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Abstract 

Equipment standardisation as a cost-effective means of rationalising maintenance spares has 

significantly increased the existence of several identical (similar components and 

configurations) ‘as installed’ machines in most industrial sites. However, the dynamic 

behaviours of such identical machines usually differ due to variations in their foundation 

flexibilities, which is perhaps why separate analysis is often required for each machine during 

faults diagnosis. In practise, the faults diagnosis process is even further complicated by the 

fact that analysis is often conducted at individual measurement locations for the different 

speeds, since a significant number of rotating machines operate at various speeds. Hence, 

through the experimental simulation of a similar practical scenario of two identically 

configured ‘as installed’ rotating machines with different foundation flexibilities, the present 

study proposes a simplified vibration-based faults diagnosis (FD) technique that may be 

valuable for faults detection irrespective of  foundation flexibilities or operating speeds. On 

both experimental rigs with different foundation flexibilities, several common rotor-related 

faults were independently simulated. Data combination method was then used for computing 

composite higher order spectra (composite bispectrum and composite trispectrum), after 

which principal component analysis is used for faults separation and diagnosis of the grouped 

data. Hence, the current paper highlights the usefulness of the proposed FD approach for 

enhancing the reliability of identical ‘as installed’ rotating machines, irrespective of the 

rotating speeds and foundation flexibilities.  
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Abbreviations 

AI artificial intelligence 

ANN artificial neural networks 

BM breakdown maintenance 

BS bent shaft 

CB composite bispectrum 

CBM condition based maintenance 

CS composite spectrum 

CSD cross-power spectrum density 

CT composite trispectrum 

EDM electric discharge machining 

FD faults diagnosis 

FDS faults diagnosis scenario 

FRF frequency response function 

FS flexible support 

FT Fourier transformation 

HRM healthy with residual misalignment 

LB loose bearing 

PC principal components 

PCA principal component analysis 

PCB printed circuit board 

pCCS poly coherent composite spectrum 

PPM planned preventive maintenance 

RPM revolutions per minute 

SC shaft crack 

SM shaft misalignment 

SR shaft rub 

SVM support vector machine 

VFD vibration-based faults diagnosis 



 
 

Nomenclature 

A orthogonal matrix 

 
B number of bearings 

 
B number of flexible supports 

 

         composite bispectrum at frequencies    and     

 

    composite bispectrum at engine orders   and   

 

  ,   , ...,    experimentally simulated cases 

 

   covariance matrix of p 

  

  ,   ,   ,    frequencies  

 

      ,       ,.....,        feature matrices for different experimentally simulated cases at 

rotor speed    

 

   ,    , ...,     feature matrices at rotor speeds   ,   ,.....,    respectively 

 

   ,    , ...,     identical  ‘as installed’ rotating machines with flexible 

supports 1, 2, ..., B 

 
ns number of equal segments for Fourier transformation 

 
n1 
 
n2 

observations 

 

variables 

 
P number of measured data sets at a particular rotor speed    

 
  ,   ,.....,    rotor speeds in revolutions per minute 

 
         coherent composite spectrum at frequency    

 
          poly Coherent composite spectrum at frequency    

 
      

   

     ,       
   

      coherent cross-power spectrum of the rth segment between 

bearings 1 and 2;  bearings 2 and 3 at frequency    

 

              
   

      coherent cross-power spectrum of the rth segment between 

bearings (b-1) and b at frequency    

 
t number of principal components 

 
            composite trispectrum at frequencies   ,     and    

  
      
     ,   

      Fourier transformation of r
th
 segment at frequency  for bearings  

(b-1) and b respectively 

 



 
 

    
     ,     

     ,     
     , 

    
      

coherent composite Fourier transformation of r
th
 segment at 

frequency   ,   ,    and    

 

    
         ,     

             complex conjugate of the Coherent composite Fourier 

transformation of r
th
 segment at frequency        and          

 

    
       complex conjugate of the Coherent composite Fourier 

transformation of r
th
 segment at frequency    

 
     
     ,      

      poly coherent composite Fourier transformation of r
th
 segment 

at frequencies    and    

 

     
         ,      

             complex conjugate of poly coherent composite Fourier 

transformation of r
th
 segment at frequencies        and 

           
 

  
     ,   

     ,   
     ,   

      Fourier transformation of r
th
 segment at frequency  for 

measurement locations  1-4 respectively 

 
X1, X2, X3, ...., Xq individual features for “p” number of observations for a 

particular case    at rotor speed    

 
 ,   and   engine orders 

 

 
  
 ,  

  
 ,        

  coherence between bearings 1 and 2; 2 and 3; ... (b-1) and b 

 

  diagonal matrix 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

1. Introduction 

Faults always occur in rotating machines due to the vast and severe conditions under which 

they operate across several industries. The lack of early detection of such faults often leads to 

depleted machine reliability, which could have catastrophic consequences on the safety and 

profitability of any organisation [1]. A maintenance activity (which has evolved over time) 

has always been applied for the detection and elimination of these faults. Maintenance can be 

described as the combination as well as synchronisation of all technical, administrative and 

managerial tasks directed towards ensuring that a machine adequately performs the functions 

for which it was acquired [2-4]. Initially, maintenance interventions (mainly repair and 

replace) are only conducted to restore already failed machines back to operating condition. 

This type of maintenance strategy ultimately required huge investments in spares, 

incorporation of high levels of redundancies in plant designs, and a significantly large 

maintenance team. The capital intensiveness and high equipment failure levels associated 

with breakdown maintenance (BM) triggered the shift towards a periodic or planned 

preventive maintenance (PPM) philosophy that entailed the repair of machines over a 

predefined time period, irrespective of machines’ conditions. Although the planned 

preventive maintenance approach significantly reduced plant interruptions, however, the cost 

associated with this practise was also high. Based on this premise, maintenance experts have 

continuously sorted after a more effective maintenance philosophy that will only be triggered 

by the presence of symptomatic changes in a machine’s operating conditions due to faults, 

such as condition-based maintenance (CBM).  

In an adequately implemented and managed CBM system, the decision to repair or replace a 

machine is often guided by the results obtained from the analysis of measured machine 

operations data (e.g. vibration, temperature, sound, etc.). The reviews by Jardine et al. [5], 

Lee et al. [6], Heng et al. [7] and Lee et al. [8] offered extensive details and trends of 

commonly applied CBM diagnostic and prognostic techniques for machines. In these reviews 

[5-8], it was also highlighted that vibration-based faults diagnosis (VFD) techniques [9-13] 

are amongst the most popular, owing to the fact that different components in a machine 

assembly often exhibit peculiar vibration characteristics due to faults. Machinery vibration 

signals have been processed using time [14-15], frequency or time-frequency [16-17] domain 

techniques. The frequency domain signal analysis, based on Fourier transformation (FT) is 

one of the most conventionally applied VFD signal processing techniques in practise, since it 

provides the opportunity to easily identify frequency components of interest [5]. Some of the 



 
 

frequency domain vibration signal processing techniques used for faults diagnosis in rotating 

machines includes power spectrum [18], higher order spectra [19-24], holospectrum [25], 

cepstrum [26], composite spectrum [27], composite bispectrum [28], etc.  

Despite the maturity of spectrum-based techniques, the quest for more profound 

understanding of the dynamic characteristics of vibrating systems has led to the application of 

model-based approaches [29] for rotating machines’ faults diagnosis. These model-based 

approaches [29] usually involve the development and application of explicit mathematical 

models for simulating the behaviour of an ‘as installed’ machine. The emergence of very 

powerful computers has significantly reduced the complexity and time required to perform 

model-based faults diagnosis. Such technological advancements have also enhanced the ease 

with which researchers can reliably analyse and predict future behaviours of vibrating 

systems. Kerschen et al. [30] provided extensive reviews on model-based analysis of 

vibrating systems. Other researchers have also applied model-based approaches for analysing 

rotating machines faults such as unbalance and misalignment [31], rotor crack [32-34], etc. 

Although model-based analysis can offer more descriptive results if a precise model is built, 

however, it is sometimes near impossible to achieve the required precision when dealing with 

very complex structures [5].        

In order to reduce dependence on human interference and experience, some researchers have 

adopted artificial intelligence (AI) techniques such as artificial neural networks (ANN) [35-

42],  support vector machine (SVM) [43-47], and fuzzy logic [48]. ANN is basically a 

computational model that contains simple processing elements that are linked via a complex 

layer structure, thereby imitating the formation of the human brain [5]. A comprehensive 

review on more than a decade-long applicability of artificial neural networks in the industry 

was compiled by Meireless et al. [35]. Other studies have also shown the capabilities of ANN 

in classifying rotating machine conditions [36], detection of rotor loading conditions [37], 

gear faults identification [38-40], fan blade faults detection [41] as well as diagnosis of 

rolling element bearing faults [42]. Although AI-based techniques possess the potentials to 

automate VFD processes, however, studies [5, 7] have also highlighted the difficulties 

associated with providing physical interpretations of the trained model as well as the 

complexity of the training process. SVM is another popularly used AI-based technique that 

has proven capable of providing accurate decision results in some cases, mainly due to its 

augmented decision boundary and real time analysis capability [43-44]. Although SVM has 

been used to detect faults related to rotors [45], bearings [46], gears [38], pump valves [47], 



 
 

etc., however, studies [6] have also shown that there is still a lack of standard technique for 

selecting its key process (i.e. Kernel process) function. Other efforts aimed at further 

simplifying rotating machines’ faults diagnosis using pattern recognition tools such as 

principal components analysis (PCA) has also been explored by some researchers [49]. The 

application of PCA for faults diagnosis is particularly strengthened by its ability to compress 

large multi-dimensional input data sets into lower dimensional but representative data sets 

[6]. Nembhard et al. [50] recently applied PCA for detecting and classifying rotor-related 

faults such as misalignment, crack and shaft rub. In this study [50], the combination of 

measured vibration and temperature features was explored. PCA has also been used for 

identifying faults related to rolling element bearings [51-52] and gears [53-55].        

As valuable and significant as the contributions from these earlier studies are, they have been 

predominantly used to diagnose faults associated with rotating machines on single 

foundations and at single machine speeds. In practice however, two or more identical (similar 

components and configurations) rotating machines installed at different plant locations may 

exhibit different dynamic characteristics, due to variations in their foundation flexibilities. 

These differences in dynamic characteristics often require that separate analysis is conducted 

for each machine at the different speeds, which may complicate the faults diagnosis process. 

Hence, the development of a unified VFD technique that will be capable of detecting and 

differentiating rotating machines’ faults, irrespective of foundation flexibility and machine 

speed is highly desirable. In the present study, the earlier [27-28] and improved [56] 

composite higher order spectra (i.e. composite bispectrum and composite trispectrum) data 

combination (in the frequency domain) techniques have been respectively used to compute 

faults diagnosis features for two identical flexibly supported rotating machines, operating 

under different faults and speeds. Through the application of a PCA-based faults diagnosis 

algorithm, a unified faults diagnosis technique capable of faults detection and classification, 

irrespective of machine speed or foundation is proposed. The proposed technique is expected 

to reduce the complexity and subjectivity associated with faults diagnosis at individual 

machine speed and foundation, which is often characterised by the appearance of several 

features. The study also compares the results of the diagnosis features computed using the 

earlier and improved composite higher order spectra approaches. Hence, detailed descriptions 

of the composite spectra computations, experimental rigs, vibration experiments with 

different faults, signal processing and the results of the proposed unified PCA-based faults 

diagnosis technique are presented here. 



 
 

2. Composite Spectra Computations 

The computational approaches for the composite spectra based on both the earlier [27-28] 

and the proposed improved [56] methods are also described here.  

 

2.1 Earlier Method 

The earlier proposed method for computing the composite spectrum (CS) of a rotating 

machine from which vibration measurements were collected from “b” number of bearing 

locations is [27]; 
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where     
      and     

       are respectively the coherent composite Fourier Transformation 

(FT) and its complex conjugate for the rth segment of the measured vibration data from “b” 

bearing locations at frequency,   . ns represents the number of equal segments used for FT 

computation. Hence,     
      is thus computed as [27]; 
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In Equation (2),    
     

  , ...,        
  respectively denote the coherence [57] between 

bearings1-2, 2-3, …, (b-1)-b (where b = 1, 2, ..., b). Also,          

                

      .....  

 
             

   

      respectively denote the coherent cross-power spectrum between bearings 

1-2, 2-3, …, (b-1)-b, which was computed as [27]; 
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where q = 1, 2, ..., (b-1). 

It is evident from Equations (2)-(3) that in the earlier method of CS computation, all the 

phase information at the intermediate measurement locations will be lost. This is due to the 

cross power spectrum density (CSD) approach adopted for the earlier data combination 

process. 

 

The composite bispectrum (CB) is computed as [28, 58-59]; 
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Through the application of a similar computational concept as the CB [28], the composite 

trispectrum (CT) [58-59] can be computed as; 
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Where each bispectrum [60-62] component represents the combination of two frequencies 

(with each possessing amplitude and phase information),    and    with a third frequency 

      which equals the sum of the first two for a signal. Also, each trispectrum [19-24] 

component represents the combination of three frequencies (with each possessing amplitude 

and phase information),   ,    and    with a fourth frequency             that equals the 

sum of the first three for a signal. It is also vital to note that if the frequencies   ,    and    

are equivalent to the  th,  th and  th harmonics of the vibration response at the rotor RPM 

(1x), then the CB and CT components defined in Equations (4)-(5) can also be referred to as 

    and     . 

 

 



 
 

2.2 Improved Method 

The improved CS is also based on CSD, but has been extended to several signals (instead of 

just two signals applied in the earlier method), called the poly-Coherent Composite Spectrum 

(pCCS). Unlike the earlier method of data combination described in Section 2.1, the 

improved computational approach (i.e. pCCS) retains both amplitude and phase information. 

It is therefore anticipated that this feature (amplitude and phase) retention capability of pCCS 

will lead to better representation of the entire machine dynamics. Hence, the improved CS is 

defined as [56]; 
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where,   
     ,   

     ,   
     ,   

     , ....,       
      and   

      respectively denote the FT 

of the rth segment at frequency    of the vibration responses at bearings 1, 2, 3, 4, ...., (b-1) 

and b. Similarly,    
 ,    

 ,    
 , ....,        

  respectively denote the coherence [57] between 

bearings 1-2, 2-3, 3-4, …, (b-1)-b.           is the poly-Coherent Composite Spectrum 

(pCCS) at frequency,   . 

The CB and CT have also been introduced based on the improved CS [56], and are 

respectively defined as; 
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In Equations (7)-(8),      
  is the poly Coherent Composite Fourier Transformation (FT) for 

the rth segment of the measured vibration data from “b” bearing locations at frequency,   , 

which was computed as [56]; 
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3. Proposed Faults Diagnosis Method 

The large number of data usually generated from the computation of CB and CT sometimes 

makes visual diagnosis very difficult and subjective. The analysis becomes even more 

complicated when dealing with multiple identical (similar components and configurations) 

rotating machines with slightly different dynamic characteristics (due to variations in their 

foundation flexibilities) and operating at different speeds. This perhaps explains why some 

researchers have explored other avenues for simplifying rotating machines FD, through the 

application of pattern classification tools such as PCA. As previously highlighted in Section 

1, PCA [50] is a well-known statistical analysis technique, capable of significantly reducing 

the dimensionality associated with originally measured data sets through the definition of 

new variables, often referred to as the principal components (PCs). The first few of the 

computed PCs usually offer the maximum representation of the variability that exists in the 

originally measured data [53].  

Similarly, the current study proposes a simplified and unified PCA-based FD technique, that 

will be capable of identifying changes in the operating conditions of several identical ‘as 

installed’ rotating machines, irrespective of the variations in their foundation flexibilities 

and/or operating speeds. Hence, the proposed PCA-based FD technique could eliminate the 

need for conducting individual analysis (which is often the case in practise) for several 

identical ‘as installed’ rotating machines with different foundation flexibilities and speeds. 

Figure 1 provides a flowchart that illustrates the different steps of the proposed FD technique. 

The concept of PCA is briefly discussed in Section 3.1, while Section 3.2 provides details of 

the computational approach for the proposed FD technique. 

 

3.1 Concept of PCA      

PCA is a multivariate statistical analysis technique that is capable of reducing large 

interrelated data sets to smaller numbers of variables, without necessarily compromising the 

variance that exists in the original data set. The fundamental concept of PCA revolves around 

the projection of data sets onto a subspace of lower dimensionality [63]. PCA explains the 



 
 

variance that exists within an original data matrix that is characterised by n1 observations 

(e.g. number of vibration measurements recorded from a typical rotating machine as part of 

continuous condition monitoring activities) and n2 variables (e.g. CB and CT faults diagnosis 

components) in terms of an entirely new set of variables, the PCs.  

The concept of PCA has existed for decades, with the initial proposal of the technique dating 

back to 1933 by Hotelling [64], where it was used for analysing problems related to the 

statistical dependency between variables in multivariate statistical data obtained from 

examination scores [63-64]. From then onwards, the relevance and applications of PCA has 

significantly grown across various disciplines including process monitoring, statistical 

analysis and faults diagnosis [63-67]. Kresta et al. [68] provides a comprehensive 

introduction as well as a review of the applications of PCA in process systems engineering, 

while the studies by Morison [69] and Jackson [64] respectively offered information on the 

complete treatment of the PCA algorithm. Hence, for the purpose of this study, it suffices to 

just highlight that PCA was performed and the original data set is eventually expressed as a 

linear combination of orthogonal vectors along the directions of the PCs.  

Let’s consider that n1 number of independent samples (also referred to as observations) of n2 

random variables (also referred to as features) which can be represented by an n1 x n2 matrix, 

F. The computation of the PCs of F reduces to the solution of an eigenvalue-eigenvector 

problem [63, 70], 

                                        (10)   

In Equation (10),    is the covariance matrix of F. A is the orthogonal matrix whose m
th

 

column is equivalent to the m
th

 eigenvector of    corresponding to the m
th

 largest eigenvalue 

of   .   is a diagonal matrix, whose m
th

 diagonal element is the m
th

 largest eigenvalue of   . 

In general as many as n2 PCs can be computed. However, it is expected that the vast majority 

of variation in F will be accounted for by t PCs, where     .                

 In the current study, PCA is applied for examining the relationship between several 

experimentally simulated rotating machine conditions. The features used are comprised of 

computed vibration-based condition monitoring indicators for rotating machines under 

different states of health. Diagnosis through the application of many condition monitoring 

(CM) features can be complex and tedious. Hence, for implementing a simplified diagnosis 



 
 

approach, reduction in data dimensionality while retaining correlation among them becomes 

useful. Therefore PCA is used to achieve this objective.  

 

3.2 Computational Approach of the Proposed FD Technique 

Assuming that vibration data were collected from a rotating machine at various speeds, then 

the PCA feature matrix F related to Equation (10) can be mathematically expressed as; 

   

 
 
 
 
 
   
   
 
 
    

 
 
 
 

      (11)   

F is a feature matrix including feature matrices at different speeds,    ,    , ...,    , where   , 

  ,.....,    are the different rotor speeds in RPM. 

 

Let’s now consider a typical rotating machine, from which sets of vibration data were 

separately collected under a number of different operating conditions, say “r” and at a 

particular rotor speed,   . Then the feature matrix     can be similarly defined as; 
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where       ,       ,.....,        are matrices for each of the experimentally simulated cases,   , 

  , ...,    at rotor speed   .  

If “p” number of vibration data sets were collected from a rotating machine under a particular 

machine operating condition (case),   , and at a particular rotor speed   . Then, the feature 

matrix        is computed as;  
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where X1, X2, X3, ...., Xq are individual features for “p” number of observations under a 

particular machine operating condition (case)    and at a rotor speed   . To further enhance 

clarity of the PCA feature matrix shown in Equation (13), consider that    ,    ,      and 

     respectively represent CB and CT components that have been computed using 

Equations (7)-(8) for a particular machine operating condition (  ), for “p” number of 

measured data sets at rotor speed   . Hence, the PCA feature matrix can be similarly written 

as;   
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Now, let’s further assume that faults diagnosis is to be conducted on a particular rotating 

machine with “B” number of flexible support (FS) at rotor speeds   , then Equation (12) can 

be modified thus; 

        

 
 
 
 
 
      
      
 
 

       
 
 
 
 

     (15) 

Hence, if the vibration data were then collected at several machine speeds (  ,   , ...,   ) for 

the same rotating machine with “B” flexible foundation (FS), then; 

     

 
 
 
 
 
      
      
 
 

       
 
 
 
 
 

     (16) 

 



 
 

Finally, if several identical rotating machines with different flexible foundations    ,    , ..., 

    exists, and vibration measurements were conducted on each of them at rotor speeds   , 

  ,.....,   .  Then the multiple speeds and multiple foundations PCA feature matrix can be 

written as;  

   

 
 
 
 
 

 

   
   
 
 

    
 
 
 
 
 

      (17) 

Once matrix F in Equation (11) is constructed, then PCA is carried out as described in 

Section 3.1. 

 

4. Experimental Example 

It is often noticed in practice that the dynamic characteristics of “as installed” identical 

rotating machines in different locations may slightly vary, owing to differences in the 

flexibilities of their foundations. Hence, the current study attempts to experimentally simulate 

a similar example, through the aid of two rotating rigs with identical components and 

configurations (Figure 2), but differ in foundations (FS1 and FS2). FS1 bearings are mounted 

with 10 mm thick bright mild steel threaded bars, while FS2 bearings are mounted using 6 

mm thick bright mild steel threaded bars (Figure 3). A full description of the experimental rig 

and faults simulation is provided in Section 4.1.   

 

4.1 Rig and Faults Simulation 

Since both experimental rigs (FS1 and FS2) [59] are identical, only FS1 is illustrated here 

(Figure 2). In FS1, two 20 mm diameter mild steel shafts of lengths 1000 mm and 500 mm 

respectively are rigidly coupled together, while the 1000 mm shaft is flexibly coupled to an 

electric motor. Three mild steel balance discs of dimensions 125 mm (external diameter) x 20 

mm (internal diameter) x 15 mm (thickness) were evenly mounted across the entire length of 

the rig. Two balance discs were mounted on the long shaft at 300 mm from the flexible 

coupling and 190 mm from bearing 2 respectively. The third balance disc was then mounted 

on the short shaft at an equal distance of 210 mm from both bearings 3 and 4. The complete 



 
 

assembly (rotor, balance discs, couplings, etc.) is supported by four flange-mounted anti-

friction ball bearings.     

A total of six cases were experimentally simulated on both FS1 and FS2, at three machine 

speeds (20 Hz, 30 Hz and 40 Hz). The reference case is a healthy case that is associated with 

some residual misalignment (HRM), as it was very difficult to obtain a perfectly aligned rig. 

In addition to the HRM case, bent shaft (BS), shaft crack (SC), loose bearing (LB), shaft 

misalignment (SM) and shaft rub (SR) cases were also simulated on both rigs at all the 

considered machine speeds. The BS case was simulated by using a fly press to create an axial 

run-out of 3.4 mm at the centre of the 1000 mm shaft. To study the SC case (Figure 4(a)), a 

crack of 4 mm (depth) and 0.25 mm (width) was created on the 1000 mm shaft using the wire 

electric discharge machining (EDM) process. As it was very unlikely for the created crack to 

breath, a 0.23 mm mild steel shim was inserted in the crack to cause breathing. The LB case 

(Figure 4(b)) was simulated by loosening the threaded bar fixation nuts on bearing 3. A slight 

misalignment of 0.4 mm in the vertical direction near bearing 1 was used to simulate the SM 

case (Figure 4(c)). For the SR case (Figure 4(d)), two Perspex blades (i.e. one at the top and 

the other at the bottom of the 1000 mm shaft respectively) were mounted at a distance of 275 

mm from bearing 1.  

On both FS1 and FS2 rigs, vibration data were measured under of 36 scenarios (i.e. 18 

scenarios each for FS1 and FS2 respectively), where each scenario corresponds to specific 

rig/case/speed combinations (e.g. FS1/HRM/20 Hz). In order to enhance understanding, 

details of all the considered scenarios are provided in Table 2. Furthermore, 20 sets of 

measured vibration data (a total of 120 sets of measured vibration data per experimental rig) 

were collected through the aid of four diagonally mounted PCB accelerometers (one at each 

bearing location) for further processing through a computational code developed in 

MATLAB. 

 

4.2 Experimental Modal Analysis 

Experimental modal analysis is a widely accepted technique for design improvements and 

useful life enhancement of ‘as installed’ rotating machines and structures [71-72]. The 

knowledge of the modal properties of a machine significantly enhances the understanding of 

the dynamic behaviour of that machine. Similarly, the first few natural frequencies (by 



 
 

appearance) of both FS1 and FS2 rigs have been experimentally identified using the impact-

response method. During the experiment, both FS1 and FS2 were excited at two locations 

with an instrumented hammer (PCB) in both vertical and horizontal directions. The first 

excitation location was at 209 mm from both balance discs 1 and 2 (i.e. exactly midpoint of 

the 1000 mm shaft), while the second excitation location was at 44 mm from bearing 3 and 

disc 3 (Figure 5). During the excitation of FS1 and FS2, the dynamic responses were 

measured with a PCB accelerometer installed on bearing 2. Table 1 provides a summary of 

the identified natural frequencies, while Figures 6-7 show the frequency response function 

(FRF) amplitude and phase for FS1 and FS2 in both vertical and horizontal directions. 

 

 4.3 Signal Processing 

The CB and CT (computed as per Equations (7)-(8)) of the 20 sets of measured vibration data 

for each of the 36 scenarios (Table 2) have been post-processed with a MATLAB code using 

95% overlap, frequency resolution (df) = 0.6104 Hz, sampling frequency (fs) = 10000 Hz, 

number of FT data points (N) = 16384 and 148 number of averages. Typical CB and CT plots 

of measured vibration data for four scenarios (scenarios 1, 10, 19 and 28 in Table 2) are 

shown in Figures 8-9. It can be observed that a distinction exists between the reference 

(scenarios 1 and 19) and fault (scenarios 10 and 28) scenarios, and this observation was fairly 

consistent for all other scenarios. In the CB plots (Figure 8), the reference scenarios (Figures 

8(a)-(b)) only contained relatively small B11 and B12=B21 CB components, due to inherent 

residual misalignments. On the contrary, the fault scenarios (Figures 8(c)-(d)) were 

associated with several CB components (e.g. B11, B12=B21, B13=B31, B33, etc.) of significantly 

higher amplitudes than observed in the reference scenarios.  

It is vital to note that the amplitude of each CB peak in Figure 8 is a function of two 

frequency components, usually plotted in the xyz orthogonal axes, with axes x and y 

respectively representing frequencies, while the amplitude of the CB component is plotted on 

the z axis. For instance, the appearance of a B11 CB peak indicates that the pCCS frequency 

components    and    (plotted on both x and y orthogonal axes) shown in Equation (7) are 

both equal to the machine speed (also known as 1x). Therefore, the B11 CB peak is a 

representation of the relation between    (1x),    (1x) and       (2x). Similarly, each 

B12=B21 CB peak indicates that the pCCS frequency components    and    shown in Equation 

(7) are respectively equal to 1x machine speed and its second harmonic (2x) or vice versa, 



 
 

while       is equivalent to their sum (3x). Hence, each B12=B21 CB peak shows the relation 

between 1x, 2x and 3x frequency components. Similarly, the CT plots (Figure 9) for the 

reference (scenarios 1 and 19) and fault (scenarios 10 and 28) scenarios are different. The 

reference scenarios contain only T111 CT component (due to some residual misalignment 

associated with the scenario), while the fault scenarios contained T111, T113=T131=T311, etc. 

This observation was also consistent for all the 36 experimentally simulated scenarios.  

Unlike the CB, each CT component is a function of three pCCS frequency components, 

therefore requiring a 4-dimensional plot. In this study, the spherical plot method earlier 

suggested by Collis et al. [20] is adopted. In this method, the appearance of individual 

spheres at certain locations signifies the coupling that exists between the pCCS frequency 

components at that location. Furthermore, the size of each sphere is a representation of the 

amplitude of that particular CT component. Hence, T111 CT component in Figures 9(a)-(b) is 

a representation of the relation between    (1x),    (1x),     (1x) and          (3x). Also, 

each T113=T131=T311 CT component in Figures 9(c)-(d) indicates that the pCCS frequency 

components   ,    and    shown in Equation (8) are respectively equal to 1x, 1x and 3x (third 

harmonic of the machine speed) or vice versa, while          is equivalent to their sum 

(5x). 

 

5. Faults Diagnosis 

It is clear from Figures 8-9 that the CB and CT plots provided distinct features for each of the 

experimentally simulated scenarios. However, faults diagnosis based on visual observation of 

the CB and CT plots alone can be extremely difficult and sometimes subjective. This is due 

to the appearance of several components in the plots. Hence, the core of the current study is 

focussed on eliminating or significantly reducing such subjectivities, through the application 

of the proposed unified faults diagnosis technique described in Section 3.  

 

5.1 Data Preparation 

The proposed faults diagnosis process was simplified by preparing the feature matrix in 

stages. Firstly, a matrix was constructed for a particular flexible foundation at a single 

machine speed, for instance        . The 20 sets of vibration measurements for each 

scenario in Table 2 were classified as observations (i.e. rows). Each observation was then 



 
 

used to compute two CB (B11 and B12) and two CT (T111 and T112) components amplitudes as 

per Equations (7)-(8). The computed CB and CT components then represented the features of 

the matrix (columns). Hence, a matrix containing 4 features (B11, B12, T111 and T112) and 120 

observations (20 observations per scenario) was obtained, as detailed by Equation (18). The 

second stage is concerned with faults diagnosis under multiple machine speeds for a single 

setup (e.g.                  ), where the feature matrix is characterised by 12 features (i.e. 2 

CB and 2 CT features at each machine speed) and 120 observations. The third and final stage 

of the data preparation involves the harmonisation of all the features obtained from the 

second stage for each machine setup. At this stage, a feature matrix containing 120 

observations and 24 features (i.e. 12 features each for FS1 and FS2) is constructed. During 

each of the stages, the constructed feature matrix is eventually fed into a PCA algorithm that 

computes the PCs. Since maximum representation can be obtained from the first few PCs, a 

graphical plot of the first and second PCs (Figure 10) is then used for classification of the 

different scenarios. 

 



 
 

         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              

                                

                              
                                

 
 

                

              
              

 
 

               
              
              

 
 

               
              
              

 
 

               
              

              

 
 

               

              
              

 
 

               

 
 

                

              
              

 
 

               
              
              

 
 

               
              
              

 
 

               
              

              

 
 

               

              
              

 
 

               

 
 

                 

               
               

 
 

                
               
               

 
 

                
               
               

 
 

                
               

               

 
 

                

               
               

 
 

                

 
 

                 

               
               

 
 

                
               
               

 
 

                
               
               

 
 

                
               

               

 
 

                

               
               

 
 

                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (18) 

 

5.2 Results and Discussion 

Results of the proposed faults diagnosis method for multiple speeds on FS1 and FS2 rigs are 

respectively shown in Figures 10(a)-(b). With the exception of the slight overlap between the 

scenarios associated with HRM and SM machine conditions (cases), there was a good 

separation between all the experimentally simulated cases. However, this overlap was 

adjudged to be due to the low severity of induced misalignment (i.e. 0.4 mm) as well as the 

presence of residual misalignment in the HRM case. However, the results of the multiple 

speeds and multiple foundations diagnosis shown in Figure 10(c) provided an even better 

separation for all scenarios, although a relatively small amount of overlap is still evident 

between the scenarios associated with HRM and SM cases. Hence, the proposed faults 



 
 

diagnosis technique may be useful for significantly reducing the rigour associated with 

conducting separate analysis for each machine, and at different speeds.   

 

5.3 Comparison with Earlier Method 

Figure 11 shows the results of similar analyses conducted using CB and CT components 

amplitudes that were computed based on the earlier method (Equations (4)-(5)). Although 

appreciable separation was also achieved using the earlier method, however, significantly 

better results were obtained with the improved method. 

      

6. Practical Application of the Proposed FD Technique  

In practice, VFD of rotating machines often involves the analysis of measured vibration data 

that represent the state(s) of a particular machine or group of machines. These measured 

vibration data are often acquired after pre-defined machine operation periods (also referred to 

as condition monitoring interval), so as to determine whether a change in machine health has 

occurred. In order to examine the ability of the proposed technique to diagnose machine 

faults on a continuous basis, three additional faults diagnosis scenarios (FDS) were 

considered. The first two faults diagnosis scenarios (FDS1 and FDS2) consider that 

additional vibration measurements were collected from FS1 and FS2 rotating machines with 

cracked shafts at 30 Hz machine speed (i.e. scenarios 8 and 26 in Table 2). The newly 

acquired vibration data were then used to compute CB (B11 and B12) and CT (T111 and T112) 

components as per Equations (7)-(8) for FDS1 and FDS2. The computed CB and CT 

components were then added to the already existing PCA feature matrices described in 

Equation (13). A combination of the above additional scenarios (FDS1 and FDS2) is also 

considered for the combined approach (multiple speeds and multiple foundations). The 

predictions are once again consistent as shown in Figure 12.  

 

7. Concluding Remarks 

The paper proposes a novel vibration-based fault diagnosis (VFD) technique for detecting 

and distinguishing common rotor-related faults in rotating machines, which is independent of 

the machine foundation flexibility and operating speed. The proposed technique aims to 



 
 

significantly minimise the rigour and complexities associated with the common practise of 

performing separate vibration-based analysis for identically configured ‘as installed’ rotating 

machines on industrial sites (owing to variations in the flexibilities of foundations and 

operating speeds). In this study, several sets of vibration data were collected from two 

identical rotating rigs with different foundation flexibilities and at various machine speeds, 

through the aid of only four vibration sensors (one per bearing location). For each of the 

experimental rigs, the measured vibration data under each machine operating condition and 

speed were then used to independently compute composite bispectrum (CB) and composite 

trispectrum (CT) components. The computed CB and CT components were then used as the 

features of a principal component analysis (PCA) based algorithm, so as to develop the 

multiple-speeds and multiple-foundations faults diagnosis technique. The current research 

presents an integrated VFD method for rotating machines, and further emphasizes the 

relevance of data combination approaches in the minimisation of the level of subjectivity and 

human judgements associated with popular techniques such as ordinary amplitude spectra. 

Hence, the proposed VFD technique presents the potential to significantly enhance 

maintenance and overall reliability of industrial rotating machines through these summarised 

advantages: 

 Usefulness: with the proposed VFD technique, diagnosis results from one rotating 

machine are directly applicable to another identically configured rotating machine 

despite variations in foundation flexibilities and operating speeds. This approach 

aims to eliminate the common practise of conducting separate analysis for 

individual rotating machine at different speeds. Hence, historical data and 

diagnosis results from one rotating machine could be used for faults detection on 

an identical ‘as installed’ rotating machine.   

 Computational time: in condition monitoring, the computational duration of any 

chosen technique is very vital, as it may significantly influence the ability to 

prevent the occurrence of catastrophic machine failures. The proposed VFD 

technique applies CB and CT components as features in a PCA-based algorithm, 

which implies that a single composite spectrum is adequate for describing the 

entire machine dynamics. This significantly reduces the computational rigour and 

time, when compared to the common practise of computing different spectra at 

individual vibration measurement locations.  



 
 

 Interpretation: interpretation of the results obtained from the proposed VFD 

technique is quite simple and does not require the services of an expert, since the 

classification of different machine conditions are very visible. 

 Practical application: for any new machine faults diagnosis, the computed features 

from measured vibration data must be fed into the PCA database. Upon the 

introduction of the new data, analysis will then be performed to observe the 

classification of new machine state (healthy or faulty). This diagnosis approach is 

already demonstrated in the present study.  

Furthermore, a comparison of the diagnosis results from CB and CT components computed 

using the earlier CS method and the improved poly coherent composite spectra (pCCS) was 

also conducted, and it was clearly observed that CB and CT components derived from the 

pCCS method offered better discrimination between the different experimentally simulated 

scenarios. In general, the proposed VFD technique is versatile, non-intrusive and 

computationally efficient, which therefore enhances its potential for usage in industries. 

However, in order to further confirm the robustness and reliability of the technique, the 

investigation of more faults with different severities are planned for the near future. 
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Figure 1 Proposed faults diagnosis process flow chart 

 

 

 



 
 

 

Figure 2 Experimental rig  

 

 

Figure 3 Different rig supports [59]. (a) FS1, (b) FS2 

 

 

 

 



 
 

 

Figure 4 Experimentally simulated cases [58]. (a) SC, (b) LB, (c) SM, (d) SR 

 

 

 

Figure 5 Experimental setup for modal test 

 



 
 

 

Figure 6 Typical FRF amplitude and phase plots for FS1, measured at bearing 2 (a) vertical 

direction (b) horizontal direction 

 

 

Figure 7 Typical FRF amplitude and phase plots for FS2, measured at bearing 2 (a) vertical 

direction (b) horizontal direction 

 

 

 

 

 

 

 

 

 

 



 
 

   

 

      

Figure 8 Typical CB plots for FS1 and FS2 at 20 Hz. (a) HRM (FS1), (b) HRM (FS2), (c) 

LB (FS1), (d) LB (FS2) 

 

     

 

    

Figure 9 Typical CT plots for FS1 and FS2 at 20 Hz. (a) HRM (FS1), (b) HRM (FS2), (c) 

LB (FS1), (d) LB (FS2) 



 
 

  

 

 

Figure 10 Proposed faults diagnosis, (a) Multiple speeds - FS1 setup (b) Multiple speeds - 

FS2 foundation (c) Multiple speeds and multiple foundations 
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Figure 11 Faults diagnosis with earlier CB and CT method, (a) Multiple speeds - FS1 setup               

(b) Multiple speeds - FS2 setup (c) Multiple speeds and multiple foundations 
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Figure 12 Continuous faults diagnosis, (a) Multiple speeds - FS1 setup (b) Multiple speeds - 

FS2 foundation (c) Multiple speeds and multiple foundations 
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Table 1 Experimentally identified natural frequencies for FS1 and FS2 

Experimental Set-up 
Natural Frequencies (Hz) 

1
st
  2

nd
  3

rd
  4

th
  

FS1 50.66 56.76 59.2 127.6 

FS2 47 55.54 57.98 127 
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Table 2 Experimental scenarios for FS1 and FS2 

Rig Speed  

Scenarios 

FS1 FS2 

HRM BS SC LB SM SR HRM BS SC LB SM SR 

20 Hz 1 4 7 10 13 16 19 22 25 28 31 34 

30 Hz 2 5 8 11 14 17 20 23 26 29 32 35 

40 Hz 3 6 9 12 15 18 21 24 27 30 33 36 

 


