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Nomenclature

Ix, Iy, Iz = principal moments of inertia [kg.m2]

ω0 = angular orbital velocity in a circular orbit [rad/s]

φ = roll angle [rad]

θ = pitch angle [rad]

ψ = yaw angle [rad]

M = disturbance torque [N.m]

Va = velocity w.r.t wind [m/s]

ρ = density [kg/m3]

Sref = aerodynamic reference area [m2]

Lref = aerodynamic reference length [m]

Cl = roll moment coefficient

Cm = pitch moment coefficient

Cn = yaw moment coefficient

~CF = aerodynamic force coefficients in body axes

α = angle of attack [rad]

β = angle of sideslip [rad]

δ1, δ2 = angles defining the orientation of aerodynamic velocity in orbital frame [rad]

L = vehicle length [m]

D = diameter of the vehicle base area [m2]

xcog = distance from the leading face to the center of mass [m]

CD = drag coefficient

Cmα = stability derivative, slope of the pitch coefficient w.r.t angle of attack

Torb = orbital period

I. Introduction

We present in this paper a method to analyze the effect of aerodynamic torques in the attitude

motion of a satellite. The aerodynamic torque, resulting from the friction of the satellite with
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the atmosphere, is an important effect for satellites orbiting in Low Earth Orbits. Its magnitude

increases with decreasing altitude and is still noticeable up to 1000 km [1]. Since the early days of

space exploration several missions have documented the side effect of aerodynamic torques, either

by a quicker spin speed decay as a result of underestimation of the torque magnitude [2, 3] or by

the use of active control in order to correct an unexpected de-pointing [4].

Below 400 km, the aerodynamic torque normally becomes the main disturbance effect to the

satellite altitude, allowing the use of it for stabilization. The ability of a spacecraft to remain stable

to a certain direction is an interesting feature. It can be used for complete passive stabilization, a

simple and cheap way to achieve coarse pointing requirements, or to reduce the use and magnitude

of active control solutions. Broadly used passive stabilization strategies are gravity gradient [5, 6]

or magnetic methods [7–9], well described in many textbooks [10, 11] . The concept of aerodynamic

stabilization was already proposed during the early days of space exploration [12–16] . Most of

the literature published during these years was captured in two good review papers: Shrivaska [17]

published in 1976 and Shrivaska and Modi [18] in 1983. Apart from capturing many references,

Shrivaska divides the published papers into two categories that are still applicable: studies based

on simple models that attempt detailed analytical and numerical analysis, and papers that study

complex systems by means of simplified equations. Despite the good number of initial publications

proposing the idea, the literature regarding actual applications is rather small. A few exceptions

being the stabilization of the pitch axis of the Russian satellite COSMOS-149 [19], or the more

recent PAMS satellite, an aerodynamic stabilized cylinder released from the Shuttle during the 77th

mission in 1996. The environment analysis and spacecraft design were described by Kumar et al in

[20] and [21].

During the last 35 years, the published literature on the analysis of aerodynamic torques or

their potential use for stabilization has decreased noticeably. The main reason has probably been

the lack of confidence in the available models to predict aerodynamic interactions. The modeling

of aerodynamic torques is a complex task, affected by many uncertainties: atmospheric density,

free molecular flow interaction and thermospheric winds. As a result of the uncertainties in these

quantities, the aerodynamic torque has been treated classically as a disturbance torque [1], in
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contradiction with torques produced by magnetic and gravity fields or solar radiation pressure

which are more predictable in nature and have been extensively used for passive or active attitude

stabilization. However, during the last couple of years, recent improvements in atmospheric models,

and especially the renewed interest in cheap and small missions, such as CubeSats, have increased the

number of publications proposing the possibility of partial or total aero-stabilization. Scherichev et al

[22–25] have published some detailed analytical and numerical studies investigating the equilibrium

positions of aerodynamic and gravity gradient torques, where the aerodynamic torque is simplified

to a constant drag acting on the centre of pressure, located in a principal axis of inertia. More

recent papers matching Shrivaska’s second category, and focusing on spacecraft design, have also

been published: the stabilization of one axis considering gravity gradient has been proposed in

[26] for pitch and in [27] for yaw. Psiaki [28] presents a 3-axis stabilization design for CubeSats

using magnetotorquers and feathers in a shuttlecock configuration. Some non-linear simulations of

different designs of small aerostable satellites are reported in [29]. The underlining idea in all cases

is the creation of a so-called restoring torque by keeping the centre of mass forward of the centre of

aerodynamic pressure. One of the remaining issues is the absence of commonly accepted methods

for modeling and analysis as identified by Maslova et al [30].

Our goal with this study is to follow this second category of papers with a clear spacecraft

design focus. With the big development of computer simulations, there is a benefit in predicting

the main behavior of complex non-linear systems with simplified equations. The idea is to provide

some insight into the problem to help with the design of the spacecraft geometry before the non-

linear simulations, linking geometrical properties with attitude response. In this paper, we extend

the scope of the stability analysis by relaxing the axisymmetric assumption and including gravity

gradient contributions in all 3 axes. Also, useful concepts already used in traditional aircraft stability

analysis are proposed, such as stability derivatives, which allow a precise analysis of stability and

are compatible with a more physical modeling of aerodynamic torques. The scope of the study is

the region with high Knudsen numbers for sustained flight in low orbits (typically 160 km upwards,

Kn>100), where the flow around the spacecraft can be modeled as Free Molecular or rarefied and

damping terms can be neglected [15, 35]. Then, simplified sufficient conditions for stability are
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derived both for pitch and roll-yaw axes. In order to link the geometrical design with stability and

response, detailed modeling of aerodynamic torques and stability derivatives is offered for several

simple and more complex geometries. Finally, the effect of non-constant density and the potential

occurrence of resonant phenomena are studied.

II. Rotational equations of motion

We propose a similar derivation to the classic gravity gradient stability analysis that can be

found in many text books and course notes, and therefore easy to follow. The idea is to understand

how the aerodynamic properties modify the gravity gradient stability chart. Using the same notation

of [11], the orbital frame in which the satellite is to be stabilized is defined as:

• Origin : The center of mass of the satellite.

• ZR : points towards the center of the earth.

• XR : in the plane of the orbit pointing in the direction of the inertial velocity.

• YR : normal to the orbit plane and completes the right-hand side orthogonal frame.

The Euler angles are defined as the rotations about the body axes: φ, roll, about XB , θ, pitch,

about YB and ψ, yaw, around ZB . Then, the linearized equations of motion of a satellite traveling

in a circular orbit and subjected to gravity gradient torques are [11].

Ixφ̈+ 4ω2
0(Iy − Ix)φ− ω0(Ix − Iy + Iz)ψ̇ = Tax + Tdx (1)

Izψ̈ + ω2
0(Iy − Iz)ψ + ω0(Ix − Iy + Iz)φ̇ = Taz + Tdz (2)

Iy θ̈ + 3ω2
0(Ix − Iz)θ = Tay + Tdy (3)

Gravity gradient contributions (in x and y axes, there is no contribution in z) have been already

included in the left side of the equations. The right side is composed by a general disturbance torque

(Td) plus a torque due to aerodynamic forces (Ta).
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A common approach to calculate the aerodynamic torque experienced by a body is:
Tax

Tay

Taz

 =
1

2
ρ V 2

a SrefLref


CGl

CGm

CGn

 (4)

Where ρ represents the atmospheric density, Va is the relative velocity of the vehicle with respect

to the atmosphere, Sref and Lref are the reference surface and length, CGl , C
G
m and CGn are the

rolling, pitching and yawing coefficients already translated to CoG. These moment coefficients are

a function of the aerodynamic angles of incidence (α, angle of attack and β, angle of sideslip) and

the characteristics of the flow. At spacecraft altitudes, Free Molecular Flow (FMF) is a reasonable

and commonly used assumption. In FMF, these coefficients are generally a function of the altitude

(through both the speed ratio and the atmospheric composition), and the Gas-Surface interaction

(surface properties, contamination...). For a detailed analysis of how to estimate FMF coefficients

refer to Sentman [31], Schamberg [32] or Cook [33].

Although the mentioned dependencies are generally non-linear, we can restrict our analysis to

a range in which the non-linearities are small, considering all dependencies to be linear (following

with the small angles assumption used to derive Eqs. 1 to 3). In such a case the coefficients can be

expressed as a Taylor series around a reference condition:

C(x1, x2, ...xn) = C(x1, x2, ...xn)ref +

(
∂C

∂x1

)
ref

∆x1 ...+

(
∂C

∂xn

)
ref

∆xn (5)

For a circular orbit, the altitude variation is slow with respect to attitude variations, so we can

neglect it. Also, due to the characteristics of FMF, the derivatives with respect to the angular rate

components (damping) are very small and negligible in effect. Thus. the aerodynamic damping

terms can be removed from the analysis [15, 35]. In FMF the time to damp to one-half the initial

pitch amplitude is, at most, comparable to the satellite’s orbital lifetime [15]. Damping terms

increase its magnitude as altitude decreases. For lower altitude regimes, such as the ones leading

to re-entry, the Free Molecular Flow assumption is no longer valid and damping would need to be

included.

We can express the three coefficients as functions of aerodynamic angle variations. Using the

notation
(
∂Cm
∂x1

)
ref

= Cmx1 the moment coefficients can be expressed at the reference point (α,
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Fig. 1 Surface mesh used for FMF calculations

β) = (0, 0) as:

Cl = Cl0 + Clαα+ Clββ (6)

Cm = Cm0
+ Cmαα+ Cmββ (7)

Cn = Cn0
+ Cnαα+ Cnββ (8)

To further simplify the problem lets assume that the spacecraft has some symmetry around the roll

axis, in a way that the roll torque is negligible for any small angle of attack or sideslip (Cl− > 0).

This is true for many spacecraft platforms (like the one shown in Fig. 1). Also, for small angles

we can consider the pitch and yaw coefficients to be dependent only on angle of attack and sideslip

respectively. Assuming also no z or y CoG offsets both Cm0 and Cn0 are 0, therefore, as first

approach, we can consider:

Cl = 0 (9)

Cm = Cmαα (10)

Cn = Cnββ (11)

The validity of the above assumptions can be seen in Fig. 2 and Fig. 3 for the FMF coefficients
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Fig. 2 Variation of Cm and Cl with angle of attack (α) and sideslip (β). Coefficients calculated

with ADBSat using Sentman’s model, Sref = 0.12857m2, Lref = 0.28m.

Fig. 3 Variation of Cl and Cn with sideslip (β) and angle of attack (α). Coefficients calculated

with ADBSat using Sentman’s model, Sref = 0.12857m2, Lref = 0.28m.

of the mesh shown in Fig. 1. The variation of Cm with α is, for small angles, nearly linear and

clearly dominates against the variation of Cm with β, in addition, there is almost no variation of

Cl with α, which is very small compared with Cm (Fig. 2). The same is true for the variation of

Cn and β (Fig. 3). All coefficients presented in this paper have been calculated with ADBSat, a
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Fig. 4 For small angles, relationship between angle of attack (α), pitch (θ) and δ1 (left) and

sideslip (β), yaw (ψ) and δ2 (right)

program that allows for fast calculation of moment and force coefficients for 3D convex geometries in

free molecular flow, developed at Manchester University. It incorporates a shadow analysis and the

possibility of choosing different force models. By default it should be assumed that all coefficients

have been calculated using a diffuse Sentman model, with accommodation coefficient = 1, speed

ratio, s = 4, and surface and atmospheric temperatures equal to Tw = 300K and Tinf = 1000K.

We can now relate the Euler and aerodynamic angles. From Fig. 4 we have:

α = θ − δ1 (12)

β = δ2 − ψ (13)

Where δ1 and δ2 are the angles which define the orientation of the aerodynamic velocity in the

orbital frame. For a circular orbit, these are the angles between inertial and aerodynamic velocities,

as a result of wind and atmospheric rotation, so they are small. Then, the aerodynamic moments

are given by:

Tax = 0 (14)

Tay =
1

2
ρ V 2

a SrefLrefCmαθ −
1

2
ρ V 2

a SrefLrefCmαδ1 (15)

Taz =
1

2
ρ V 2

a SrefLrefCnβδ2 −
1

2
ρ V 2

a SrefLrefCnβψ (16)
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Using the above expressions we can re-write the rotation equations as:

Ixφ̈+ 4ω2
0(Iy − Iz)φ− ω0(Ix − Iy + Iz)ψ̇ = Tdx (17)

Izψ̈ + ω2
0(Iy − Iz)ψ +QSrefLrefCnβψ + ω0(Ix − Iy + Iz)φ̇ = Tdz

∗ (18)

Iy θ̈ + 3ω2
0(Ix − Iz)θ −QSrefLrefCmαθ = Tdy

∗ (19)

Where Q = 1
2ρ V

2
a . Notice that the aerodynamic moments due to δ1 and δ2 have been included in

the disturbance torques Td∗.

III. Stability analysis

In the following analysis the term stability means that Euler angles (roll, pitch and yaw) can

be kept arbitrarily small for t > 0 if we make them and their derivatives sufficiently small in t = 0

[10]. Notice that with this definition of stability, the torque-free motion of a spacecraft traveling in

an orbit is not stable.

A. Pitch Stability

The characteristic equation of the pitch axis is de-coupled from roll and yaw, so we can perform

a separate analysis. By means of Laplace transformation:

Iys
2 + 3ω2

0(Ix − Iz)−QSrefLrefCmα = 0 (20)

Eq. 20 is an harmonic oscillator (ẍ + c = 0) which has unstable roots (positive real part) if c < 0.

Then, the necessary stability condition for the pitch axis becomes:

3ω2
0(Ix − Iz)−QSrefLrefCmα > 0 (21)

We define now:

σy =
Ix − Iz
Iy

σx =
Iy − Iz
Ix

σz =
Iy − Ix
Iz

(22)

Then,

σy −
Q

3ω2
0

SrefLref
Iy

Cmα > 0 (23)
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It can be proven for all σ defined in Eq. 22 that −1 < σ < 1. We can make use of this fact

to establish a sufficient condition for stability. The worst case condition would be the maximum

negative value of σ. Then, the pitch axis is stable if the following condition is met (sufficient but

not necessary):

− Q

3ω2
0

SrefLref
Iy

Cmα > 1 (24)

From Eq. 24 we can derive the following conclusions:

1) We need Cmα < 0 (aero-stability) since the rest of the parameters are positive by definition.

2) Passive aerostabilization is more effective for small bodies. It can be proved that the term

SrefLref/Iy decreases with increasing size, so it is generally easier to aerostabilize small space-

craft. This is a reasonable assumption due to the characteristics of FMF: for a given geometry

and flight conditions, Cmα is constant regardless of the size (as long as the proportions are

kept).

If condition 23 is satisfied, an oscillatory motion will occur. Using the inverse Laplace transfor-

mation the time response would be:

θ(t) =
Tdy
IyΩ2

+ (θ0 −
Tdy
IyΩ2

) cos Ωt+
θ̇0
Ω

sin Ωt (25)

Where:

Ω =
√

3σyω2
0 −QSrefLrefCmα/Iy (26)

The motion is a biased harmonic oscillation with the amplitude depending on the disturbance torque

and initial conditions. The way to limit the amplitude is to increase the frequency of oscillation

(Ω). This is naturally accomplished when the satellite decays, as lower altitudes present higher

values of dynamic pressure. Regarding design parameters, for an aerostable spacecraft (Cmα < 0)

the amplitude is controlled by the absolute value of Cmα . For gravity gradient stabilization, this is

controlled by the difference Ix − Iz.
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B. Roll-Yaw stability

Using Eq. 22, the equation of the coupled yaw-roll by means of Laplace transformation is:s2 + 4ω2
0σx −sω0(1− σx)

sω0(1− σz) s2 + ω2
0σz +QSrefLrefCnβ/Iz


φ(s)

ψ(s)

 =

 Tdx(s)

Tdz(s)∗

 (27)

The determinant of the system matrix is of the form:

s4 + ω2
0Bs

2 + ω4
0C = 0 (28)

Where:

B = 3σx + σxσz + 1 +QSrefLrefCnβ/(ω
2
0Iz) (29)

C = 4σxQSrefLrefCnβ/(ω
2
0Iz) + 4σxσz (30)

For stability we need non-positive real part in the equation roots. If the solutions of s2 are both

negative, the solutions of s4 would be imaginary and the system will be stable. Solving in s2:

s2

ω2
0

=
−B ±

√
B2 − 4C

2
(31)

Both roots are negative if the following conditions are fulfilled:

B > 0 (32)

C > 0 (33)

B2 > 4C (34)

For easy of notation U1 = QSrefLref/(ω
2
0Iz), then the stability conditions:

3σx + σxσz + 1 + U1Cnβ > 0 (I) (35)

4σxU1Cnβ + 4σxσz > 0 (II) (36)

(3σx + σxσz + 1 + U1Cnβ )2 > 16 (σxU1Cnβ + σxσz) (III) (37)

These conditions are shown in Fig. 5 for the case U1Cnβ = 0 (classic Gravity Gradient problem),

12



−1 0 1
−1

0
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σ
x

σ
z

I

III

II

Fig. 5 Conditions I, II and III (Eqs. 35 to 37) for U1Cnβ = 0. The regions where the values of

σx and σz satisfy the three of them are represented in grey.

σ
x

σ
z

−−

+

−+

−

+

−1 0 1
−1

0

1

Fig. 6 Variation of the conditions I, II and III (Eqs. 35 to 37) for positive and and negative

values of Cnβ (bold lines correspond to U1Cnβ = 0). Notice that the vertical boundary of

condition II (σx = 0) is not affected.

grey areas represent the regions where all three conditions are satisfied at the same time. For non-

zero values of U1Cnβ the three conditions are modified as is shown in Fig. 6. Positive values of

Cnβ push the of condition II horizontal line downwards, increasing the area defined by condition II

13



(Eq. 36). Negative Cnβ have the opposite effect, the regions where all three conditions are fulfilled

become smaller. To simplify the analysis we transform the above three necessary conditions into

two sufficient conditions. From Eq. 36:

4σx(U1Cnβ + σz) > 0 (38)

The worst case condition is σz = −1. Therefore, for U1Cnβ > 1 (which is the same as "pushing" the

condition II horizontal line towards σz = −1) the three conditions are fulfilled in half of the plane

(positive σx). The two sufficient conditions are then:

σx > 0 (39)

Q

ω2
0

SrefLref
Iz

Cnβ > 1 (40)

Notice that Cnβ needs to be positive in order to satisfy the inequality of Eq. 40.

In order to visualize all necessary conditions together (1 pitch + 3 roll-yaw) we can transfer the

pitch condition (Eq. 23) into the σx − σz plane using the following relation:

Iz(σz − 1) = Ix(σx − 1) (41)

This condition is shown in Fig. 7. For Cmα = 0 (no aerodynamic forces) the condition becomes

σz < σx and the stability boundary is σz = σx. For negative (stable) Cmα the region of stability

increases while for positive Cmα the region of stability decreases. Adding all four conditions together

we can see the regions of stability. Fig. 8 offers the variations of these stability regions with both

Cmα and Cnβ . The first figure (a) shows the pure gravity gradient case without aerodynamic forces,

in the second figure (b) both coefficients have a stabilization effect (Cmα < 0 Cnβ > 0) so the stable

region increases, the opposite case is shown in the third one (c), the stability region decreases. The

last figure (d) shows the stability region when the three sufficient conditions (Eqs. 24, 39 and 40)

are met. Table 1 summarizes these three sufficient conditions for stability.
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Fig. 7 Variation of the the stability boundary of the pitch condition in the σx − σz plane

for positive and negative values of Cmα . The grey area represents those values of σz and σx

compliant with the inequality for Cmα = 0.
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Fig. 8 Roll-yaw stability regions in the σz − σx plane for different values of the stability

derivatives Cmα and Cnβ .
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Table 1 Sufficient conditions for stability

Pitch

− Q

3ω2
0

SrefLref

Iy
Cmα > 1

Roll-Yaw

Q

ω2
0

SrefLref

Iz
Cnβ > 1

Iy > Iz

IV. Stability derivatives in Free Molecular Flow

Stability derivatives can be influenced by design. They are driven by body shape, center of

mass location and flight conditions. At orbital altitudes, the calculation of aerodynamic coefficients

requires a different approach from aircraft aerodynamics. The flow is characterized by the low

density and the small number of collisions between molecules (Free Molecular Flow). Therefore, it

can not be considered continuous and classic fluid mechanics theory is no longer applicable. Instead,

each molecule interacts individually with the surface wall, exchanging momentum with the body.

The kinetic theory of gases predicts these interactions providing analytical expressions to calculate

forces for a flat plate under different conditions and angles of incidence (Sentman [31], Schamberg

[32], Cook [33]). Those can be applied to each of the elements of a surface mesh representing the

geometry of the body. Another approach is the use of numerical codes which directly simulate

molecules and its collisions with the surface, like Direct Simulation Monte Carlo, which provide

higher fidelity at the expense of calculation time. In the case of complicated geometries, with

concave surfaces and the possibility of multiple reflections of the particles, the use of these codes

and the extra amount of calculation is justified. However, for trade-off studies, analytical methods

able to take into account surface shadowing produce accurate results in a few seconds.

This section studies how the stability derivatives vary with different geometries and flight con-

ditions. To simplify the analysis, the focus is in the pitch momentum or longitudinal axis. However,

16



the same analysis is also applicable to the yaw axis. By default it should be assumed that all the

coefficients have been calculated using a diffuse Sentman model, with accommodation coefficient

= 1, speed ratio, s = 4, and surface and atmospheric temperatures equal to Tw = 300K and

Tinf = 1000K.

Global vehicle moment coefficients (Cl, Cm, Cn) are calculated by adding individual mesh el-

ements moment contributions to a common reference point (moment reference centre). We can

translate them to the center of mass (G):

~CGM = ~CM −
~xG

Lref
∧ ~CF (42)

Where:

~CM = {Cl, Cm, Cn} (43)

~CF = {CA, CY , CN} (44)

The coefficients CA, CY , CN are the axial, lateral and normal force coefficients in body axes. Focus-

ing in the longitudinal axis, for the vehicle to be aero-stable, the slope of Cm with respect to angle

of attack needs to be negative, Cmα < 0, (Fig. 9). That way a restoring torque is created when the

angle of attack increases (the contribution of gravity gradient has been treated in previous sections

and is neglected here).

Figs. 9 to 12 show the variation of FMF Cm for different geometries and center of mass

positions. They all refer to the base area and diameter (D). The position of the center of mass (xcog)

is measured from the leading face downstream. Stability is increased by moving the center of mass

towards the leading face (steeper Cm slopes, lower Cmα). Following the small angle approximation,

Cmα can be defined as the slope of Cm at zero angle of attack (assuming that this angle corresponds

to the trim point point of the vehicle). The variation of Cmα with center of mass position is linear

(Figs. 13 to 14). The change in stability corresponds to the change of sign of Cmα . Rectangular

prisms or cylinders have the point of neutral stability, Cmα = 0, at the geometric center. For more

complex geometries, like cones, it depends on the shape and flight conditions. Figs 13 to 14 also

show how the stability changes with accommodation coefficient and surface temperature. In both
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Fig. 9 FMF Static pitching coefficient for a cylinder (L/D=1) referred to the base area and
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−80 −60 −40 −20 0 20 40 60 80
−25

−20

−15

−10

−5

0

5

10

15

20

25

C
m

Angle of attack α   [deg]

Cylinder L/D=5 (Static pitching coefficient)

 

 
x

cog
/L

ref
=0.2

x
cog

/L
ref

=0.4

x
cog

/L
ref

=0.8

Fig. 10 FMF Static pitching coefficient for a cylinder (L/D=5) referred to the base area and

diameter, for various positions of the center of mass.

figures it is interesting to note the presence of one center of mass position which is insensitive to

accommodation coefficient or surface temperature. The same value of Cmα is obtained for different

values of these variables. For a rectangular prism or a cylinder (Fig. 13) this point is situated at the

geometric center and corresponds to neutral stability (Cmα = 0). In the case of the 45 deg cylinder
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area and diameter, for various positions of the center of mass.
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Fig. 12 FMF Static pitching coefficient for a cone (half angle = 45 deg) referred to the base

area and diameter, for various positions of the center of mass.

it is situated around 0.75 and with a value of Cmα around -0.6, both the value and the position of

this point are a function of the half angle for cylinders.

Stability in FMF can be completely different from continuous regimes. This effect is well known

for re-entry capsules which can become unstable during the free molecular flow phase of the re-entry
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Fig. 13 Cylinder (L/D = 5). Variation of longitudinal stability derivative (Cmα) with accom-

modation coefficient (right) and surface temperature (left).

Fig. 14 Cone (half angle = 45 deg). Variation of longitudinal stability derivative (Cmα) with

accommodation coefficient (right) and surface temperature (left).

([34],[36]). In Fig. 15, for the same center of mass position the vehicle is stable at hypersonic speed

(coefficient calculated using a Newton’s method), however unstable in FMF.

Another way to increase the stability is the addition of tail surfaces downstream the center

of mass. A shuttlecock configuration of the fins may be appropriate for missions in which it is

interesting to increase the drag coefficient (Fig. 16, left), like re-entry or de-orbit. However, for

missions in which the satellite lifetime is to be maximized, with this configuration the increase in

stability is at the expense of a big increase in drag. Therefore, a "feather" design (Fig. 16, right)
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is more convenient. Although it produces a more modest stability improvement, the increment in

drag is also smaller. Figs 17 and 18 present increment in (Cmα) and CD for four fins of 1unit2 with

respect to the body of a typical 3U cubesat (rectangular prism of 3x1x1).
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V. Time domain response

In this section, a complete six degrees of freedom simulation is used to prove the validity

of the previous derivation. The simulator includes high fidelity models of various perturbation

affecting the problem, such as gravity gradient, aerodynamic forces and torques and atmospheric
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Fig. 19 Geometry of the simulated satellite, units in mm

Table 2 Center of gravity position and estimated Cmα

Case xcog Cmα

1 0 % -5.3

2 40 % -2.3

3 60 % -0.77

and wind models (NRLMSISE-00 and HWM-93). FMF coefficients are obtained with ADBSat using

Sentman’s model with an accommodation coefficient of 1. This is probably a likely value, exposed

surfaces in low earth orbit adsorb atomic oxygen, and due to this contamination accommodation

coefficient is nearly independent of the surface material [37]. In all cases, the simulation starts in

a circular orbit of 300 km altitude and 80 deg inclination. Initial attitude angles and inertial rates

are zero. This is equivalent to a negative rate in the pitch axis orbital frame (In the absence of an

stabilizer torque the pitch angle would therefore drift away from 0). The atmospheric model is set

to mean solar and geomagnetic activity (F10.7 = F10.7av = 140 and Ap = 14, [38]). The geometry

of the simulated satellite has been presented in Fig. 19.
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Fig. 20 Non-linear pitch response and amplitude prediction for different values of Cmα

A. Pitch axis

To simulate different stability properties, the aerodynamic coefficients are recalculated at dif-

ferent positions of the center of mass along the x axis (Table 2). Applying Eqs. 24 and 25 it is

possible to predict the stability of the motion and the approximate values for the amplitude and

frequency. The value of Cmα is calculated as the slope of Cm at zero angle of attack and zero sideslip

and the mean density at 300 km for mean solar activity is estimated to be 2.52 ∗ 10−11kg/m3 [38],

the inertias for the satellite configuration are Ix = 0.005 kg.m2, Iy = Iz = 0.03 kg.m2. In the

absence of an external torque, the amplitude of the oscillation is due to the initial rate in pitch

which corresponds to the initial orbital rate. In all three cases Eq. 24 is satisfied, therefore a stable

motion is expected. The goal is to understand the sensitivity of the predictions (which are based

on simplified assumptions) to real effects such as non-uniform density or non-linear dynamics. Figs

20 and 21 offer the results of the simulations for the pitch evolution. As predicted, the attitude

motion is stable and both amplitude and frequency are well correlated with the model predictions.
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Fig. 21 Predicted and measured period of pitch oscillations for different values of Cmα

Decreasing the value of Cmα , increases the amplitude and decreases the frequency of oscillation.

B. Roll-Yaw axis

Regarding the roll-yaw response, all the sufficient conditions for stability except for the last one

(Iy > Iz) are satisfied . Therefore, the problem is described by Fig. 8-d. Pitch and yaw axes are

stable and the stability of roll motion depends on the difference Iy− Iz. Fig. 22 offers the roll angle

for three different values of σx, negative (unstable), zero (marginally stable), and positive (stable).

Fig. 23 and Fig. 24 show roll, pitch yaw for stable and unstable cases. Notice that despite the

instability in roll, both pitch and yaw remain stable. The roll motion interchanges body axes Iy−Iz,

however, these are both stable, so the stability of these axes is not compromised in the case of large

roll excursions. The co rotating wind can be observed in the low frequency oscillation present in

the yaw response, corresponding to the orbital frequency.

25



0 5 10 15

x 10
4

−150

−100

−50

0

50

100

150

ro
ll 

a
n
g
le

 φ
 [
d

e
g

]

time [sec]

 

 
I
y
 < I

z

I
y
 = I

z

I
y
 > I

z

Fig. 22 Roll angle for three different values of σx, stable, marginally stable and unstable cases.

0 5000 10000 15000
−20

−15

−10

−5

0

5

10

15

20

[d
e
g
]

time [sec]

 

 
ψ

θ

φ

Fig. 23 Roll, pitch, yaw for the stable case. Ix = 0.004 Iy = 0.01, Iz = 0.008.

26



0 5000 10000 15000
−20

−15

−10

−5

0

5

10

15

20

[d
e
g
]

time [sec]

 

 
ψ

θ

φ

Fig. 24 Roll, pitch, yaw for the roll unstable case. Ix = 0.004 Iy = 0.008, Iz = 0.01.

27



VI. Stability with varying dynamic pressure

So far our analysis has considered that all the coefficients in the equations are fairly constant

with time. This assumption is valid for quantities such as inertia, Sref or even Cmα for circular

orbits. However, it is clear that dynamic pressure has an important time variation due to both

density and relative velocity profiles through the orbit. Since the pitch axis is, at least to first

order, decoupled from roll-yaw motion we can better understand the effect by looking to the pitch

equation:

Iy θ̈ + 3ω2
0(Ix − Iz)θ − q(t)SrefLrefCmαθ = 0 (45)

Here, q = q(t) = 0.5ρ(t)V (t)2, so the dynamic pressure has some sort of variation with time. To

characterize this function, we can neglect any effect on the trajectory (drag force, J2...) as well as

any long term variation of the atmosphere (such as variations of solar or geomagnetic activities). For

a small number of revolutions these effects are small, as attitude dynamics have a smaller time scale

than trajectory dynamics. In such conditions we can assume the dynamic pressure to be a periodic

function, q(t) = q(t + Torb) where Torb is the orbital period. Figs. 25 and 26 present variation of

dynamic pressure for several altitudes at a given inclination as well as for several inclinations at

a given altitude. Both figures have been produced using NRLMSIS-00 with medium solar activity

conditions and include atmospheric co-rotation.

Then, it is possible to approximate q(t) analytically by means of Fourier coefficients:

q(t) = q0 +

n∑
k=1

ak cos(kω0t) +

n∑
k=1

bk sin(kω0t) (46)

Where ω0Torb = 2π. As an example, Fig. 27 presents a least-square fitting of the Fourier coefficients

for various truncated orders (n).

In such conditions, the equation governing the pitch motion is a special case of second order

differential equation with periodic coefficients known as Hill’s equation:

d2y

dt2
+ f(t)y = 0; (47)

Where f(t) is a periodic function of period Torb. This type of system can exhibit parametric

resonance phenomena. For certain values of the parameters, the amplitude of oscillation steadily
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Fig. 25 Variation of dynamic pressure (q) for a circular orbit (80 deg inclination) and different

altitudes, starting at the ascending node using NRLMSIS-00 and co-rotating wind
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Fig. 26 Variation of dynamic pressure (q) for a circular orbit (250 km altitude) and different

inclinations, starting at the ascending node using NRLMSIS-00 and co-rotating wind

increases leading to instability. A classic example of analysis of such systems is the Mathieu equation,

used extensively to model different phenomena in physics and engineering [39]:

d2y

dt2
+ (δ − 2ε cos(2t))y = 0; (48)

Here, the quantities δ and ε are constants. The analysis consists of finding regions of stability

and instability on the δ − ε plane. These plots are called stability charts. Fig 28 shows a typical

stability chart for the Mathieu equation. Kumar et al. [21] used these Mathieu stability charts
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Fig. 27 Fitting of dynamic pressure using a truncated Fourier series of order n. Circular orbit

(300 km altitude, 80 deg inclination)
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Fig. 28 Mathieu equation stability chart. Black areas are regions of instability

to analyze parametric resonance phenomena on the PAMS satellite. They used a simplified orbit

variation of the density (a cosine function) so the system can be simplified to a Mathieu equation.

Higher harmonics are treated separately by assuming one frequency at a time, obtaining this way a

superimposition of multiple Mathieu diagrams. By design, the PAMS satellite had all three inertia

moments equal, so no gravity gradient torque is considered in the analysis.
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To analyze the problem via the Mathieu chart, we need to simplify the dynamic pressure to a

cosine function:

q(t) = q0 + a1 cos(wt) (49)

Then perform a change of independent variable in the form ξ = wt/2, this way our δ and ε are:

δ = 12σy −
4Γgq0
ω2
0

(50)

ε =
2Γga1
ω2
0

(51)

Where

σy =
Ix − Iz
Iy

(52)

Γg =
SrefLrefCmα

Iy
(53)

This method can be useful to check wether we cross instability regions during the mission. Obtaining,

for instance, the evolution of (q0, a1) values as the altitude decreases, and then plotting the path

followed on the Mathieu chart. Crossing a region of instability may not be an issue as long as we

remain in the stable region most of the mission. However, as Kumar et al. also observed higher

frequency terms may not be negligible, having an impact on stability. Also, the inclusion of other

effects, such as wind is not straightforward. To perform a more complete analysis, we use numerical

method based on Floquet theory [40]. It allows the stability of the whole system to be analyzed at

once, avoiding the splitting of the multiple dynamic pressure frequencies while considering a realistic

profile of dynamic pressure, gravity gradient effects and atmospheric winds. The method consists

on finding the eigenvalues of the fundamental solution matrix (H) which has the following form:

H =

θi(t = Torb) θ̇i(t = Torb)

θj(t = Torb) θ̇j(t = Torb)

 (54)

The values of θ(t = Torb) and θ̇(t = Torb) are obtained by numerically integrating the equation for

one period (0− T ) for two different initial conditions:θi(0)

θ̇i(0)

 =

1

0

 (55)
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θj(0)

θ̇j(0)

 =

0

1

 (56)

Then, if any eigenvalue of H has a real part with absolute value greater than 1 (|λn| > 1) the system

is unstable and the solutions are not bounded. To obtain the regions of potential instability, the

method needs to be applied to each of the points of a grid of equation parameters. Other numerical

methods can be used to check stability. However, they often require integrating for a longer number

of periods and the definition of a ratio between initial and final amplitudes, which is not always

clear ([41],[42]).

In this case, the stability condition has to be evaluated for each pair of δ − ε values, which

is computationally intensive. Before applying the method to the problem, Eq. 45 needs to be

re-arranged as follows:

θ̈ +

[
3ω2

0σy − Γg(q0 +

n∑
k=1

ak cos(kω0t) +

n∑
k=1

bk sin(kω0t))

]
θ = 0 (57)

All the parameters in Eq. 57 except for σy and Γg are defined for a given orbit and environmental

conditions. Altitude, inclination, epoch and environmental conditions (solar and geomagnetic ac-

tivity) define the parameters of the fitting of dynamic pressure (q0, ak and bk). Then, for a given

orbit and conditions it is possible to study which values of σy and Γg (geometric parameters) can

lead to parametric resonance. The value of Cmα is also influenced by the altitude and atmospheric

composition, but this is not taken into account for simplicity. Notice that these stability charts are

different from the Mathieu ones previously presented and used in other references. In those, the

values of the constants δ − ε contain geometric quantities and flight conditions. Here we fix the

flight condition, so the charts depend only on geometric properties of the satellite, quantities that

can be influenced by design, such as inertia or Cmα .

Figures 29 and 30 present some stability charts obtained for different inclination and altitude

conditions, using medium solar activity. Black areas are the regions of potential instability. The

unstable area at the top of the graphs corresponds to the static stability already predicted by the

previous analysis. Black bands are regions of parametric resonance, which correspond to different
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Fig. 30 Evolution of pitch stability chart for a circular orbit of 350 km and different inclinations

frequencies of the dynamic pressure variation. As the altitude increases, the density decreases and

also the regions of instability. The trend in inclination is more difficult to identify, however, higher

inclinations present a lower mean dynamic pressure and more variation along the orbit (as a result

of altitude variations caused by oblate Earth shape) which is reflected by the growth of both the

static instability area and the potential parametric resonance bands. Low or high solar activity

would effectively decrease or increase respectively the altitudes at which parametric resonance is

likely to occur.

VII. Conclusions

We have proposed a way to analyze the stability of a satellite subjected to Free Molecular

aerodynamic and gravity gradient torques. This is particularly interesting for missions flying in Low
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Earth Orbits. Apart from the benefits of a better understanding, an active design of the satellite

stability characteristics can reduce attitude control requirements both by better sizing environmental

torques and by minimizing the amount of active control. It can also help characterizing and avoiding

potential resonance phenomena.

It has been shown that for phases with low pointing requirements (Cubesats, drag de-orbit

devices), attitude stability can even be achieved without any active control, reducing complexity

and cost. Other interesting potential applications are the characterization of the atmospheric envi-

ronment based on measured attitude response or the use of aerodynamic moments to perform slow

attitude maneuvers or damp momentum. In either case, this analysis provides a theoretically robust

approach for attitude control design.

This study is aplicable to orbits in which Free Molecular Flow can be assumed, (typically form

160 km altitude and above). For altitudes leading to re-entry in which hypersonic flow is a more

reasonable assumption the lack of damping would need to be revised.

References

[1] “Spacecraft aerodynamic torques,” Tech. rep., NASA SP-8058, 1971.

[2] Moe, K. and Reiter, G. S., “Surface-Particle-Interaction Measurements Using Paddlewheel Satellites,”

Tech. rep., Douglas Aircraft CO inc, Santa Monica CA, Space sciences dept, 1968.

[3] Moe, K., “Absolute atmospheric densities determined from the spin and orbital decays of Explorer VI,”

Planetary and Space Science, Vol. 14, No. 11, 1966, pp. 1065–1075.

[4] “OSO 1 Orbiting Solar Observatory Satellite,” Tech. rep., NASA SP-57, 1965.

[5] “Proceedings of the Symposium on Passive Gravity-Gradient Stabilization,” Tech. rep., NASA SP-107,

1966.

[6] “Proceedings of the Symposium on Gravity Gradient Attitude Stabilization,” Tech. rep., Aerospace

Corporation, El Segundo, California, 1968.

[7] White, J. S., Shigemoto, F. H., and Bourquin, K., “Satellite attitude control utilizing the Earth’s

magnetic field,” Tech. rep., NASA TND-1068, 1961.

[8] Kamm, L., “Magnetorquer-A Satellite Orientation Device,” ARS Journal, Vol. 31, No. 6, 1961, pp.

813–815.

[9] Fischell, R. E., “Magnetic damping of the angular motions of earth satellites,” ARS Journal, Vol. 31,

34



No. 9, 1961, pp. 1210–1217.

[10] Kane, T. R., Likins, P. W., and Levinson, D. A., Spacecraft dynamics, Vol. 1, New York, McGraw-Hill

Book Co, 1983, 445 p., 1983.

[11] Sidi, M. J., Spacecraft dynamics and control: a practical engineering approach, Vol. 7, Cambridge

university press, 1997.

[12] De Bra, D., “The Effect of Aerodynamic Forces on Satellite Attitude,” Journal of Astronautical Sciences,

Vol. 6, 1959, pp. 40–45.

[13] Meirovitch, L. and WALLACE, F., JR, “On the effect of aerodynamic and gravitational torques on the

attitude stability of satellites.” AIAA Journal, Vol. 4, No. 12, 1966, pp. 2196–2202.

[14] Ravindran, R. and Hughes, P., “Optimal aerodynamic attitude stabilization of near-Earth satellites,”

Journal of Spacecraft and Rockets, Vol. 9, No. 7, 1972, pp. 499–506.

[15] Schrello, D., “Passive aerodynamic attitude stabilization of near earth satellites. volume I. Librations

due to combined aerodynamic and gravitational torques,” Tech. rep., DTIC Document, 1961.

[16] Frik, M. A., “Attitude stability of satellites subjected to gravity gradient and aerodynamic torques,”

AIAA Journal, Vol. 8, No. 10, 1970, pp. 1780–1785.

[17] Shrivastava, S., “Effects of Solar Radiation Pressure and Aerodynamic Forces on Satellite Attitude

Dynamics and Their Utilization for Control: A Survey,” Journal of the Indian Institute of Science,

Vol. 58, No. 9, 1976, p. 391.

[18] Shrivastava, S. and Modi, V., “Satellite attitude dynamics and control in the presence of environmental

torques-a brief survey,” Journal of Guidance, Control, and Dynamics, Vol. 6, No. 6, 1983, pp. 461–471.

[19] Sarychev, V., “Aerodynamic stabilization of satellites,” in “Proc. Inf. Coloquium on Attitude Changes

and Stabilization of Satellites,” Paris, 1968.

[20] Kumar, R. R., Mazanek, D. D., and Heck, M. L., “Simulation and Shuttle Hitchhiker validation of

passive satellite aerostabilization,” Journal of spacecraft and rockets, Vol. 32, No. 5, 1995, pp. 806–811.

[21] Kumar, R. R., Mazanek, D. D., and Heck, M. L., “Parametric and classical resonance in passive satellite

aerostabilization,” Journal of spacecraft and rockets, Vol. 33, No. 2, 1996, pp. 228–234.

[22] Sarychev, V. and Mirer, S., “Relative equilibria of a satellite subjected to gravitational and aerodynamic

torques,” Celestial Mechanics and Dynamical Astronomy, Vol. 76, No. 1, 2000, pp. 55–68.

[23] Sarychev, V., Mirer, S., Degtyarev, A., and Duarte, E., “Investigation of equilibria of a satellite subjected

to gravitational and aerodynamic torques,” Celestial Mechanics and Dynamical Astronomy, Vol. 97,

No. 4, 2007, pp. 267–287.

[24] Sarychev, V., Mirer, S., and Degtyarev, A., “Equilibria of a satellite subjected to gravitational and

35



aerodynamic torques with pressure center in a principal plane of inertia,” Celestial Mechanics and

Dynamical Astronomy, Vol. 100, No. 4, 2008, pp. 301–318.

[25] Sarychev, V. and Gutnik, S., “Dynamics of an axisymmetric satellite under the action of gravitational

and aerodynamic torques,” Cosmic Research, Vol. 50, No. 5, 2012, pp. 367–375.

[26] Bak, T. and Wisniewski, R., “Passive Aerodynamic Stabilisation of Low Earth Orbit Satellite,” in

Spacecraft Guidance, Navigation and Control Systems, Vol. 381, 1997, p. 469.

[27] Chen, Y.-H., Hong, Z.-C., Lin, C.-H., and Chern, J.-S., “Aerodynamic and gravity gradient stabilization

for microsatellites,” Acta Astronautica, Vol. 46, No. 7, 2000, pp. 491–499.

[28] Psiaki, M. L., “Nanosatellite Attitude Stabilization Using Passive Aerodynamics and Active Magnetic

Torquing,” in Journal of Guidance, Control, and Dynamics, Vol. 27, 2004, p. 347–355.

[29] Rawashdeh, S. A. and Lumpp, J., “Nano-satellite passive attitude stabilization systems design by orbital

environment modeling and simulation,” AIAA Infotech.

[30] Maslova, A. and Pirozhenko, A., “Modeling of the aerodynamic moment acting upon a satellite,” Cosmic

Research, Vol. 48, No. 4, 2010, pp. 362–370.

[31] Sentman, L. H., “Free molecule flow theory and its application to the determination of aerodynamic

forces,” Tech. rep., Lockheed missiles and space co inc, Sunnyvale CA, 1961.

[32] Schamberg, R., “A New Analytic Representaticn of Surface Interaction with Hypothermal Free Molecule

Flow with Application to Neutral-Particle Drag Estimates of Satellites,” Tech. Rep. RM-2313, RAND

Research Memorandum, 1959.

[33] Cook, G. E., “Satellite drag coefficients,” Planetary and Space Science, Vol. 13, No. 10, 1965, pp.

929–946.

[34] Abdel-Jawad, M. M., Goldsworthy, M. J., and Macrossan, M. N., “Stability Analysis of Beagle2 in

Free-Molecular and Transition Regimes,” Journal of spacecraft and rockets, Vol. 45, No. 6, 2008, pp.

1207–1212.

[35] Santangelo, A. D., Johnson, G. E., “Optimal wing configuration of a Tethered Satellite system in free

molecular flow,” Journal of spacecraft and rockets, Vol. 29, No. 5, 1992, pp. 668–670.

[36] Wilmoth, R. G., Mitcheltree, R. A., and Moss, J. N., “Low-Density Aerodynamics of the Stardust

Sample Return Capsule,” Journal of spacecraft and rockets, Vol. 36, No. 3, 1999, pp. 436–441.

[37] Moe, K., Moe, M. M., Levin, D. A., Wysong, I. J., and Garcia, A. L., “Gas-surface interactions in

low-Earth orbit,” in “AIP Conference Proceedings-American Institute of Physics,” Vol. 1333, 2011, p.

1313.

[38] Space engineering: Space environment, ECSS Std. ECSS-E-10-04A, ESA-ESTEC, Noordwijk, The

36



Netherlands, 2008.

[39] Ruby, L., “Applications of the Mathieu equation,” American Journal of Physics, Vol. 64, No. 1, 1996,

pp. 39–44.

[40] Recktenwald, G. D., The stability of parametrically excited systems: coexistence and trigonometrifica-

tion, Ph.D. thesis, Cornell University, 2006.

[41] Rand, R., Zounes, R., and Hastings, R., “A quasiperiodic Mathieu equation,” in “Proceedings of the

1995 Design Engineering Technical Conferences "Vibration of Nonlinear, Random and Time-Varying

Systems",” , 1995.

[42] Wei, Q., Peers, E., and Huang, X., “Lateral Stability Analysis of Hypersonic Vehicle under Pressure

Fluctuation by Solving Mathieu Differential Equation,” in “AIAA Atmospheric Flight Mechanics Con-

ference,” American Institute of Aeronautics and Astronautics, Reston, Virigina, 2012.

37


