, the quantum fluctuations are required to disap-
pear. Thus, each of the sub-lattice coefficients, br, vanishes as ~ --+ 00. In particu-
lar, bl --+ O. Thus, k2 --+ 0 in this limit, and hence the positive sign of the square



2382 R. F. Bishop f3 J. Rosenfeld

root must be discarded. Now, in order to calculate the ground-state energy from
Eq. (11), it is necessary to invert Eq. (A.2). This is possible, since only the sub-
lattice is important in the calculation and even though the honeycomb lattice itself
is non-Bravais, its sub-lattices in both the direct and reciprocal space are Bravais.
Hence,

(A.5)

where V is the volume of the reciprocal primitive lattice cell and the integration is
performed over the reciprocal lattice primitive cell G'. So, the above integral can
be written explicitly as:

b = 3J31 -ir·qB()dq
r 82 e q.

'IT C'
(A.6)

In order to obtain the coefficient b1, we let r ---7 p in the above equation. Thus,
b1 is given by:

b 3J31 -ip·qB()d1=-82 e qq
'IT C'

(A.7)

3J31:::::-2 ,(-q)B(q)dq.
8'IT C'

(A.8)

Equation (A.4) can now be substituted into Eq. (A.8) to give:

(A.9)

where each vector q is in the magnetic zone of the honeycomb lattice, which is
hexagonal. However, the sub-lattice reciprocal vectors form a rhombus, which is a
primitive cell with the full symmetry of the Bravais hexagonal sub-lattice. There-
fore, the vectors q can be easily defined within the rhombus. The reciprocal lattice
vectors are given by:

(A.IO)

The vector q is defined by:

(A.11)

where m1 and m2 are integers. Hence, 0 ::; m1, m2 ::; IN/2 - 1, as there are N/2
lattice sites in the sub-lattice. Thus, the Cartesian x and y components of the vector
q are given by:

(A.I2)
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In order to calculate the integral (A.9), it must be discretized. Firstly, the integral
is transformed in terms of the variables ml and m2 in the following way:

(A.13)

where jJj = 161[2/3V3N is the determinant of the Jacobian matrix. Thus, the
integral (A.9) can be expressed as:

b: = ~ fc, K [1- Vl- k2j'Y(q(ml,m2))J2] dmIdm2. (A.14)

This integral can now be easily discretized as:

bl ~ ~ L K [1- Vl- k2]r(q(ml,m2))j2]
ml,m2

(A.15)

Finally, the ground-state energy can be obtained from Eq. (11).
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