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A novel trailing edge noise control technique based on upstream manipulation of large 

coherent turbulent structures using two dimensional surface treatments has been proposed 

and tested. To demonstrate the capabilities of the proposed trailing edge noise control 

technique, a long flat-plate model, equipped with several streamwise and spanwise surface 

pressure microphones, has been designed and built. Flow and noise measurements have been 

carried out for a variety of surface treatments, with different geometrical patterns and 

dimensions. The flow behavior downstream of the surface treatment is also studied by 

employing a single probe hotwire anemometer. Results have shown that the use of such surface 

treatments can lead to around 8 dB reduction of the surface pressure fluctuations near the 

trailing edge. More importantly, it has been observed that the spanwise coherence can be 

significantly reduced over a wide range of frequencies, implying that the large coherent 

turbulent structures have been successfully removed from the boundary layer. Furthermore, 

the unsteady surface pressure and boundary layer velocity cross-correlation studies have 

shown that the correlation between the turbulent structures within the outer region of the 

boundary layer and the unsteady surface pressure exerted on the surface can be significantly 

reduced by using treatments with height of only 10% of the boundary layer thickness.  

Nomenclature 

c = flat plate chord, m 

𝑑, 𝑑+ = pinhole diameter, made dimensionless with wall unit  

f = frequency, Hz 

H = fence height, mm 

p′ = fluctuating surface pressure, Pa 

t = trailing edge thickness, m 

𝑈c = convection velocity, m/s 

𝑢rms = root mean square of velocity fluctuations, m/s 

𝑈τ = Wall-friction velocity, m/s 

𝑈∞ = free stream velocity, m/s 

x = streamwise distance from the flat plate leading edge, m 
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ϕ = surface pressure power spectral density, Pa2/Hz 

Λp,3 = spanwise length scale, m 

δ = boundary-layer thickness, m 

δ* = boundary-layer displacement thickness, m 

Δz = spanwise separation between microphones, mm 

ε = streamwise separation between microphones, mm 

𝛾𝑝
2 = coherence of Surface pressure fluctuations 

ʋ = kinematic viscosity, 𝑚2/𝑠 

τ = time delay, s 

𝜆ℎ = convected hydrodynamic wavelength, m 

TE = trailing edge  

PSD = Power Spectral Density 

SPF = Surface pressure fluctuation 

 

I. Introduction 

 irfoil self-noise is produced due to interaction of unsteady flow, usually in the form of fluid turbulence, with the 

surfaces of the airfoil. There are a variety of specific noise generating components associated with airfoil self-

noise that are concisely summarized in Ref. [1]. Turbulent boundary layer trailing edge (TBL-TE) broadband noise is 

one of the airfoil self-noise mechanisms that takes place at high Reynolds numbers when turbulent boundary layers 

develop over most of the airfoil. As the vortical disturbances in the turbulent boundary layer convect over the trailing 

edge, they are partially converted into acoustic waves. The physical process of trailing edge noise was described by 

Roger and Moreau [2] from a point of view of the force balance on the eddies. Over the recent decades, trailing edge 

noise has received considerable research attention in the form of theoretical, computational and experimental research 

works. This is due to the importance of the subject in a wide range of applications such as aircraft, underwater vehicles, 

wind turbines, fans, rotors, propellers, etc. [2–5]. 

Numerous theoretical trailing edge noise models have been developed over the past decades, a summary of which 

can be found in Ref. [2]. There are two basic approaches for the prediction of far field trailing edge noise: formulations 

based on the Lighthill [6] acoustic analogy that need hydrodynamic velocity field around the TE, or based on linearized 

hydroacoustic methods that use the induced hydrodynamic pressure field at some distance upstream of the TE.  An 

example of the first approach is the work of Ffowcs Williams and Hall [7], applied by Wang and Moin [8]. However 

the determination of the true turbulent source from Lighthill’s equation is experimentally difficult, as it requires 

knowledge of the entire turbulent velocity field as a function of space and time. On the other hand, unsteady surface 

pressure in the vicinity of the airfoil trailing edge can be easily measured by using flush-mounted unsteady pressure 

transducers and therefore the majority of noise prediction methods for trailing edge have been formulated based on 

surface pressure fluctuations, including works done by Chandiramani [9], Chase [10], Amiet [11] and Howe [12]. In 

this approach, the surface pressure is used as an equivalent acoustic source. According to Amiet’s [11] and Howe’s 

[12] formulations, the frequency dependent spanwise length scale of the SPFs, defining the efficiency of scattering at 

the TE, and convection velocity in the T.E. region are crucial quantities in the determination of the far-field trailing 

edge noise. Therefore, reducing surface pressure spectra, spanwise turbulent length scale and the eddy convection 

velocity in the T.E. region will reduce the trailing edge noise. 

To reduce the turbulent boundary layer trailing edge noise, various passive airfoil noise control methods have been 

developed, such as trailing edge serrations [5, 13–25], trailing edge brushes [26-28], porous trailing edge [29-33], 

airfoil shape optimization [34, 35], trailing edge morphing [36, 37] and recently upstream surface treatment [38]. 

Sawtooth serrations appeared initially as means to reduce the exhaust noise of a jet engine [39]. Then, it was shown 

both analytically [13–17] and experimentally [5, 18-25] that trailing edge noise levels can be reduced by modifying 

the trailing edge geometry by serrations so that flow disturbances are scattered into sound with reduced efficiency. In 

fact the addition of trailing edge serrations lead to a reduction in the effective spanwise length of the trailing edge. 

Detrimental effects could occur when serrations were not aligned with the flow [18]. Flexible trailing-edge brushes 

have demonstrated a significant noise-reduction potential in wind-tunnel tests on flat plates and on a 2-D airfoil. 

Porous trailing edges can also significantly reduce the sound pressure level at low to mid frequencies. However, an 

increase in noise at higher frequencies was observed and was attributed to surface roughness effects. While effective, 

brush and porous edge attachments may have practical limitations, namely the fine pores or spaces between brushes 

are prone to collect dirt and insects making them ineffective. Airfoil shape optimization such as modification of the 

thickness or the curve gradient can significantly affect the flow field around the airfoil, leading to improvement in 
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both the aerodynamic and aeroacoustic performance of the airfoil. Trailing-edge morphing can also effectively reduce 

the airfoil trailing edge noise over a wide range of flow speeds and angles of attack.  

In 2014, Clark et al. [40] used a series of canopies, inspired by the owl’s downy coating, over the rough surface to 

suppress roughness noise.  All canopies were reported to have a strong influence on the surface pressure spectra, and 

attenuations of up to 30 dB were observed. This development represented a new passive method for roughness noise 

control. To investigate the applicability of this method in reducing trailing edge noise, Clark et al. [38], in 2015, tested 

over 20 variants of surface treatments by performing aeroacoustic wind tunnel measurements on a tripped DU96-

W180 airfoil. The treatments were installed directly upstream of the trailing edge to modify the boundary layer 

turbulence prior to interacting by the edge. Compared to the untreated airfoil the treatments were found to be effective, 

providing broadband attenuation of trailing edge noise of up to 10dB. Furthermore aerodynamic impact of the 

treatment appeared to be minimal. 

Although the effectiveness of upstream surface treatments as a new passive trailing edge noise control method was 

recently investigated by Clark et al. [38], the mechanisms responsible for the noise control has not been addressed. In 

the present study, the effects of surface treatments on surface pressure power spectral density, the frequency dependent 

spanwise length scale and the convection velocity in the T.E. region of a flat plate are investigated. Furthermore, 

velocity measurements near the trailing edge and the simultaneously measured unsteady velocity and surface pressure 

data have provided further information about the trailing edge noise reduction mechanisms. The experimental layout 

is described in section II and the main outcomes of the investigation are presented in section III.  

II. Experimental setup 

A. Wind tunnel and model  

The experiments were carried out in an open  subsonic wind tunnel of Yazd University with a test section size of 

46 × 46 × 240 cm. Boundary layer correction is achieved by corner fillets extending the length of the contraction cone 

and the working test section, to ensure a uniform longitudinal pressure in the working section. At the maximum speed 

of 25 m/s the free stream turbulence intensity has been measured to be less than 0.3%.The wall-pressure fluctuations 

measurements are often carried out in an acoustically quiet wind tunnel to avoid noise contamination due to the wind 

tunnel background noise. In the present wind tunnel, the centrifugal forward blades type fan creates low broadband 

noise.  

 The flat plate used in the present work has a chord length of 580 mm, a span of 456 mm and a thickness of 8 mm. 

The leading edge of the model is made to be elliptical with a semi-major axis of 12 mm and a semi-minor axis of 4 

mm while the trailing edge is asymmetrically beveled at an angle of 12 ̊ to cause attached flow on both sides. The 

model is composed of a main body and a detachable trailing edge part, which allows spanwise microphones to be 

installed horizontally inside the airfoil trailing edge section. The trailing edge plate is attached to the main body with 

two side plates. The thickness of the trailing edge is 0.4 mm  and therefore the narrowband blunt trailing edge vortex 

shedding noise is negligible (𝑡 𝛿∗⁄ < 0.3) for all free-stream velocities considered in this study [41]. The experiments 

were carried out at zero angle of attack and three different free stream velocities, 𝑈∞ = 10, 15, and 20 m/s 

corresponding to Reynolds numbers of 𝑅𝑒𝑐 = 3.87 × 105, 5.8 × 105, and 7.73 × 105, based on the plate chord 

length. The blockage ratio of the flat plate model is less than 2 % for all the experiments and hence the wind tunnel 

walls effects on the measured quantities is negligible [42]. To ensure fully developed turbulent boundary layer, the 

model was tripped using a rough trip strip which is placed 5 to 10 percent of the cord length downstream of leading 

edge on upper surface. The detailed CAD view of the flat plate model is shown in Fig. 1. 
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Fig. 1.The flat plate model with a detachable trailing edge, surface treatment and side plates. 
 

 B. Instrumentation 

The FG-23329-P07 miniature microphones, manufactured by Knowles Acoustics, are employed for unsteady 

surface pressure measurements. Microphones dimensions are 2.5mm in diameter, 2.5 mm height and with a circular 

sensing area of 0.8 mm. The same microphones had been used before in other experiments [43, 44] and have shown 

to be reliable for the frequencies considered in this study. Microphones are embedded in the flat plate under a pinhole 

mask of 0.4 mm diameter in order to decrease attenuation effects at high frequencies due to the finite size of the 

microphones sensing area. All pinholes are created with drilling the flat plate surface using an accurate drill machine. 

Two techniques have been used to embed microphones in the flat plate. At positions far from trailing edge the flat 

plate is thick enough to embed microphones vertically under the pinhole. Near the trailing edge the microphones have 

been installed inside the flat plate parallel to the surface (i.e. horizontally). In this arrangement, each microphone was 

linked to its pin hole on the surface by a horizontal transmission tube. A schematic of both arrangements is depicted 

in Fig. 2. 

 

 

Fig. 2. Illustration of both microphones installation: under pin-hole configuration and with horizontal 

transmission tube configuration. 

 

Many analytical and experimental investigations were conducted to ensure that the resonant frequencies associated 

with the selected arrangements shown in Fig. 2 are outside the frequency range of interest. Results showed that the 

resonant frequencies were greater than 40 kHz and 16 kHz for first and second arrangement, respectively. The 

frequency response (amplitude and phase) of both arrangements are shown in Fig. 3. 
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Fig. 3. Frequency response of microphones (a) under pin-hole configuration (microphone No. 7), (b) with 

horizontal transmission tube configuration (microphone No. 4). 

 

C. Layout of surface microphone array 

The Layout of the surface microphone arrays is depicted in Fig. 4. The locations of the pinholes on the upper 

surface of the flat plate are summarized in Table 1. A total number of 10 microphones are arranged in the form of  L-

shaped array on the surface of flat plate. A set of microphones are distributed in the streamwise direction from  

x/c = 0.85 to 0.976 to provide information on the convection velocity of the turbulent eddies. Another set of 

microphones are distributed along span to measure the spanwise length scale. The space between surface microphones 

is not equal which leads to a non-redundant population of sensor spacing and maximizing the number of spatial lags 

available in a cross-correlation comparison.  

Many investigations have been carried out to study the important parameters of these arrangements, including the 

pinhole diameter, the distance of the spanwise microphones from the trailing edge and spanwise spacing of the 

pinholes [7, 45-52].The finite size of the pressure transducers lead to attenuation of the wall pressure fluctuations 

spectral levels at high frequencies as reported in references [46-49]. In fact, the pressure measured by transducers of 

finite size is the average pressure applied across the transducer sensing area and therefore pressure fluctuations smaller 

than the transducer sensing area are spatially integrated, and thereby attenuated. In order to resolve this issue usually 

a pinhole mask is used to decrease the effective sensing area of the pressure transducer. On the other hand, Bull and 

Thomas [50] reported that the discontinuity in the wall due to the presence of a pinhole disturbs the flow and leads to 

a significant error in the measured wall pressure spectrum at high frequencies. However, the error due to the presence 

of the pinhole can be eliminated by reducing the pinhole diameter [51, 52]. The ratio of pinhole diameter, d, to the 

wall unit, 𝜐 𝑈𝜏⁄  (𝑑+ = 𝑑𝑈𝜏 𝜐⁄ ), determines whether or not the attenuation is significant. Schewe [47] concluded that 

the condition 𝑑+ < 19 is sufficient for the proper capturing of all essential wall pressure fluctuations. Gravante et al. 

[48] reported that for the maximum allowable non-dimensional sensing diameter to avoid spectral attenuation at high 

frequencies is in the range 12 < 𝑑+ < 18. In the present work, a pinhole mask with a diameter of 0.4 mm is used to 

reduce spatial averaging. Therefore 𝑑+ is in the range of 12 ≤ 𝑑+ ≤ 23 for the free stream velocities, 𝑈∞,  ranging 

from 10 to 20  𝑚/𝑠. Thus, the errors due to the presence of the pinhole and the attenuation effects can be ignored. 

However, the correction suggested by Corcos [46] has been implemented to the data in order to account for any 

possible attenuation effects. 
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Fig. 4. Map of L-shaped surface microphone array. 

 

Table 1. Position of pressure pinholes in the flat plate. 

Microphone number Distance from T.E. (mm) Distance from mid span (mm) 

1, 2, 3, 4, 5 14.0 0.0, 3.2, 7.5, 17, 40 

6,7,8,9,10 31.5, 35, 40.25, 59.5, 87.5 0.0 
 

 

Special care is taken to select the distance of the spanwise microphones from the trailing edge. This distant must 

not be so small that the spanwise length scale Λ𝑝,3(𝜔) and 𝜙(𝜔), which represent the statistics of the incident pressure 

field, be affected by the scattering process at the trailing edge. On the other hand, it must be near to trailing edge to be 

representative of the turbulence properties past the trailing edge. Ffowcs-Williams and Hall [7] and Brooks and 

Hodgson [45] reported that the minimum sensor distance to the TE where scattering effect can be neglected is≈ 𝜆ℎ/2, 

where 𝜆ℎ is the convected hydrodynamic wavelength of interest (𝜆ℎ = 𝑈𝑐 𝑓)⁄ . Therefore, due to this criterion and 

limitation of the minimum thickness at the flat plate TE  for microphone installation, the spanwise pinholes are located 

at 14 mm upstream of the TE (at x/c = 0.976). Therefore, it can be concluded that the measured surface pressure is not 

contaminated by the scattered pressure field above the 250, 375, and 500 Hz corresponding to the free stream 

velocities, 𝑈∞ = 10, 15, and 20 m/s respectively. 

The pinholes in spanwise direction were arranged according to a potential function in order to obtain a good range 

of distances for all pinhole pairs. The minimum and maximum distance between the pinholes are 3.2 mm and 40 mm. 

The minimum distance was limited by the microphone dimensions and the maximum distance is selected based on 

preliminary measurements.  

D. Surface treatments  

In the present study the blade-shaped fence is chosen as the surface treatment for the flat plate. The design 

parameters of the fences are illustrated in Fig. 5. The fences were supported by thin substrates glued to the flat plate. 

The leading and trailing edges of the substrate was faired to the flat plate surface by covering it with 0.1mm thick 

aluminum tape. The surface treatment is placed on the top surface, upstream of the trailing edge, from about 64% to 

82% of the flat plate chord. The profile of the fence leading edge is designed to have the same geometry to that of the 

turbulent boundary layer shape so that the height of fences, before reaching the maximum height, is proportional to 

𝑥4 5⁄  (𝑥 start from fence leading edge). A total number of 9 blade-shaped fences were fabricated using rapid 

prototyping. The detailed geometry parameters of fences is given in Table 1 in terms of the fence height (H), and 

spacing (S).  
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Fig. 5. Blade-shaped fence design parameters. 

 

Table 2. List of surface treatment cases. 
Config. No. 1 2 3 4 5 6 7 8 9 

Height (mm) 4 4 4 8 8 8 12 12 12 

Spacing (mm) 2 4 8 2 4 8 2 4 8 

 

E. Measurement procedure 

 The unsteady pressure measurements were performed with a total number of 10 FG-23329-P07 miniature 

microphones. A tube with a length of 110 mm and a diameter of 10 mm along with a high quality loudspeaker were 

used for the calibration of the microphones. A ¼-inch G.R.A.S. Microphone Type 40BP, calibrated with a G.R.A.S. 

Sound Calibrator Type 42AB, was used as a reference microphone. Calibration results in the laboratory showed that 

the sensitivity of the FG-23329-P07 microphones varied approximately between 20 and 24.1 mV/Pa. To provide a 

transfer function for each microphone, all microphones have been calibrated in-situ with a white noise excitation 

signal over the frequency range of 200 Hz to 20 kHz. The attenuation and possible resonances induced by the 

horizontal transmission tubes used to connect the microphones to the pin-holes on the surface are accounted for by 

this in situ calibration. The method employed in the calibration of the FG-23329-P07 microphones is based on the 

calibration procedure proposed by Mish [53]. The microphones were powered by a 10-channel power module 

(manufactured by the Electronics workshop at the Engineering Department of Yazd University) and the data were 

collected by a 16-channel NI PCI-6023E data acquisition system.  The sampling frequency was fs = 40 kHz, and a 

total of 800,000 samples were recorded over 20 s. The spectral analysis of the recorded data is done by using the 

power spectral density (PSD) function of pwelch in MATLAB with a Hamming window function, 50% overlap and 

a reference pressure of 2 × 10−5 Pa. Reliable and repeatable measurements are achieved for all microphones. 

In order to better understand the flow structure and the energy content of the turbulence structures, several velocity 

measurements have been performed in the boundary layer and in the wake of the trailing edge using a single constant 

temperature hot-wire anemometer. The sensing element of probe is a standard 5μm diameter tungsten wire with a 

length of 1.25 mm. The probe was calibrated both statically and dynamically by a standard Pitot tube and a square 

wave test procedure and all data are low-pass filtered with a suitable cut-off frequency. The probe is traversed in the 

boundary layer or in the wake by using a three axis traverse unit controlled by stepper motors with 0.01 mm accuracy. 

The traverse unit allowed continuous movement in the streamwise (x), spanwise (z) and vertical (y) directions. The 

data were recorded at a sampling frequency of 40 kHz for a sampling time of 10 s. 
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III. Results and Discussion 

Measurements were carried out at zero angle of attack for three different freestream velocities, 𝑈∞ = 10, 15, and 

20 m/s, corresponding to chord Reynolds numbers of 𝑅𝑒𝑐 = 3.87 × 105, 5.8 × 105, and 7.73 × 105 respectively. 

Since measurements at all flow speeds follow the same trend, only the results for 𝑈∞=10 m/s is presented here. For 

all cases the flat plate boundary layers were fully turbulent, having been tripped as described in section II.A. For all 

test cases mentioned in Table 2, unsteady surface pressure and hotwire measurements were made simultaneously. 

As the turbulent flow field around the trailing edge is the source of trailing edge noise, velocity measurements near 

the trailing edge of the flat plate with and without surface treatments (baseline) are studied to gain insight into the 

mechanism by which fences affect flow structure. Figure 6 shows the variation in boundary layer mean velocity profile 

(u/𝑈∞) and turbulent intensity profile (𝑢rms/𝑈∞) measured for the Baseline and treated flat plate at the position of 

microphone No. 4 (x/c = 0.976). As shown in this figure, the mean velocity profiles for all surface treatments differ 

significantly, indicating that the fences alter the downstream flow structures, especially near the wall. Mean velocity 

reduction is observed for all surface treatments compared to the baseline flat plate. Also, it can be observed that the 

maximum amplitude of the turbulent intensity for all surface treatment are significantly larger than the baseline, i.e. 

up to 25% increase for Config. 7 (H=12, S=2) and it occurs at about 𝑦 𝛿⁄ = 0.25. However, the turbulent intensity in 

the vicinity of the wall and also far away from the wall decreases as a result of the fence presence. Variations in the 

boundary layer mean velocity and turbulent intensity profile increases with increasing the fences height or decreasing 

the space between fences.  
 

 
Figure 6. Boundary layer mean velocity and turbulence intensity profiles at the position of microphone No. 4 

(x/c = 0.976) at 𝑼∞=10 m/s. Showing the effects of fence height on Boundary layer mean velocity and 

turbulence intensity profiles compared to the Baseline. 

 

The turbulence energy content of the flow structures within the boundary layer of the flat plate, with and without 

surface treatment, has also been studied. The velocity power spectral density (PSD) results have been measured at 14 

mm (x/c=0.976) upstream of the trailing edge i.e. the position of spanwise microphones. Results are presented in Figs. 

7 and 8 which demonstrate the PSD contour plots for treated flat plate, normalized with the results from the untreated 

airfoil (baseline) (∆𝑃𝑆𝐷 = 10𝑙𝑜𝑔10(ϕ𝑢𝑢,𝑡𝑟𝑒𝑎𝑡𝑒𝑑 ϕ𝑢𝑢,𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒⁄ )). It can be observed that surface treatment can lead to 

an increase in the energy content of the turbulent structure in the buffer region for all frequencies. However, in the 

areas near the wall and for some cases far away from the wall the energy content of the turbulent structure decreases 

compared to the baseline case. The region of the velocity power spectral density reduction near the wall increases at 

higher frequencies. Furthermore, results show that the reduction of the energy content of the turbulent structures near 

the wall increases with increasing the fence height and spacing. 
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Figure 7. Normalized velocity power spectral density (PSD) contour plots of treated flat plate normalized 

with Baseline at 14 mm (x/c=0.976) upstream of the trailing edge at 𝑼∞=10 m/s. Showing the 

effects of fence height on velocity power spectral density compared to the Baseline. 

 

 
Figure 8. Normalized velocity power spectral density (PSD) contour plots of treated flat plate normalized with 

Baseline at 14 mm (x/c=0.976) upstream of the trailing edge at 𝑼∞=10 m/s. Showing the effects of 

fence spacing on velocity power spectral density compared to the Baseline. 

 

Figure 9 shows the surface pressure power spectral density measured by microphone No. 4 near the trailing edge 

of the baseline and treated flat plates (x/c=0.976) referenced to po = 20 µPa. The microphone data are corrected based 

on the calibration procedure and Corcos correction [46] described in section II.C. The wind tunnel background noise 

power spectral density is also shown in these figures for comparison. The results in Fig. 9 show the effects of the fence 

height on surface pressure power spectral density compared to the baseline for two fence spacing of 2 and 8 mm. 

Results show that the surface treatment can increase the surface pressure power spectral density by up to 3.5 dB at 

low frequencies, but, in the mid and high frequency ranges, a reduction of up to 8 dB is observed. It can be seen that, 

the efficiency of fences in reducing the surface pressure power spectral density improves with increasing their heights 

over the entire frequency range of interest. The effect of the fence spacing on the surface pressure power spectral 

density compared to the baseline for two fence heights of 8 and 12 mm are presented in Fig. 10. Results show that 

with increasing the spacing between fences, their efficiency in reducing the surface pressure power spectral density is 

increased.  
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Figure 9. Surface pressure power spectral density referenced to po=20 µPa measured by microphone No. 4 on 

the trailing edge of the tripped flat plate (x/c=0.976) at 𝑼∞=10 m/s. Showing the effects of fence height 

on surface pressure power spectral density compared to the Baseline for two fences spacing of 2 and 8 

mm. 

 

 
Figure 10. Surface pressure power spectral density referenced to po=20 µPa measured by microphone No. 4 on 

the trailing edge of the tripped flat plate at 𝑼∞=10 m/s. Showing the effects of fence spacing on surface 

pressure power spectral density compared to the Baseline for two fences height of 8 and 12 mm. 

 

As noted in section I, in addition to the trailing edge surface pressure power spectral density, the frequency 

dependent spanwise length scale of the SPFs and convection velocity in the TE region are also crucial quantities in 

determining of the far-field trailing edge noise.  The lateral coherence measured between the spanwise microphones 

No. 1 to 5 at x/c=0.976 and different spanwise positions are depicted in Figs. 11 and 12. Results shows that increasing 

the fence height and decreasing theirs spacing can significantly diminish the lateral coherence between the spanwise 

microphones in the frequency range between 400 to 1700 Hz. However, the lateral coherence increases at higher 

frequencies, which require more investigation.  
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Figure 11. Lateral coherence measured on the tripped Flat Plate between spanwise microphones No. 1 to 5 at 

x/c=0.976 and different spanwise positions at 𝑼∞=10 m/s. Showing the effects of fence height on lateral 

coherence compared to the Baseline (fence spacing=2 mm). 

 

 
Figure 12. Lateral coherence measured on the tripped Flat Plate between spanwise microphones No. 1 to 5 at 

x/c=0.976 and different spanwise positions at 𝑼∞=10 m/s. Showing the effects of fence spacing on 

lateral coherence compared to the Baseline (fence height=12 mm). 
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The spanwise length scale of the surface pressure fluctuations, Λ𝑝,3(𝜔), was calculated using the frequency 

dependent spanwise coherence 𝛾𝑝,𝑖𝑗
2 (𝜔, ∆𝑧) between the spanwise microphones No. 1 to 5 at x/c=0.976 (Λ𝑝,3(𝜔) =

∫ 𝛾𝑝,𝑖𝑗(𝜔, ∆𝑧)𝑑∆𝑧
∞

0
). Figure 13 shows the effects of fence height and spacing on spanwise length scale. Results shows 

that the presence of the fences can significantly reduce the spanwise length scale at low frequencies. However, the 

surface treatment with large spacing (S) leads to an increase in the spanwise length scale at some frequencies. It is 

also clear from the results that the spanwise length scale decreases with increasing the fence height and decreasing 

theirs spacing. 

 

 
Figure 13. Spanwise length scales. Showing (a) the effects of fence height (fence spacing=2 mm), (b) the effects of 

fence spacing (fence height =12 mm) on spanwise length scale. (Λ𝑝,3(𝜔) = ∫ 𝛾𝑝,𝑖𝑗(𝜔, ∆𝑧)𝑑∆𝑧
∞

0
). 

 

The effects of the fence height and spacing on the phase between microphones No. 7 and No. 8 (ε=5.5 mm) near 

the trailing edge are shown in Fig. 14. The convection velocity can be found using 𝑈𝑐 = 2𝜋∆𝑓 휀 ∆𝜃⁄ , where Δf and 

∆𝜃 are shown in Fig 14. It is clear from the results that the presence of the fences leads to a decrease in Δf and therefore 

the convection velocity reduction. It is also seen that increasing the fence height and decreasing theirs spacing causes 

further reduction of the convection velocity. Table 3 summarizes the values of the convection velocity of the turbulent 

eddies in the boundary layer estimated by phase between microphone No. 7 and No. 8 (ε=5.5 mm) near the trailing 

edge for the baseline and some treated cases. As seen, the surface treatments lead to a reduction of up to 30 %. 

 

 
Figure 14. Phase between microphone No. 7 and microphone No. 8 (ε=5.5 mm). Showing (a) the effects of fence 

height (fence spacing=2 mm), (b) the effects of fence spacing (fence height =12 mm) on convection 

velocity (𝑈𝑐 = 2𝜋∆𝑓휀 ∆𝜃⁄ ) compared to the Baseline. 
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Table 3. Convection velocities calculated from the phase between microphone No. 7 and No. 8 (ε=5.5 mm) 
Configuration Baseline (H=4, S=2) (H=8, S=2) (H=12, S=2) (H=12, S=8) (H=12, S=4) 

𝑈𝐶 𝑈∞⁄  0.52 0.48 0.43 0.37 0.4 0.41 

 

To gain better insight into the mechanism by which fences affect the flow structure, the surface pressure and 

unsteady velocity are simultaneously measured at various locations within the boundary layer above the microphone 

No. 4 (x/c = 0.976). The temporal cross-correlation coefficient between u′ and p′ can be calculated using R𝑢,𝑝(𝜏, 𝑦) =

𝑢′(𝑦, 𝑡 + 𝜏)𝑝′(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (𝑈∞𝑝𝑟𝑚𝑠)⁄ , where u′ and p′ are the streamwise velocity and the surface pressure fluctuations, 

respectively, y is the distance normal to the surface of the flat plate and τ is the time delay between the signals. The 

contour plots of the temporal cross-correlation coefficient between u′ and p′ are depicted in Figs. 15 and 16. As can 

be seen, for all cases, the highest correlation occurs in the positive range of the nondimensional time delay 𝜏𝑈𝑒 𝛿∗⁄ . 

This means that the surface pressure fluctuations have highest correlation with the upstream turbulence eddies and 

therefore the upstream turbulence eddies play the most important role in the generation of the wall pressure 

fluctuations. It is clear that for the baseline case, the highest correlation occurs nearly at almost entire boundary layer 

region except the regions very near to the wall. This is an indication of the presence of the large structures with long 

life spans that maintain their ‘‘coherence’’ over longer distances. In the presence of the fences, results show that the 

correlation at regions far away from the wall reduces and instead, the correlation at near wall regions increases. 

Therefore, in the case of treated flat plates, the important mechanism responsible for the wall pressure generation 

seems to be due to the near wall region structures, where the highest correlation occurs. This is likely to be due to the 

breaking-up of the large-scale eddies to smaller ones when passing through the fences. These phenomena were found 

to be consistent with the effects of the fences in reducing the spanwise length scale, as shown in Fig. 13. Furthermore, 

results show that increasing the fence height and decreasing theirs spacing can improve these beneficial effects. 

 

 
Figure 15. Contour plots of cross correlation coefficient between u′ at 14 mm (x/c=0.976) upstream of the 

trailing edge, and p′ from microphone No. 4 on the upper surface at 𝑼∞=10 m/s. Showing the effects 

of fence height on cross correlation between u′ and p′ compared to the Baseline (fence spacing=2 mm). 

 

 
Figure 16. Contour plots of cross correlation coefficient between u′ at 14 mm (x/c=0.976) upstream of the 

trailing edge, and p′ from microphone No. 4 on the upper surface at 𝑼∞=10 m/s. Showing the effects 

of fence spacing on cross correlation between u′ and p′ compared to the Baseline (fence height=12 mm). 
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IV. Conclusion 

A new trailing edge noise reduction technique based on the use of upstream surface treatments has been proposed 

and tested. . Results have been provided for various types of surface treatments positioned upstream of the trailing 

edge of a flat plate. Results revealed that the surface treatment can significantly reduce the surface pressure 

fluctuations near the trailing edge, lessen the spanwise coherence and spanwise length-scale, and reduce the convection 

velocity of the turbulent structures. It has also been shown that the cross-correlation between the turbulent structures 

within the outer region of the boundary layer and the unsteady surface pressure can be significantly reduced.  
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