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The aim of this work is to update ground-clutter classification methods in weather
radar rainfall measurements to more accurately identify clutter pixels from wind farms.
Measurements from two dual-polarised weather radars, based in the United Kingdom,
will be used to determine the characteristics of multiple wind farms in the North Sea and
the Irish Sea. Currently 21 of the top 25 largest offshore wind farms are located in these
regions. The extensive area occupied by the wind farms creates problems for weather radars
located in the neighbouring European countries. Datasets of wind-farm, precipitation and
ground-clutter pixels were aggregated from Thurnham Radar measurements to form novel
membership functions that can be used in a fuzzy logic classification system to identify
wind-farm clutter. When only ground-clutter datasets were used for classification, areas of
the radar scans taken up by wind-farm clutter were misclassified as rainfall. The inclusion
of wind-farm measurements led to an increase in the ability of the algorithm to detect these
pixels as clutter, as the Heidke Skill Score increased from 67.4 to 97.8%. However there was
a slight increase in the number of precipitation pixels incorrectly classified as clutter, with
the false alarm rate increasing from 0.05 to 1.24% when all variables are used. The algorithm
performed slightly better when applied to another radar on Hameldon Hill, showing
promise for application to the UK network without recalibration of membership functions.

Key Words: polarimetric radar; weather radar; wind farm; wind turbine; clutter; C-band

Received 18 April 2016; Revised 30 October 2016; Accepted 2 November 2016; Published online in Wiley Online Library

1. Introduction

The North Sea contains two of the top three largest wind farms
worldwide, called the London Array and Greater Gabbard. The
North Sea is a major area for offshore wind power with Germany,
The Netherlands, and the United Kingdom all planning and
commissioning new projects in the following years. Turbines
within these offshore farms reach heights of 150 m including the
blades and motor hub. These can cause substantial problems
to weather radars due to backscatter effects from the radar
main beam and side lobes leading to the appearance of non-
meteorological echoes also known as clutter (Harrison, 2012).
This effect is compounded by the vast size of the farms with
the London Array having an area of 100 km2 leading to the
contamination of over 200 pixels (1◦ by 600 m size) in scans from
the nearest weather radar, located in Thurnham, near London,
United Kingdom. World Meteorological Organisation (WMO)
guidelines state that beyond 45 km wind turbines are generally not
observed, though this is no longer the case with the subsequent
building of large offshore wind farms (WMO, 2005, 2010).

Many simulations of the potential impacts of wind turbines and
farms have been performed using various methods (Hood et al.,

2010; Gallardo-Hernando et al., 2011; Angulo Pita et al., 2015).
Gallardo-Hernando et al. (2011) studied the effect of wind tur-
bines and farms on Doppler weather radars in Spain by increasing
the dwell time to attain a higher temporal resolution of the data.
Periodic signals were found in the Doppler returns depending on
the alignment of the turbines with the radar beam. Using a similar
technique for data collection, Isom et al. (2009) found that careful
consideration needed to be made as turbine and precipitation
spectra can occupy the same frequency span, so a technique was
formed that utilised multiquadric interpolation in two and three
dimensions. Hood et al. (2010) utilise fuzzy logic in addition
to distinguishing features from Doppler radar data including
spectral flatness and clutter phase alignment to identify the wind
turbine locations, even during anomalous propagation. They also
mention that the next step would be to analyse the effectiveness
of polarimetric measurements for wind-farm identification.

In 2013 the UK Met Office began to upgrade the UK weather
radar network to enable dual polarisation measurements which
allow a greater capability of clutter identification. Gourley et al.
(2007) use the textures of multiple polarimetric measurements
followed by post-fuzzy reclassification based on the radial velocity,
reflectivity and the differential phase shift to classify ground
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Figure 1. (a) Map of the United Kingdom including operational (filled) and planned and in construction (unfilled) onshore (dots) and offshore (triangles) wind
farms. The circles show ranges of 100 km from the radars with dual polarized (X) and single polarized (+) with more upgraded from early 2016. (b) and (c) Zoomed-in
sections of the respective Thurnham and Hameldon Hill radar scans at 0.5◦ elevations, with the white boxes encasing wind-farm clutter areas. Database of wind-farm
and turbine locations from RenewableUK (2015).

clutter. They also make use of empirical class thresholds to
suppress erroneous echo assignments. Fuzzy logic proves useful
for ground-clutter identification (Berenguer et al., 2006; Gourley
et al., 2007; Rico-Ramirez and Cluckie, 2008), and hydrometeor
classification (Liu and Chandrasekar, 2000; Marzano et al., 2007;
Park et al., 2009; Hall et al., 2015). Hubbert et al. (2009) developed
a fuzzy logic algorithm to remove standard propagation and
anomalous propagation ground-clutter echoes using a novel
clutter mitigation decision approach; however, they mention
that this could not be applied to other clutter types, such as
wind turbines. Some algorithms, such as Berenguer et al. (2006),
apply a mask over the known areas of sea and land in order to
use different algorithms for the two masks. This would create
problems for offshore wind-farm clutter identification as the
wind-farm clutter can vary in size and shape with different
atmospheric and anomalous propagation conditions as shown
later in this article.

The variance, or texture, of polarimetric variables has generally
proven to be a useful metric for the classification of clutter (Giuli
et al., 1991; Ryzhkov and Zrnic, 1998; Chandrasekar et al., 2013).
Dufton and Collier (2015) use a fuzzy logic method with radial
texture parameter inputs of dual polarisation variables including
the correlation coefficient corrected for range effects and beam
heights. Lakshmanan et al. (2014) use a 5 by 5 pixel area when
computing textures, as in Park et al. (2009), as part of a neural
network approach. In addition, inputs from radar moments at the
given pixel, information from the vertical column, and outputs
from a simple classifier are used. A further study, by Lakshmanan
et al. (2015), investigates the contribution of each polarimetric
variable to a method for discriminating between weather and non-
weather echoes, finding the variance of differential reflectivity
to overall perform slightly better than correlation coefficient
due, in part, to the former having a greater resolution. Seo
et al. (2015) similarly try to select variables by their ability to
measure the underlying phenomena instead of relying solely on
the statistical relationships inherent in fuzzy logic systems. They

avoid using radial velocity and spectrum width due to the non-
zero Doppler signature from wind turbines as found in Mishra
and Chandrasekar (2010). They instead focus on a smaller number
of parameters and apply thresholds and supressed classes as in
Gourley et al. (2007) and Lakshmanan et al. (2014).

Due to anomalous propagation of the radar beam during
specific atmospheric conditions, some wind farms do not always
affect the radar scans (Berenguer et al., 2006); these cases have not
been extensively examined (Seo et al., 2015). As the wind-farm
clutter regions vary, a static clutter map cannot be used; instead
the echoes must be individually identified as clutter pixels. In
this article, C-band dual polarimetric radar data will be used to
propose a method for wind-farm identification and a current
clutter classifier will be tested and compared to the updated
version. A database of polarimetric measurements will be formed
in order to observe the varied characteristics of the wind farms
in comparison to other ground-clutter and precipitation echoes.
The aim is to create a robust algorithm based on fuzzy logic to
quickly classify the wind-farm clutter pixels in real time that can
be applied easily to other operational weather radars within the
UK network.

2. Data and statistical methods

Data from two operational C-band polarimetric weather radars
have been analysed. These have been chosen due to their dual
polarisation measurement capability and proximity to large
offshore wind farms. The first is located at Hameldon Hill (Met
Office, 2014) near Burnley, United Kingdom, and the second
is positioned at Thurnham (Met Office, 2013), near London,
United Kingdom. Hameldon Hill and Thurnham radars are part
of the UK Met Office weather radar network, along with 16 other
C-band radars (Met Office, 2009), of which ones in Jersey and
Shannon, Ireland, are not shown in Figure 1. The scanning strategy
for both radars includes five elevations of long-pulse (600 m)
scans, of which only the lowest two have Linear Depolarisation
Ratio (LDR) measurements, and six elevations of short-pulse
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Table 1. Wind farm information proximate to the Hameldon Hill (groups 1 and 2) and Thurnham (groups 3 and 4) radars.

Box no. Wind farm name Range from nearest radar (km) Area (km2) No of turbines Power production (MW) Total turbine height (m)

1. Barrow 70 10 30 90 120
Ormonde 85 10 30 150 163
Walney P1 and P2 90 28 51 184 137
West of Duddon Sands 80 67 108 389 150

2. North Hoyle 85 10 30 60 107
Rhyl Flats 90 10 25 90 134
Gwynt y Mor 90 86 160 576 152

3. Greater Gabbard 110 146 140 504 131
4. Kentish Flats 35 10 30 90 115

Gunfleet Sands 60 18 48 172 129
Thanet 70 35 100 300 115
London Array 67 100 175 630 147

The group numbers correspond to the boxes in Figure 1 (4C Offshore, 2016).

(300 m) scans. All elevations include measurements of horizontal
reflectivity (ZH), differential reflectivity (ZDR), differential phase
shift (�DP), correlation coefficient (ρHV) and radial velocity (VH).
The lowest elevation scans of uncorrected reflectivity contain a
large amount of ground-clutter contamination, as can be seen in
Figure 1(c). The radars have a total range of 255 km with range
bin lengths of 600 m and a beam width of 1◦. These are shown
as the labelled radars in Figure 1, in addition to the zoomed-in
sections as part (b) and part (c) respectively. The wind-farm
locations were cross-validated with a database of all constructed
offshore and onshore wind farms (RenewableUK, 2015). It should
be noted that the dots in Figure 1(a) can relate to small wind
farms, or even single turbines, so the apparent high density in
Northern Ireland would not be comparable to the offshore wind
farms. The characteristics of the main wind-farm clusters that
affect the two radars are shown in Table 1, and can be compared
to the corresponding boxes in Figures 1(b) and (c).

As mentioned previously, a clutter map can help to reduce
the continuously prevalent clutter regions; however, sometimes
during anomalous propagation conditions a clutter tail or appears
extending for up to 10 km behind the farm. This can be seen in
Figure 1(c), behind the large wind farm in box 4. They are low
reflectivity values of approximately 10 dBZ, but can reach up to
30 dBZ during severe anomalous propagation conditions. Norin
(2015) finds a similar effect in Doppler radar measurements
in Sweden. This increase in reflectivity behind the wind farm
seems to be caused by multiple scattering effects, between the
multiple turbines and between turbine and sea surface (Isom
et al., 2009; Vogt et al., 2011; Norin, 2015). Multiple scattering
is exacerbated by the rotating blades (Greving and Malkomes,
2006) and worsened further by the uneven sea surface. Another
effect can be seen in Figure 1(b) within box 1 in which there
appears to be a clutter tail but to the sides of the wind farms in
an azimuthal direction. This seems to be caused by the side lobes
of the beam hitting the wind farm as the half-power beam width
section passes to either side.

Data were collected between March 2014 and April 2015, with
half of the Thurnham dataset used for validation and half for
initial calibration of the fuzzy logic algorithm described in the
following sections. The Hameldon Hill data were then used as
a second validation set. Long-term quality analysis of the UK
Met Office radar network can be found in Harrison et al. (2014).
Through examination of �DP scans for multiple events there
appears to be no data loss behind the wind farm due to blockage.
This could be due to the wind farms only blocking a portion of
the side lobes of the radar beam rather than the main section
within the half-power beam width.

For each radar a ground-clutter probability map was formed
to locate areas of ground clutter that occur most frequently in the
radar scans. For Thurnham this is shown in Figure 2 with the off-
shore wind farms located within the white boxes. This map shows
how the frequency of occurrence during dry scans is much lower
at 35–70% for the two farms located further from the radar. As

the clutter tail and the more distant wind farm are variable, only a
detection algorithm would work to detect and remove this clutter
without unnecessarily removing precipitation through the use of a
static map. Pixels that appeared over 80% of the time during clear-
air days were used as the data collection points. The wind-farm
dataset came from a mixture of permanent echoes and anomalous
propagation echoes. Some of the wind farms only appear during
anomalous propagation so a variety of times, seasons and atmos-
pheric conditions were incorporated when testing the algorithm.
A trained meteorologist separated precipitation pixels from clut-
ter during different seasons and with a mixture of convective
and stratiform rainfall events. Echoes that were clearly stationary
between convective rainfall scans were identified as clutter and
then sub-classified into wind-farm or ground clutter to then form
the database of the separated wind-farm, ground-clutter and pre-
cipitation polarimetric measurements. The data collection was
performed using software built specifically for this purpose.

In order to evaluate the ability of the algorithm to classify the
echoes as precipitation or wind-farm clutter the Heidke Skill Score
(HSS) will be used (EuMetCal, 2011). As explained in Schaefer
(1990), the Critical Success Index (CSI) which is commonly used
to indicate the value of warnings can be an overestimate of the
forecast skill and not unbiased, so HSS will be used instead.

HSS = 2· (a· d-b· c)

(a + c)· (c + d) + (a + b)· (b + d)
, (1)

where: a would be clutter correctly identified as clutter; b
is precipitation incorrectly identified as clutter; c is clutter
incorrectly identified as precipitation; and d is precipitation
correctly determined to be precipitation.

3. Classifying wind-farm clutter

The collected datasets of wind-farm, precipitation and ground-
clutter pixels were aggregated to form Probability Density
Functions (PDF) for the Thurnham wind farms. Textures of
ZH, ZDR, ρHV and �DP were also calculated and collected for
the same pixels. The texture values are obtained by taking
the standard deviation of a 3 × 3 window area centred on the
chosen pixel, which is an area that has been shown to work
well in past research for a previous C-band radar installed at
the same location (Rico-Ramirez and Cluckie, 2008). Clear-air
pixels within the 3 × 3 area will be ignored when calculating
the texture. In addition a Signal-to-Noise ratio threshold was
used, with any noisy regions removed below a given threshold.
Studies use different calculation areas due to different radar
beam widths and range gates, though an approximate 1 km by
1 km window is considered appropriate, such as in Park et al.
(2009) and Dufton and Collier (2015). High texture values imply
a significant variability of polarimetric measurements within a
small area which is usually associated with clutter regions as
precipitation generally has a smoother appearance on radar scans
(Rico-Ramirez and Cluckie, 2008).
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Figure 2. Map showing the probability of reflectivity returns during dry clear-air days, where 0.9 would represent 9 in 10 scans having reflectivity returns for an
individual pixel.

For echo classification the most useful variables will have the
smallest overlap between the precipitation and clutter signals. The
polarimetric variable ρHV and the textures of �DP, ρHV and ZDR,
which are referred to as t(�DP), t(ρHV) and t(ZDR) respectively,
are generally agreed to have the greatest ability in identifying
clutter echoes (Gourley et al., 2007; Hubbert et al., 2009; Islam
et al., 2012). However, as shown in Figure 3, these wind farms
have a signal more similar to that of precipitation, especially for
ρHV, t(ρHV), t(�DP) and LDR. The texture of the differential
propagation phase t(�DP) here in the fuzzy logic algorithm has
been used to help differentiate between clutter and precipitation,
in a similar way to Bringi et al. (2011). They have used a standard
deviation over a 10-gate moving window; however, this algorithm
uses the texture over a 3 by 3 moving pixel window.

To form these empirical PDFs, approximately 200 000 ground-
clutter pixels, 150 000 precipitation pixels and 100 000 wind-farm
pixels were used. As noted by Lakshmanan et al. (2015) wind
turbines can have values of ρHV close to unity, which is
also a characteristic of precipitation, due to their thin vertical
structure. This could cause problems with some older operational
classification techniques that rely on standard ground-clutter
PDFs for inputs.

Seo et al. (2015) use ρHV as a main initial classifier after
separating out weaker reflectivity pixels (≤35 dBZ). This seems
to work well for the onshore wind farms in the study but
as shown in Figure 3 the empirical PDFs for ρHV are very
similar for precipitation and these offshore wind farms so the
application of that algorithm to these particular wind farms could
be problematic. The textures of ZDR and �DP have a better
discrepancy between wind farm and precipitation, but there is
still more of an overlap than compared to normal ground clutter.
LDR, ZDR and ρHV have the most significant overlap of wind
farm and precipitation distributions.

Interestingly for wind farms the VH values here remain centred
around zero with a small standard deviation, as shown in Figure 4,
instead of having more variation and a non-zero signature, as
in Norin (2015). To illustrate the differences in velocity, a block

of precipitation is found within box a of Figure 4, two wind
farms in box b, and wind farms in box c surrounded by sea
clutter displaying negative velocities of about 1.25 m s−1. This is
an unusual case with sea clutter in this region due to adverse
anomalous propagation conditions, as modelling has shown the
beam would not normally be hitting the water even at 0.3◦
(Rico-Ramirez et al., 2009). These near-zero measurements could
be due to having multiple wind turbines within each pixel, as
beyond 50 km the pixels are broad enough to contain between
1 and 3 turbines. However the examples investigated by Norin
(2015) also contain multiple turbines per pixel, yet they find an
increase in the average absolute velocity once the turbines are
built and operational. They suggest that the velocity frequency
spectrum will be centred in a narrow peak around zero if multiple
scattering between stationary parts of the turbine is dominant.
Norin (2015) does find positive values of absolute radial velocity
at the wind-farm sites; however, in that situation the beam directly
hits the turbines at 0.5◦ and partially at 1.0◦.

The individual wind farms surrounding the Thurnham radar
can be seen to have different characteristics in the polarimetric
measurements. Ten thousand data points were used per wind
farm for the formation of these empirical PDFs in Figure 5. The
textures of �DP, ZDR and VH were all very similar between the
different wind farms, but ρHV, LDR, and the textures of ZH

and ρHV all showed some significant variations. The differences
between farms occur due to a combination of reasons. London
Array (LA) wind turbines have heights of 147 m while Kentish
Flats (KF) and Thanet (Th) are 115 m, in addition to different
rotor diameters and tower thicknesses, which would affect the
amount of backscatter from the side lobes and main radar beam.
Another factor is the combination of distance of the farms from
the radar, changing the coverage of one pixel from approximately
1 km2 at 50 km to nearly 2 × 1 km2 at 100 km. The turbine density
within the wind farms also varies as Gunfleet Sands (GS), Kentish
Flats and Thanet all have 3 turbines km−2, whereas London Array
has 1.5 turbines km−2. The orientation of the blades and nacelle is
altered with changing wind directions in order to maximise power

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. (2016)



Offshore Wind Turbine Weather Radar Clutter Characteristics

1
(a) (b) (c) (d)

(e) (f) (g) (h)

WF
GC
PR

WF
GC
PR

0.8

0.6

0.4

0.2

0

1 1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
–6 –30 0.2 0.4 0.6 0.8 1

()
–20 –10 0

(dB)
–4 –2 0 2 4 6

(dB)

0.8

0.6

0.4

0.2

0
–1 0 1 2

(m s–1)

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0
0 5 10 15 20 0 0 0 0.1 0.2 0.3 0.450 100 1501 2 3 4 5

(dBZ) (dB) (deg) ()

t(ZH)

VH Zdr LDR

t(ZDR) t(ΦDP) t(ρHV)

ρHV

Figure 3. (a)–(h) Empirical Probability Density Functions (PDFs) of multiple variables for Wind Farms (WF), Ground Clutter and Anomalous Propagation echoes
(GC), and Precipitation (PR) coloured in dashed blue, red, and black respectively. Here ‘t’ represents the texture formed from the standard deviation of surrounding
(3 × 3) pixels.

Figure 4. Uncorrected radar scans of (a) Horizontal Reflectivity and (b) Radial Velocity from 1449 UTC 10 August 2014. Box a shows convective precipitation with
mixed velocities, box b shows the more distant wind farms, and box ccontains wind farms amongst negative velocity sea clutter.

output (Schubel and Crossley, 2012). Mishra and Chandrasekar
(2010) state the echo strength does vary with the alignment of
radar beam with turbine rotation plane. The prevailing winds over
the United Kingdom are from the southwest so the turbines will
most frequently be oriented head on to the radar beam, creating
the largest surface area of backscatter; however, there will still be
variation between the wind farms. Due to difficulties obtaining
the exact layouts of wind farms, and knowing the exact plane of
observation of the turbine beyond the presumption of similarity
with wind direction, it was not possible to analyse the effect
of turbine plane of observation upon the echo characteristics.
These changes in range, turbine density, turbine height, and
orientation will affect the textures of polarimetric measurements.

This illustrates that multiple variables should be used in the final
algorithm to identify the clutter echoes, as the use of a single or
two variables could cause some incorrect classification.

Rico-Ramirez and Cluckie (2008) found that using normal
ground-clutter membership functions to classify sea clutter
yielded poor results, so the same is likely to be true for wind-farm
echoes due to their differing PDFs in Figure 3. This could be
fixed by using a mixture of wind-farm, sea-clutter and ground-
clutter echoes to form an amalgamated PDF. These are shown
in Figure 6, with the mixed ground clutter, sea clutter, and wind
farm against precipitation values. Statistical results of using an
amalgamation compared to a separation of the different clutter
types will be shown in section 4.1. Empirical PDFs are used in
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Figure 5. (a)–(d) Empirical Probability Density Functions (PDFs) of the four variables that contain varying values between the four main wind farms near Thurnham,
called London Array (LA), Gunfleet Sands (GS), Thanet (Th) and Kentish Flats (KF).

Figure 6. (a)–(g) Empirical Probability Density Functions (PDFs) of the seven variables used in the fuzzy logic algorithm.

the figures here just to help illustrate the differences between
the signals. In the fuzzy logic algorithm these are converted into
membership functions (MFs) in which all points are non-zero
such that the product of all variables cannot be nullified. The
fuzzy logic method is explained in detail by Mendel (1995).

Hameldon Hill radar is also affected by five onshore wind
farms within a 10 km radius. The farms are much smaller than
their offshore counterparts but still contain between 5 and 26
turbines each, which is enough to cause clutter echoes over
nearly 100 pixels in close proximity to the radar. Data from these
pixels were collected over the same period of dry days as the
offshore wind farms with the resulting backscatter distributions
shown in Figure 7. The backscatter distributions interestingly
show a velocity signature centralised around zero with a very
thin spread for the onshore wind farms in addition to high
ρHV which is very different from previous research (Seo et al.,
2015), especially with small onshore farms. However it should
be noted for comparison that Seo et al. (2015) use S-band WSR-
88D radars. Gallardo-Hernando et al. (2008) use C-band Doppler
weather radars and find non-zero signatures in the Doppler
spectrum which they define as the power-weighted distribution
of radial velocities within the resolution volume of the radar.
The majority of research on wind turbine clutter analysis has

been focused on Doppler signatures (Gallardo-Hernando et al.,
2008; Hood et al., 2010; Grande et al., 2015) rather than C-band
polarimetric signatures so a comparison is difficult. Thurnham
is also affected slightly by onshore wind-farm clutter; however,
it is more difficult to differentiate the farms from surrounding
urbanised areas with other ground clutter due to the proximity
to London.

3.1. Clutter in multiple elevations

There is some interference at higher elevations for the Thurnham
radar, especially over the large central wind farm. This effect in
Figure 8 could be due to anomalous propagation which can occur
regularly, especially with the frequency of temperature inversions
in summer mornings (Bodine et al., 2011). It should be noted
though that this is not an abnormal anomalous propagation case
as it occurs regularly and can become much more severe. Norin
(2015) finds a similar effect in Doppler radar measurements in
Sweden. They analysed the beam height with distance to look for
anomalous propagation and found that changes in height were
only small in the area over the turbines. They suggest another
possibility could be the radar beam scattering from increased
levels of dust and turbulence above the turbine, but as seen in
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(a) (b) (c) (d)
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Figure 7. (a)–(h) Empirical Probability Density Functions (PDFs) for OffShore (OffS) and OnShore (OnS) wind farms in blue dashed and black respectively. Ground
Clutter (GC) distributions are shown in red.

Figure 8. (a)–(e) Example of wind-farm clutter observed in reflectivity scans by the Thurnham radar at multiple elevations at 1320 UTC 23 June 2014.

Figure 8, the 4.0◦ elevation scan shows clutter even as the beam
centre is approximately 5 km above the turbines. The most likely
reason seems to be detection by the radar side lobes.

Wind turbines are known to create beam blockage effects in
low-elevation scans (Norin and Haase, 2012) and considerably
affect beam shape when positioned within 10 km of the
radar (Belmonte and Fabregas, 2010). World Meteorological
Organisation (WMO) guidelines state that beyond 45 km turbines
are generally not observed, and that it is only an intermittent
impact zone (WMO, 2010). The Operational Programme for
the Exchange of weather RAdar information (OPERA) guidelines
suggest 20 km as the furthest distance from C-band weather radars
at which wind-farm projects need to be submitted for impact
studies (OPERA, 2010). However as shown in Figure 8 there can
be a notable impact on the radar scans even at a distance of 100 km.
This is a complex problem as there is a continually growing need
for renewable energy, and offshore wind farms can provide a large
percentage of the total energy necessary for the United Kingdom
(Sinden, 2007). Instead of restricting the building areas, perhaps

more should be researched into stealth techniques (Pinto et al.,
2010; Rashid and Brown, 2011), in addition to improved wind
turbine identification algorithms. Reduction of side lobes would
likely reduce the significance of turbine clutter effects.

During precipitation there is less of a problem, as seen in
Figure 9, with significant clutter only affecting the lowest two
elevations, and slight effects at 2.0◦. This reinforces the need for
an identification algorithm beyond a static clutter map as in this
case higher-level precipitation would be unnecessarily removed.
However, this causes an inability to replace precipitation at the
lowest elevations with the elevations above, leaving holes in the
data. Park and Berenguer (2015) account for the space–time
variability of the precipitation field from clutter-corrected scans.
The authors compare the value added by six different methods
including interpolation and extrapolation in space and volumetric
and temporal reconstruction. The usefulness of the different
methods varies based on the precipitation types, for example
with vertical extrapolation working well during deep convection
due to smaller vertical gradients. A significant drawback for the

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. (2016)



W. Hall et al.

Figure 9. (a)–(c) Example of wind-farm clutter observed during precipitation in reflectivity scans by the Thurnham radar at multiple elevations at 1740 UTC 26
December 2014.

Figure 10. (a) Uncorrected clutter-only Thurnham radar scan showing clutter echoes, including two large wind-farm clusters. (b) Scans corrected with the original
ground-clutter PDFs, and (c) the new PDFs that include wind-farm measurements.

application of this method for the large wind farms in this case
would be due to the size and shape of the clutter, as there is a
single block of around 150 pixels which would make interpolation
very difficult, in particular during convective precipitation.

4. Clutter removal

4.1. Thurnham validation

A method described in Rico-Ramirez and Cluckie (2008), based
on PDFs obtained from an earlier version of the Thurnham radar,
was initially used to try to identify the wind-farm clutter and used
as a benchmark on which to compare the new classifier. This
algorithm uses fuzzy logic and all available polarimetric variables
and textures to determine the echo types at each pixel. However
due to the usage of PDFs that consisted of data collected only
from standard ground clutter, the algorithm failed to remove
the entirety of the wind farms, shown in Figure 10. The wind
farms have a smoother appearance and lower texture values
so the algorithm classified them as precipitation rather than
clutter. With the addition of the wind-farm clutter dataset to
form an amalgamated ground-clutter and wind-farm PDF the
same algorithm then fully identified and removed the wind-farm
regions (Figure 10(c)).

The ability of the algorithm to keep true precipitation pixels
needs to be tested. There are no available rain-gauges off the
coast in the wind-farm regions, so the truth comes from the
validation sets of precipitation, ground-clutter and wind-farm
measurements from Thurnham. A total of 160 000 precipitation
and wind-farm clutter pixels from events of differing synoptic
conditions and seasons were used as validation. Different
combinations of the seven empirical PDF variables (Figure 6)
will be used to observe which variable set is most proficient for
wind-farm identification.

Using the new empirical PDFs, which include the collected
wind-farm data, there is a noticeable improvement in HSS
for all of the variable combinations shown in Table 2. Due
to the similarity between the precipitation and wind-farm

Table 2. HSS and FAR statistics for the classifiers combining different inputs for
the Thurnham validation data set.

Using either GC
or both GC and WF data

GC GC and WF

HSS
(%)

False
PR (%)

HSS
(%)

False
PR (%)

1. All 67.4 0.05 96.8 1.24
2. t(ZDR), t(�DP) and VH 57.9 0.05 93.1 0.46
3. t(ZH), t(ρHV) and VH 88.6 9.70 90.9 1.08
4. t(ZH), t(ZDR), t(ρHV), t(�DP) and VH 43.1 0.05 95.8 1.16

Here ‘t’ represents the texture of that variable. Methods using only Ground Clutter
(GC) in PDFs are compared to using both GC and Wind Farm (WF) data in
PDFs.

signals a new metric is added which shows the percentage of
precipitation (PR) pixels incorrectly classified as clutter (FalsePR).
The FalsePR values here however are similar to those obtained
by Seo et al. (2015) through the use of a decision tree approach
using carefully considered variables. They find a large increase
in the misidentification of precipitation pixels beyond 100 km
due in part to beam broadening and overshooting at that
range.

The usage of all variables results in a slightly lower HSS;
however as mentioned in Rico-Ramirez and Cluckie (2008) it
can be more robust to use all variables instead of relying only
on a small number of polarimetric measurements due to possible
complications with some radar measurements, such as noise. As
the Wind Farm (WF) and Ground Clutter (GC) signals are very
different for t(�DP) and slightly for t(ρHV) there is a substantial
change in HSS in combination 4 when the WF data are included
in the classification.

Sea clutter can be identified due to its properties of low ρHV

(<0.6) and a high frequency of non-zero radial velocity signatures
(Rico-Ramirez and Cluckie, 2008). This can cause a problem with
the usage of these empirical PDFs as non-zero velocity values are
associated strongly with rainfall. In addition both sea clutter and
rainfall have low reflectivity textures, so the decision was made
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to not amalgamate sea clutter with ground and wind-farm clutter
as there would be too much overlap with precipitation. The
results of a test to compare the amalgamation of clutters against
separated membership functions are shown in Table 3. For this
case only 10 000 sea-clutter validation pixels could be used, as sea
clutter is a rare occurrence causing small numbers of relatively low
reflectivity pixels, so for this test 10 000 of each clutter type were
compared with 30 000 precipitation pixels. When all variables are
used the HSS and FalsePR values are similar; however, problems
arise for the sea-clutter (SC) separation method as fewer variables
are used with a steep increase in FalsePR percentages. The texture
of �DP proves to be valuable while t(ZH) and t(ρHV) show
lesser value with minimal change in classifier ability between
combinations 4 and 2. The ability for the algorithm to be
robust even with fewer variables is important as LDR is not
available for every scan, and sometimes operational difficulties
occur when measuring some variables (Rico-Ramirez and
Cluckie, 2008).

Figure 11 shows three examples of classification outputs from
corresponding reflectivity scans. For this classification all variables
are used in addition to a clutter probability map which is shown
as Figure 2. The probabilities from the map will be used as
a multiplier within the fuzzy logic algorithm. This map was
formed from 50 days of clear-air scans spread over the course
of a year. Figures 11(a) and (d) show some problems with
identification of pixels in the edges of the central convective
band being classified incorrectly as clutter, but all but one are
low reflectivity values on the edges of the noisy band. This
illustrates the downsides of the WF and GC merging as it
seems to fare more poorly with noisy areas or highly textured
convective regions; however, it still correctly classifies a vast
majority of the precipitation pixels, especially those in the central
higher reflectivity areas. The classification scheme seems to work
well for the stratiform cases in parts (b) and (c), with the
noisier edge regions of the precipitation bands being classified as
rainfall.

Table 3. HSS and FAR statistics for the classifiers combining different inputs for
the Thurnham validation dataset.

Variable combinations SC separated SC amalgamated

HSS
(%)

False
PR (%)

HSS
(%)

False
PR (%)

1. All 97.5 1.4 97.1 1.1
2. t(ZDR), t(�DP) and VH 80.7 12.4 85.3 0.5
3. t(ZH), t(ρHV) and VH 63.8 34.7 75.2 1.5
4. t(ZH), t(ZDR), t(ρHV), t(�DP) and VH 85.8 12.4 87.1 1.2
5. t(ZH), t(ZDR), t(ρHV), t(�DP) 78.2 27.4 93.7 3.2

Here ‘t’ represents the texture of that variable. Methods using an amalgamation
of Sea Clutter (SC), Ground Clutter (GC) and Wind Farm clutter (WF) in PDFs
are compared to using GC and WF amalgamated with SC separate in PDFs.

4.2. Hameldon Hill validation

To test the ability of the algorithm it has also been applied to
a different radar within the UK Met Office network. The two
radars have similar characteristics; however, the more recently
upgraded Hameldon Hill radar has an updated antenna. The
Thurnham radar produced a peak ρHV of 0.9775 in rain,
whereas the Hameldon Hill radar reached a higher peak of
0.9985 while having a smaller ZDR offset and higher-quality LDR
measurements (Adams et al., 2015). The PDFs are unchanged
from the Thurnham radar. Figure 12 shows that there is again a
significant improvement in clutter removal when the wind-farm
measurements are added to the PDFs with all wind-farm and
ground clutter being removed.

The statistics associated with the different classifier combina-
tions are shown in Table 4. Again, there is an increase in false
classification of precipitation pixels (FalsePR), and an increase in
HSS for all combinations when the wind-farm measurements are
added. Using all variables (combination 1) and also combination
4 are notably very good for HSS and FalsePR, with combination 1

Figure 11. (a)–(c) Uncorrected radar scans displaying bands of precipitation during three events approaching the Thurnham radar with (d)–(f) echo classification
outputs.
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Figure 12. (a) Uncorrected clutter-only Hameldon Hill radar scan showing clutter echoes, including two large wind-farm clusters. (b) Scans corrected with the
original ground-clutter PDFs, and (c) the new PDFs that include wind-farm measurements.

Table 4. HSS and FAR statistics for the classifiers combining different inputs for
the Hameldon Hill validation dataset.

Using either GC
or both GC and WF data

GC GC and WF

HSS
(%)

False
PR (%)

HSS
(%)

False
PR (%)

1. All 58.4 0.02 96.9 0.69
2. t(ZDR), t(�DP) and VH 49.7 0.07 85.8 0.78
3. t(ZH), t(ρHV) and VH 80.2 9.84 92.7 1.40
4. t(ZH), t(ZDR), t(ρHV), t(�DP) and VH 42.4 0.09 92.3 0.10

Here ‘t’ represents the texture of that variable. Methods using only Ground Clutter
(GC) in PDFs are compared to using both GC and Wind Farm (WF) data in
PDFs.

performing the best overall. Perhaps unexpectedly the classifica-
tion statistics are better for Hameldon Hill than Thurnham, even
though the PDF data were taken from the Thurnham dataset.
Using all variables the HSS is similar between Hameldon Hill
and Thurnham; however, the FalsePR value shows some bigger
differences. The algorithm struggles more with the correct identi-
fication of precipitation for the Thurnham radar which is perhaps
due to the poorer antenna quality (as shown by the maximum
ρHV value in rain) leading to noisier edges of the precipitation
areas. In all combinations the Hameldon Hill validation set has
noticeably fewer incorrectly classified precipitation pixels with the
low FalsePR values. This demonstrates a very good and promising
ability for using the algorithm and PDFs for other radars in the
network.

5. Conclusion

Essentially, the findings are that the wind-farm PDFs are different
to the normal ground-clutter distributions with some significant
overlap with precipitation distributions for some variables, and
thus this needs to be accounted for when removing clutter. For
most wind-farm cases it is suitable to use a basic clutter probability
map which would greatly aid in the wind-farm removal but due
to the presence of large wind farms that only appear during
anomalous propagation, the clutter maps cannot be entirely
relied upon. The operational weather radars need to be able to
quickly and easily classify the anomalous propagation wind farms
and correctly leave the true precipitation pixels. Ideally the same
algorithm and method should be applicable to all connected
weather radars in the network without having to change any
limits that can cause incorrect classification due to the need for
separate calibration for each radar. Thus a fuzzy logic approach
works well due to the robust nature of the algorithm. New
farms are built, which will continually be the case as many new
and larger wind farms are proposed each year to account for the

continually increasing renewable energy demands. These different
wind farms can have very different backscatter properties based
on their distance from the radar and the density of the wind
turbines. So an approach based on these limits could cause future
problems. Further, due to the problem of multiple scattering
effects, a variable clutter tail that results in reflectivity values of
up to 30 dBZ nullifies the use of a static clutter map. The usage
of this robust algorithm that can detect the wind-farm clutter in
real time through the use of multiple polarimetric measurements
would be beneficial.

World Meteorological Organisation guidelines on weather
radar and turbine sites state that at 20–45 km the turbines are
generally visible in lowest scan with low impact, and beyond 45 km
they are generally not observed but can be due to propagation
conditions. This is likely the case for single turbines or small
onshore wind farms; however, larger farms should possibly have
their own guidelines for placement as they are continually visible
even at ranges of up to 90 km.

The method is able to be transferred to other radars within the
network without recalibration of the membership functions, as
shown by the high HSS values in the Hameldon Hill validation set.
New wind farms, larger than the London Array, are planned and in
construction in the Moray Firth and near the Norfolk Coast, which
would affect other polarimetric radars in the following years.
These larger farms could have even more significant multiple
scattering effects leading to larger holes in radar data over the
North Sea. However, this algorithm only identifies clutter areas in
weather radar measurements, but additional work has to be done
on how to interpolate these clutter areas with adequate rainfall
measurements.
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