
 Bin Zainol, M. A., & Nunez-Yanez, J. L. (2016). CPCIe: A Compression-
enabled PCIe Core for Energy and Performance Optimization. In 2016 IEEE
Nordic Circuits and Systems Conference (NORCAS 2016): Proceedings of a
meeting held 1-2 December 2016, Copenhagen, Denmark. Institute of
Electrical and Electronics Engineers (IEEE). DOI:
10.1109/NORCHIP.2016.7792892

Peer reviewed version

Link to published version (if available):
10.1109/NORCHIP.2016.7792892

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/7792892. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73984319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/NORCHIP.2016.7792892
http://research-information.bristol.ac.uk/en/publications/cpcie(44d801a8-ed00-4594-8800-d9665267eee5).html
http://research-information.bristol.ac.uk/en/publications/cpcie(44d801a8-ed00-4594-8800-d9665267eee5).html

CPCIe: A Compression-enabled PCIe Core for
Energy and Performance Optimization

Mohd Amiruddin Zainol, Jose Luis Nunez-Yanez
Department of Electrical and Electronic Engineering,

University of Bristol, United Kingdom
Email: {mb14650, j.l.nunez-yanez}@bristol.ac.uk

Abstract—PCIe is a hardware interface used in high-
performing applications to move data from a central host and
memory system to an accelerator such as a GPU or FPGA. In
many memory bound applications, PCIe represents a bottleneck
which limits the possible acceleration. In this paper, an open-
source PCIe core is extended with a transparent layer of
hardware compression/decompression with low latency and high
throughput. The compressor/decompressor hardware operates on
data values that match the width of the hardware interface and
can be scaled up to higher parallelism. The results show an
energy reduction of up to 84% in the PCIe transfers and up to
20% in the whole processing chain, thanks to the reduction in
the number of bits that need to be moved over the power hungry
wires that connect the main memory system to the accelerator in
both directions. The overhead in terms of latency is maintained
to a minimum and user selectable depending on the tolerances
of the intended application.

Keywords—PCIe, FPGA, data compression, energy efficiency.

I. INTRODUCTION

Over the past few years, High-Performance Computing
(HPC) platforms have been progressing from multi-core core
CPUs to heavily accelerated systems using General Purpose
Graphics Processing Units (GPU) or Field Programmable Gate
Arrays (FPGA). In a typical configuration, these accelerators
are implemented in boards that communicate with a cen-
tral host via the Peripheral Component Interconnect Express
(PCIe) interface for high-speed data streaming. The amount
of data that needs to be moved has continued to increase
as new data center and HPC applications centered in data
analytics, web searches, and virtual reality are developed. The
PCIe interface is seen as a potential source of a bottleneck
in the system and current efforts are focused on integrating
host and accelerator in the same device with a shared mem-
ory system [1]. Despite these developments, PCIe remains a
popular choice and the transmission of significant amounts
of data reduces performance and increases energy as well
as the cost of the utility bill. Lossless data compression
reduces the data size without affecting the contents and can
significantly improve bandwidth by sending less data over
PCIe. By reducing the transmission time, the energy efficiency
can be improved as long as compression overheads are low.
This work proposes a new open-source PCIe core based
on streaming data compression called CPCIe (Compression-
enabled PCIe) and evaluates to what extent data compression
implemented on hardware can reduce energy consumption and

improve performance. The contributions of this work can be
summarized as follows:

• We extend the Xillybus PCIe core [2] with a tightly
integrated hardware compressor/decompressor called X-
MatchPRO [3]. The whole system has been released
open-source at [4],

• We develop a software API for the host PC to facilitate
the use of the CPCIe (Compressed PCIe) framework,

• We demonstrate the energy and performance benefits of
the data compression implementation in a real prototype
with hardware acceleration and accurate energy and per-
formance measurements.

The remainder of this paper is structured as follows. Sec-
tion 2 describes related work. Section 3 presents our pro-
posed system design. Section 4 describes the evaluation of
compression efficiency. Section 5 presents the demonstration
system. Section 6 evaluates the energy and performance of the
test system including compression/decompression overheads.
Finally, section 7 concludes the paper.

II. RELATED WORK

Modern FPGAs are being used as hardware accelerators
because they contain millions of uncommitted logic elements,
hardened PCIe interfaces, and can achieve peak performance
over several GFLOPs thanks to dedicated floating point re-
sources [5]. This high throughput results in hard requirements
on the memory bandwidth and the corresponding interfaces.
Despite these challenges, there are many examples of suc-
cessful acceleration of compute intensive applications using
FPGAs interfaced via PCIe to a host PC. Compression is a
useful technique to reduce the demands of storage require-
ments in the local workstation or cloud. This sensitive data
must be compressed without losses while lossy compression
techniques can be applied to other data types such as images
or video. An early study from Tremaine et. al. [6] uses the
IBM MXT algorithm to perform lossless data compression in
the FPGA and their work has contributed to other research
in hardware lossless data compression. The deployment of
data compression over the PCIe interface has been proposed
by several researchers. SD Kim et. al. [7] proposed a mem-
ory compression mechanism for Hadoop appliances which is
widely used in big data analysis with the goal of improving
data storage. They reported a data reduction average 74%
and 66 µs of compression time, by compressing trading

log datasets using a software implementation of the LZ4
algorithm implemented on the Cortex-A9 processor present
in Xilinx Zynq chips (Xilinx ZC-706 board). JY Kim et. al. at
Microsoft Research presented Xpress9 [8] compressor engine
to compress/decompress data in Bing web search engine [9].
For the performance evaluation, they follow a parallelization
scheme and report scalability up to seven Xpress9 compressor
engines fitted into an Altera Stratix V. In database management
systems (DBMS), IBM developed a data warehouse appliance
called Netezza [10] and created processing functions in FPGA
closed to the storage devices. By implementing data com-
pression/decompression, they have reduced the data movement
between storage disks and network fabric.

Compared with previous work our solution offers lower
latency limited to tens of clock cycles and is transparent to
the user being tightly couple to the open-source Xillybus
PCIe core. The low latency and high throughput are obtained
with hardware compression that matches the interface width
with the compression word width and with a fully streaming
pipeline. Previous work are also proprietary, commercial and
closed source while in our research we have made it open-
source so that further research and optimizations are pos-
sible. CPCIe is agnostic to the acceleration function being
implemented and has been tested with functions accelerated
in hardware implemented using high-level synthesis tools.

III. DESIGN AND ARCHITECTURE OF CPCIE

We developed the overall system to perform data compres-
sion and decompression while providing streamed data for
PCIe communication. As shown in Fig. 1 (a), the overall
system consists of five components: host PC, CPCIe core, a
hardware accelerator, power monitoring and UART display.

A. CPCIe Architecture

This section details the CPCIe hardware located between
host PC and an accelerator implemented in the FPGA de-
vice. The communication between the original PCIe core and
the compression/decompression system is based on AXI4-
Stream interface for accelerator communication. The CPCIe
core has five main components in the system: a MicroBlaze
soft processor, a CPCIe custom interface, an X-MatchPRO
compressor/decompressor engine, an AXI4-Stream switch and
an interface to AXI4-Lite. A diagram of CPCIe architecture is
illustrated in Fig. 1 (b). The MicroBlaze is used to communi-
cate with the host PC and control the CPCIe. The capabilities
of the Xillybus core are extended developing an interface to
communicate the AXI4-Lite and AXI4-Stream protocols. The
compression engine is based on the X-MatchPRO hardware
compressor which is extended with a hardware controller. The
AXI4-Stream switch is a simple switch interface that is acces-
sible with several AXI4-Stream IP cores, and there are eight
full-duplex channels. For our purpose, we pre-configured the
channel to specific hardware core before synthesizing the code.
Channel CH1 is connected to Xillybus FIFO stream, channel
CH2 is connected to compressor channel of X-MatchPRO,

channel CH3 is connected to decompressor channel of X-
MatchPRO, and channel CH4 is connected to the hardware
accelerator. The other four channels are left unconnected
and reserved for other AXI-4 Stream based IP cores. The
compressor engine supports full-duplex mode so compression
and decompression can run in parallel and transactions can be
made in both directions.

In the prototype system, commands are issued by the host
PC and acknowledged by the MicroBlaze processor. The
operational model of host PC is shown in the following order:

1) Send a command to CPCIe indicating which routing
channel should be used, either to compress, decompress,
or send the original file.

2) Send the datasets from host PC to input buffer on FPGA.
3) Retrieve the results from the output buffer.
4) Wait until CPCIe indicates the execution is complete.
While on the hardware side, the CPCIe will:
1) Wait for a signal from host PC.
2) MicroBlaze configure the switch based on the command

from host PC.
3) Fetch input data from the input buffer, compress or

decompress (based on the command) and send the com-
pressed/decompressed results back to the output buffer.

4) Upon completion, the MicroBlaze sends a done signal
to host PC.

B. Xillybus PCIe Core

To overcome the complexity of developing the controller of
the transaction layer of PCIe, several third-party IP cores have
been proposed and are available in open-source formats such
as RIFFA [11] and Xillybus [2]. In our work, Xillybus was
chosen because of its stability and the fact that no specific
API is involved. Xillybus uses 32-bit data transfers and has a
latency within the range of 10 to 50 µs to transmit/receive data
to/from the FIFO on the FPGA. Xillybus connects the FPGA
application logic using asynchronous FIFOs for read/write
streaming data. The asynchronous FIFOs are essential to
balance different process speeds between host PC and accel-
erator to ensure the data integrity. Furthermore, the Xillybus
periodically checks two signals from the FIFO; the FIFO’s full
signal to initiates data transfers, and the FIFO’s empty signal
to read data from the FPGA. On the software side, Xillybus
provides a device driver for Windows or Linux operating
system where the file handler is opened by the host application
before the user application performs the file I/O operation. The
I/O files are written or read as binary files between storage disk
and the FIFOs on the FPGA.

C. X-MatchPRO Compressor/Decompressor Engine

The X-MatchPRO compressor/decompressor is used in our
evaluation platform since it is also available as an open-source
core and it offers interesting properties regarding performance
and latency. It belongs to the category of dictionary-based
compressors and consists of a compressor and decompressor
channel. The compression mode consists of the compressor

CPCIe Architecture

CPCIe Custom Interface

Dual-port Shared

Memory

Async. FIFO

Async. FIFO

AXI4-Stream

Custom Switch

for CPCIe

X-MatchPRO

Hardware

Accelerator

BRAM MicroBlaze
ILMB

DLMB

AXI-4 Lite Interface

PCIe

 Development Board

 FPGA

Hardware

Accelerator

CPCIe

UART
Power

Monitoring

Host PC
PCIe

Xillybus

PCIe command

PCIe status

PCIe FIFO input

PCIe FIFO output

AXI-4 Lite

IF

AXI-4

Stream IF CH1

CH2

CH3

CH6

(a) (b)

Fig. 1. Overview of the full system. In (a), the deployment of CPCIe within the evaluation system. In (b), the architecture of CPCIe.

reading uncompressed input data from the input buffer, com-
pressing it based on the block size used, and generating 32-
bit data words to the output buffer. In the decompression
mode, the decompressor reads compressed input data from
the input buffer, decompress the data based on the dictionary
references and reconstructs the original data. The compressor
and decompressor use a parallel dictionary of previously seen
data to match or partially match the current data element with
an entry in the dictionary. More details are available at [3].

IV. EVALUATION OF COMPRESSION EFFICIENCY

In this section we evaluate the effectiveness of the compres-
sor with typical data obtained from high-performance appli-
cations. There are four financial time series datasets acquired
from public domain; sp 3m and sp ibm, which represent the
stock price of 3M and IBM market, respectively, and the other
two are sp usd and sp prices, which represent the exchange
rates between US Dollar and Japanese Yen, respectively. All
datasets are coded in IEEE 754 single-precision floating-point
number representation and saved as a binary file. To measure
the compression efficiency, the compression ratio is used as a
relative size scale. The compression ratio is defined as:

CompressionRatio =
Original data size

Compressed data size
(1)

where a higher ratio indicates that a higher rate of com-
pression can be achieved in the data. In our evaluation we
compressed each dataset with different block size using X-
MatchPRO compressor. Upon completion of compressing, the
compressed output is decompressed to verify correctness. Fig.
2 analyzes the compression ratio for the different test datasets
and compares them with block sizes ranging between 512
Bytes and 64 KB. Compression varies between factors 2X to
6X depending on the complexity of the datasets. It is possible
to appreciate that a suitable block size to compress is 4 KB
which is consistent with all evaluated datasets. Compressing
the data in small independent blocks of 4 KB has the advantage
that bit errors will only corrupt the data of the block they are
located, reduces the overall latency and opens the possibility of
using parallel implementations working in independent blocks
in parallel.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.5 1 2 4 8 16 32 64

C
o
m

p
re

ss
io

n
 R

at
io

Block size (KB)

sp_3m sp_ibm sp_usd sp_prices

Fig. 2. The compression ratio of the datasets.

V. DEMONSTRATION SYSTEM

The demonstration system used in our work is the Xilinx
Virtex-7 FPGA VC707 evaluation board [12] which consists
of PCIe Gen2x8 and on-board digital power monitors. To
evaluate the power usage, only selected wires (or rails) on the
board are measured. We only evaluate the power consump-
tion of relevant rails which are VCCINT, MGTAVCC, and
MGTAVTT; other unrelated rails are not measured. VCCINT
rail provides internal power supply to FPGA resources such
as flip-flop registers and LUTs. MGTAVCC and MGTAVTT
rails are the analog supply to GTX transceivers in the PCIe
endpoint, which are used for internal analog circuits and termi-
nation circuits, respectively. There are eight GTX transceivers
which are wired to the PCIe x8 lanes, located at transceiver
bank of Multi Gigabit Transceiver MGT BANK 114 and
MGT BANK 115 on the FPGA chip. To measure the power
consumption, a system is implemented to read the output
power from power monitors. The power monitor chip wires
the connection between voltage rails and the PMBus (power-
management bus) to obtain the power reading. The system
implements a MicroBlaze processor to obtain the output power
from the PMBus using a specific API software. Then the
output power is sent to the UART to display the power from
the specified rails. Table I shows the summary of system
resource utilization for each component in the CPCIe system.

0

10

20

30

40

50

60

VCCINT MGTAVCC MGTAVTT

P
o
w

er
 (

m
W

)

Power Rail

Fig. 3. The active power of three rails during PCIe transmission.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

8 16 32 64 128 256 512 1024 2048

T
ra

n
sm

is
si

o
n
 T

im
e

(m
s)

File size (KB)

Fig. 4. The transmission time of different file size over PCIe in milliseconds.

VI. EVALUATION OF ENERGY AND PERFORMANCE

In this section, we evaluate the energy and performance
of our proposed work. Fig. 3 shows the breakdown of active
power of measured rails. In this work, we define active power
is the total combination of power during the transmission of a
dataset and power during computation in the accelerator. While
the idle power is the power without activities and waiting
for the next command. We conducted multiple measurements
of the power and average all values to obtain the shown
power. The active power of each rail in VCCINT, MGTAVCC,
and MGTAVTT are 49.79 mW, 19.54 mW, and 23.43 mW,
respectively. These power values are the combination of logic
resources in the Xillybus PCIe core and the endpoint in PCIe.

The transmission time required for a file to transmit from
Host PC to FPGA is plotted in Fig. 4. The relation between
the transmission time and file size ranging between 8 KB to 2
MB is roughly exponential so minimizing the file size reduces
the transmission time. In this work, the PCIe is configured at
250 MHz and x8 lanes.

TABLE I
RESOURCE UTILIZATION OF EACH COMPONENT USED IN THE CPCIE

SYSTEM.

LUTs Registers BRAMs
Xillybus 4418 5515 9

CPCIe Custom Interface 228 315 3
AXI4-Stream Switch 720 81 0
X-MatchPRO Engine 8013 3187 14
MicroBlaze Processor 657 1002 2
AXI4-Lite Interface 364 154 0

Total Resources of CPCIe 14400 10254 28

0

20

40

60

80

100

120

140

8 16 32 64 128 256 512 1024 2048

E
n

er
g

y
 (

u
J)

File size (KB)

MGTAVCC MGTAVTT VCCINT

Fig. 5. The energy usage during PCIe transmission in µJ.

0

50

100

150

200

250

300

350

400

450

8 16 32 64 128 256 512 1024 2048

E
n

er
g

y
 /

 B
y
te

s
(p

J/
B

)

File size (KB)

Fig. 6. The trade-off between energy and size for different file size measured
in picoJoules/Byte.

Fig. 5 shows the distribution of energy consumption during
file transmission as file size is increased. The energy (E) is
calculated as:

E = Pt (2)

where P is the active power, and t is the transmission time.
The energy in rail VCCINT, MGTAVCC, and MGTAVTT are
grouped into one bar to visualize the total energy of each
file size. As expected, the larger the file size, the higher the
energy consumed. The idea is that if we deploy a compres-
sor/decompressor engine, we could reduce both energy and
transmission time as long as the additional power required by
the compression/decompression process is small.

Fig. 6 investigates the trade-off between energy and file
size in unit of picoJoules/Bytes. The file size of 8 KB has
the highest Energy/Bytes (403 pJ/B), followed by file size of
16 KB (201 pJ/B), and 32 KB (100 pJ/B). However, for more
than 64 KB of file size, this trade-off is between 50 to 60 pJ/B.
From this graph, we can conclude that for optimal energy per
byte over PCIe, we need to use a basic block transfer size of
more than 64 KB. The reason behind this situation is that the
file size of less than 64 KB has a high amount of overhead
(header, protocol, status, etc.) over the payload size.

In the next subsection, we compare two systems with and
without deploying the compression technology to understand
the impact of the compressor in terms of transmission speed,
power, and energy. There are three components in the FPGA
were evaluated which are PCIe, a hardware accelerator, and
X-MatchPRO engine. We implemented a ChipScope Logic

Xillybus xillybus_interface

Dual-port

Shared

Mem.

PCIe cmd

PCIe input

PCIe output

PCIe stat

Async. FIFO

AXI-4

Lite IF

AXI-4

Stream

IF

Async. FIFO

AXI4-Stream

Switch

X-MatchPRO #1

Hardware

Accelerator

AXI-4 Lite Interface

H

I

J

K

L

M

A: PCIe sends command to start

B: Processor receives command from PCIe

C: Processor configures the switch based on command

D: Processor sends command to compressor engine

E: Processor reads status of compressor engine

F: Processor sends acknowledge to PCIe

G: PCIe receives the acknowledge

H: PCIe sends input data to switch

I: PCIe receives output data from switch

J: Compression in X-MatchPRO

K: Decompression in X-MatchPRO

L: Accelerator receives input data from switch

M: Accelerator sends output data to switch

BRAM

A

G

E

C

D

B

F

CH1

CH2

CH3

CH6

CH4

CH5

CH7

CH8

MicroBlaze

Fig. 7. Transmission path of CPCIe. The latency (clock cycles) in each cor-
responding directions: A=6, B=5, C=5, D=5/10 (Decompression/Compression
command), E=5, F=5, G=6, H=0, I=0, J=66, K=54, L=0, M=0.

Analyzer to the FPGA logic to obtain the hardware processing
phases. For simplicity, the hardware accelerator is a matrix
multiplication 32x32 matrices of single precision 32-bit float-
ing point number. We developed the matrix multiplier with
an AXI4-Stream interface using Vivado HLS 2013.3. The
resource utilization for matrix multiplier are: 12921 LUTs,
12731 Registers, 33 BRAMs, and 160 DSP48E.

A. Streaming of uncompressed data

In this test system, we sent an uncompressed dataset from
Host PC to the accelerator, and the output results of the
accelerator are then sent back to the Host PC. As illustrated
in Fig. 7, the transmission path is through the direction of: A
→ B → C → F → G → H → L → M → I. Fig. 8 illustrates
the execution phase in the PCIe and the accelerator. In this
figure, the Host PC transmitted both input matrices in a single
file to the accelerator. As soon the accelerator received the
input, it started to process the dataset. The PCIe core finished
transmitting the data at t0 and began to go into idle phase,
while the accelerator was still processing the data. Once the
output result is ready, the PCIe was activated again to receive
the result from the accelerator at t1. All data were completely
received in host PC at t2. At the bottom of this figure, there are
three time periods labeled as Tpat (the active period during
Host PC transmitted the data over PCIe), Tpid (idle period of
PCIe), and Tpar (the active period during Host PC received
the data from PCIe). The period of Tpat, Tpid, and Tpar were
52.05 µs, 13.63 µs, and 37.15 µs, respectively; where the
period of Tpat and Tpar constitute the total activation time
in PCIe of 89.20 µs, and the period of Tpat, Tpid, and Tpar
constitute the total time in matrix multiplier of 102.83 µs. The
measured active power of PCIe and matrix multiplier were
92.76 mW and 145.09 mW, respectively. Thus the energy
in the PCIe and the accelerator was 8.27 µJ and 14.92 µJ,

HwAcc

PCIe Input Matrix A and B

Time

Processing

TpidTpat

Output

Tpar

Input Matrix B

Input Matrix A

Output

t t t0 1 2

Fig. 8. The execution phase of streaming an uncompressed data.

HwAcc

PCIe

Time

Processing

TpidTpat

Input Matrix B

Input Matrix A

t t t2 3 5

Input(C) Output(C)

Decompress A Decompress BX-MatchPRO Compress file

Output

t t t0 1 4

Txc

Txh

Tpar

Txd

Fig. 9. The execution phase of streaming a compressed data.

respectively, and the summation of both energies contributes
the total energy of 23.19 µJ.

B. Streaming of compressed data

Compared to the previous subsection, in this test we trans-
mitted a compressed dataset to the decompressor before sent
it to the accelerator. The output result of the accelerator
is then compressed in the compressor before sent it back
to the host PC. A dataset with a compression ratio of 6:1
was chosen for this experiment. As illustrated in Fig. 7, the
transmission path is through the direction of: A → B →
C → D → E → F → G → H → K → L → M → J
→ I. Fig. 9 illustrates the execution phase of streaming the
compressed data. In this figure, the execution phase of this
test has an additional component of X-MatchPRO engine.
The host PC transmitted the compressed input identified as
Input(C) in PCIe and finished at t1. When the X-MatchPRO
decompressor received the compressed input, it started to
decompress the header of the compressed file and finished at
t0 (denoted as Txh). During the decompression of the header,
the decompressed output is not ready with the original data
and the latency of Txh is measured at 0.54 µs. After t0, the
decompressor started to decompress the original data and send
to the accelerator. The decompressor finished the task at t2
and this period is denoted as Txd. After t2, the X-MatchPRO
engine became idle. Once the output result of the accelerator
is ready, the accelerator sent the output to the compressor for
compression at t3. The X-MatchPRO compressor received the
input data from the accelerator and started to compress the
data. During this period, the compressed output is not ready
to be fetched by host PC. At t4, the host PC started to receive
the compressed output identified as Output(C) and finished
at t5; which is denoted as Tpar. The Txc is the period of

compression time in X-MatchPRO compressor. The execution
period of Tpat, Tpid, and Tpar were 8.39 µs, 88.16 µs, and 6.28
µs, respectively. The combination of Tpat and Tpar constitute
the total active time in PCIe of 14.67 µs, and thus constitute
PCIe energy of 1.36 µJ. Note that the active power in PCIe and
the average power in matrix multiplier during this test were
about the same as previous test, and summarized in Table II.
The X-MatchPRO engine has the active power of compressor
and decompressor measured at 24.51 mW and 25.98 mW,
respectively. In this test, the time to compress (Txc) was 37.15
µs, and the time to decompress (Txd) was 51.32 µs. Thus the
energy cost of compressor and decompressor were 0.91 µJ
and 1.33 µJ, respectively. The total energy in this case is the
summation of three energies; the PCIe energy, the energy of
accelerator, and the energy during activation of X-MatchPRO
compressor/decompressor. Thus the total energy is 18.52 mJ.

The summary of both configurations without and with
CPCIe can be seen in Table III. The PCIe energy without
and with the CPCIe implementation are 8.27 mJ and 1.36 mJ,
respectively, and the percentage difference is quite large at
84% of energy reduction in PCIe. However, the percentage
difference of the whole energy is masked by the presence
of the accelerator, and this contributes to the total energy
reduction by 20%. From this observation, we found that the
total energy to complete a task is greatly dependent on the
energy of the accelerator. By referring to the resources used
by matrix multiplier, a high number of FPGA resources has
led to the high energy consumed by the accelerator.

Another important to note that, we also made other ex-
periments with compression ratio of 2X and 4X. For the
compression ratio of 2X, the PCIe energy and the total energy
was 3.75 mJ and 20.91 mJ, respectively; thus the percentage
difference of PCIe energy and total energy was 55% and
9%, respectively. While for the compression ratio of 4X, the
PCIe energy and the total energy was 2.55 mJ and 19.71 mJ,
respectively; thus the percentage difference of PCIe energy
and total energy was 69% and 15%, respectively. Thus we
conclude that the energy reduction of PCIe energy ranges
between 55% to 84% depending on the compression ratio from
2X to 6X. For the total energy to complete a task in the system,
the energy reduction ranges between 9% to 20%.

TABLE II
THE SUMMARY OF ACTIVE POWER IN EACH COMPONENT.

Component Power (mW)
Xillybus PCIe 92.76

X-MatchPRO Compressor 24.51
X-MatchPRO Decompressor 25.98

Matrix Multiplier 145.09

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed CPCIe (Compressed
PCIe) framework which employs X-MatchPRO compres-
sor/decompressor engines. We have demonstrated that data
compression tightly implemented between PCIe and accelera-
tor can obtain energy savings while maintaining performance

TABLE III
ENERGY DISCUSSION USING DATASET WITH COMPRESSION RATIO OF 6X.

PCIe energy Total energy
Without CPCIe 8.27 µJ 23.19 µJ

With CPCIe 1.36 µJ 18.52 µJ
Difference 84% 20%

for custom hardware accelerator designs. Our evaluation shows
that our CPCIe design can reduce the PCIe energy between
55% to 84%, and reduce the size of datasets between factors of
2X to 6X depending on the complexity of the datasets. While
the energy reduction of the whole system to complete a task is
reduced between 9% to 20% which is masked by the presence
of the accelerator. Notice also that these experiments have
focused on the energy savings in the domain of the PCIe board
and do not consider the costs of transmitting the data from host
to accelerator which will be reduced as well. Based on our
experiments, the energy efficiency during PCIe transmission
can be reduced in two ways: the power in PCIe during
the active and idle period, and the transmission period of
input/output. Future work will focus on expanding the number
of benchmarks used and in exploring parallel configurations
in which multiple compressors and decompressors work in
parallel.

VIII. ACKNOWLEDGEMENT

This work is supported by the UK EPSRC under grants
ENPOWER (EP/L00321X/1) and ENEAC (EP/N002539/1)
grants.

REFERENCES

[1] H. Giefers, R. Polig, & C. Hagleitner, ”Accelerating arithmetic kernels
with coherent attached FPGA coprocessors”, 2015 Design, Automation
& Test in Europe Conference & Exhibition (DATE), Grenoble, 2015.

[2] Xillybus www.xillybus.com.
[3] J. L. Nunez, & S. Jones, ”Gbit/s lossless data compression hardware”,

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2003.
[4] CPCIe https://github.com/mohdazainol/cpcie, CPCIe project maintained

by Mohd A. Zainol, 2016.
[5] G. Inggs, S. Fleming, D. Thomas, & W. Luk, ”Is high level synthesis

ready for business? A computational finance case study”, In Field-
Programmable Technology (FPT), 2014 Intl. Conf. on, 2014.

[6] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B.
Smith, M. E. Wazlowski, & P. M. Bland, ”IBM Memory Expansion
Technology (MXT)”, IBM Journal of Research and Development, 2001.

[7] S. D. Kim, S. M. Lee, S. M. Lee, J. H. Jang, J. G. Son, Y. H. Kim, & S.
E. Lee, ”Compression Accelerator for Hadoop Appliance”, in Internet
of Vehicles Technologies and Services, 8662, R. H. Hsu and S. Wang,
Eds., ed: Springer International Publishing, 2014.

[8] J. Y. Kim, S. Hauck, & D. Burger, ”A Scalable Multi-Engine Xpress9
Compressor with Asynchronous Data Transfer”, in Field-Programmable
Custom Computing Machines (FCCM), 2014.

[9] A. Putnam, A.M. Caulfield, E.S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G.P. Gopal, J. Gray, & M.
Haselman, ”A reconfigurable fabric for accelerating large-scale datacenter
services”, In 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), 2014.

[10] P. Francisco, The Netezza data appliance architecture: A platform for
high performance data warehousing and analytics (2011) IBM Redguide.

[11] M. Jacobsen, and R. Kastner, ”RIFFA 2.0: A reusable integration
framework for FPGA accelerators”, in Proc. International Conference
on Field-Programmable Logic, 2013.

[12] Xilinx, VC707 Evaluation Board for the Virtex-7 FPGA (UG885 v1.7).

