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Prediction of gestational age based on
genome-wide differentially methylated
regions
J. Bohlin1* , S. E. Håberg1, P. Magnus1, S. E. Reese2, H. K. Gjessing1, M. C. Magnus1, C. L. Parr1, C. M. Page1,
S. J. London2† and W. Nystad1†

Abstract

Background: We explored the association between gestational age and cord blood DNA methylation at birth and
whether DNA methylation could be effective in predicting gestational age due to limitations with the presently
used methods. We used data from the Norwegian Mother and Child Birth Cohort study (MoBa) with Illumina
HumanMethylation450 data measured for 1753 newborns in two batches: MoBa 1, n = 1068; and MoBa 2, n = 685.
Gestational age was computed using both ultrasound and the last menstrual period. We evaluated associations
between DNA methylation and gestational age and developed a statistical model for predicting gestational age
using MoBa 1 for training and MoBa 2 for predictions. The prediction model was additionally used to compare
ultrasound and last menstrual period-based gestational age predictions. Furthermore, both CpGs and associated
genes detected in the training models were compared to those detected in a published prediction model for
chronological age.

Results: There were 5474 CpGs associated with ultrasound gestational age after adjustment for a set of covariates,
including estimated cell type proportions, and Bonferroni-correction for multiple testing. Our model predicted
ultrasound gestational age more accurately than it predicted last menstrual period gestational age.

Conclusions: DNA methylation at birth appears to be a good predictor of gestational age. Ultrasound gestational
age is more strongly associated with methylation than last menstrual period gestational age. The CpGs linked with
our gestational age prediction model, and their associated genes, differed substantially from the corresponding
CpGs and genes associated with a chronological age prediction model.

Background
Determination of gestational age (GA) is important for
assessing due dates, giving adequate prenatal care, and
suggesting appropriate interventions in preterm and
post-term pregnancies. In Norway it is common clinical
practice to assign pregnant women a due date based on
the date of the last menstrual period (LMP). Around
pregnancy week 18 a routine ultrasound examination,
attended by almost all pregnant women, is used to calcu-
late more precise estimates of GA and due date [1].
Although ultrasound-based estimates of GA are more
precise in predicting the birth date than estimates based

on the last menstrual period, LMP-based estimates may
be preferred in some circumstances [2, 3]. There is wide
variability in estimated GA even when ultrasound is used
[4]. Ultrasound GA predictions eliminate uncertainties
such as inaccurate reporting of the date of LMP and vari-
ability in the follicular phase length, although they assume
uniform fetal growth during early pregnancy, which is
only approximately true [5]. Hence, there is room for
more accurate methods for estimating GA, which would
be of great benefit in clinical practice.
There is growing interest in understanding the role of

DNA methylation and its relation to GA in newborns. A
study comprising 259 newborns, based on the Illumina
HumanMethylation27 platform mapping approximately
28,000 CpG sites genome-wide and covering close to half
the genes in the human genome, identified a number of
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candidate genes that were associated with GA [6].
Employing the CHARM 2.0 assay consisting of 2.1 million
probes (covering 5.2 million probes arranged into probe
groups) [7], Lee et al. performed a similar genome-wide
screening, from a sample size of 187 newborns, and iden-
tified differentially methylated CpGs in the neighborhood
of three genes (NFIX, RAPGEF2, and MSRB3) [8]. A more
recent study, based on the Illumina HumanMethyla-
tion450 technology and longitudinal data from the Avon
Longitudinal Study of Parents and Children (ALSPAC)
cohort [9], found an association between DNA methyla-
tion and GA that appears to fade by early childhood [10].
Finally, birth weight correlates with GA and it has been
shown that DNA methylation is associated with birth
weight in newborns [11].
There has also been increased interest in exploring the

relationship between DNA methylation and chronological
age in humans. One study reported a fairly precise predic-
tion of chronological age in humans using a small set of
CpGs identified from several DNA methylation datasets
[12]. These datasets were generated from many different
studies, all of which were based on the Illumina Human-
Methylation450 platform, assessing epigenetic effects from
a multitude of cell types and disease-specific endpoints
[12]. The strong relationship between DNA methylation
and chronological age indicates that methylation analysis
may be used as a tool in forensic age prediction [13].
Given the previous studies showing robust methylation
signatures of GA, we reasoned that methylation data
could also be used to predict GA.
The Norwegian Mother and Child Cohort Study (MoBa)

[14, 15] contains genome-wide methylomes, as mapped by
the Illumina HumanMethylation450 platform, for 1753
newborns. The 1753 newborns were sampled from the
MoBa cohort and the methylation data were generated at
two different points in time. The first batch, henceforth
referred to as MoBa 1, containing 1068 newborns, was
extracted and processed in 2011. The second batch, MoBa
2, which in the present study is only used for replication,
includes 685 newborns and was processed in 2013. MoBa
also had information on GA at birth estimated from both
ultrasound measurements, near pregnancy week 18, as
well as the LMP. Having a larger sample size than previ-
ous studies, we wanted to further explore the associations
between GA and DNA methylation and the possibility of
estimating GA, as has been demonstrated for chrono-
logical age [12]. We also examined whether the CpGs and
genes that predict chronological age overlapped with
CpGs and genes we found predictive for GA.

Results and discussion
Gestational age and methylation
Robust MM-type linear regression was performed on
MoBa 1 with CpG sites (β values) as the outcome variables.

After correcting for a set of covariates (see the “Methods”
section and Table 1; Table 2 contains the corresponding
covariate statistics for the MoBa 2 dataset), we found ap-
proximately 5474 differentially methylated CpGs associated
with GA calculated using ultrasound (10,784 CpGs when
LMP-based estimations were used) after adjusting for mul-
tiple testing using Bonferroni correction (pB < 0.05, 473,731
tests; Fig. 1). Figure 2 indicates that the significant CpGs
were predominantly decreased in methylation (3911 versus
1563), which may suggest that increasing GA is associated
with increased expression of genes linked to the differ-
entially methylated probes as the CpGs mapped by the
Illumina HumanMethylation450 platform are predom-
inantly located in the promotor regions [16]. Using the
less strict false discovery rate (FDR) correction for
multiple testing [17], 44,359 probes (44,544 probes for
LMP estimations) were found to be significant (q < 0.05,
473,731 tests). All statistical analyses described here were
performed using the MoBa 1 dataset. More information
regarding these CpGs can be found in Additional file 1:
Tables S1 and S2.

GA prediction by ultrasound and LMP estimates
To facilitate prediction of GA, we used Lasso regres-
sion from the elastic net package “glmnet” [18] (see
“Methods” for more details on how and which regres-
sion models were tested). The Lasso-based regression
model was trained with several different constellations
of the MoBa 1 dataset. To reduce biases from factors
assumed to influence GA prediction, we first trained
the regression model with the FDR and Bonferroni-
significant CpGs from both LMP- and ultrasound-
based regression models discussed in the previous
section. In addition, we trained Lasso-regression
models with the complete MoBa 1 dataset comprising
1068 samples (newborns) and 473,731 CpGs. The
complete MoBa 2 dataset, containing 685 samples and
473,731 CpGs, was subsequently used for prediction of
GA with the trained Lasso regression models. The
Lasso-based GA predictions for both LMP and ultra-
sound were respectively compared to the LMP- and
ultrasound-based GA estimations obtained from the
MoBa cohort study using MM-type robust regression.
As can be seen from Table 3, the performance of the
LMP-based models was notably inferior to that of the
ultrasound-based models in terms of both model fit
(R2) and standard error measured as days within a 95 %
prediction interval. All Lasso models were comparable
in performance but those trained with the complete
MoBa 1 dataset retained substantially fewer CpGs than
the other models; therefore, our primary focus will be
on these models. A visualization of the performance of the
MoBa 1 trained model can be seen in Fig. 3. Information
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regarding the CpGs used in the respective prediction
models can be found in Table 4 and Additional file 1:
Table S3.

Previously identified GA-related CpGs and genes
As mentioned, previous studies have identified a num-
ber of significant CpGs with respect to GA. These stud-
ies were carried out using different DNA methylation
assays, such as the previous generation Illumina Human-
Methylation27 platform [6], the CHARM 2.0 assay [7],
and more recently the Illumina HumanMethylation450
platform [10]. The number of individuals used in these
studies was considerably smaller than in the present, with
the exception of the Aries (ALSPAC)-based study, which
included up to 974 samples [10]. Nevertheless, a total of
260 CpGs (representing 183 unique genes) were reported
from both the Schroeder et al. [6] and Aries [10] studies,
which was considerably fewer than the number of CpGs
identified in the present study (Table 4). Out of the total
3654 CpGs found to be differentially methylated with re-
spect to GA in the MoBa cohort, 223 CpGs (linked to 138
genes) out 260 CpGs were found to overlap with those
found by the previous two studies (130 genes overlapped

with the 183 genes from the Schroeder et al. and Aries
studies). However, out of the 223 overlapping CpGs found
to be significantly differentially methylated with respect
to GA in our study, only 26 CpGs (associated with 17
unique genes) were found to overlap with the CpGs
used in the ultrasound/LMP-based prediction models,
with only ten CpGs (covering five genes) overlapping
among these again (Additional file 1: Table S4). It
should be noted that the Schroeder et al. study [6] was
based on the Illumina HumanMethylation27 platform
and one CpG (cg20337106 mapping to gene C6orf139)
was not present amongst the CpGs mapped by the
HumanMethylation450 platform. See Tables 4 and 5 (as
well as Additional file 1: Tables S4) for more details.
The Lee et al. study [8] reported three genes, NFIX,

MSRB3, and RAPGEF2, associated with GA. Since that
study used the Charm 2.0 platform [7], which is based
on a different technology to the Illumina Human-
Methylation450 BeadChip employed in the present
study, we checked for the presence of CpG sites,
mapped by the Illumina platform, linked to the re-
spective genes reported. Twelve CpGs were found for
the NFIX gene, four for MSRB3 gene, and one for the
RAPGEF2 gene amongst the total of 12,604 unique
Bonferroni significant CpGs for both ultrasound- and
LMP-based regression models. Out of the 131 unique
significant CpGs employed in both ultrasound- and
LMP-based GA prediction models, no overlapping
genes were found with the genes identified by the Lee
et al. study. Hence, while the genes reported by Lee et
al. were found to have differentially methylated CpGs
in our study, CpGs associated with these genes were
not used in either the ultrasound- or LMP-based GA
prediction models.
The 96 CpGs used to train the ultrasound-based GA

prediction model mapped to 64 unique genes, while the
58 CpGs used to train the LMP-based GA prediction
model mapped to 43 unique genes. Twenty-two genes
were found to overlap between the ultrasound- and
LMP-based prediction models. See Additional file 1:
Tables S5 for more details regarding overlapping genes.
The low number of overlapping CpGs between our
ultrasound and LMP GA prediction models as well as
the above-mentioned studies is puzzling and indicates
that the association between GA and DNA methylation
may be, more generally, linked to genome-wide devel-
opment and/or changes to white blood cell profiles,
which vary in ratio between cord blood and peripheral
blood [10]. Cord blood is also known to contain stem
cells and an increased number of stem cells that change
DNA methylation profiles during gestation would most
likely correlate with GA [19]. We did, however, try to
correct for putative cell type influences using both
principal components [20] and the method described

Table 1 Covariates used in the preliminary regression
models—MoBa 1

Covariate Occurrence/mean value N

Child’s sex, male 53.2 % 568/1068

Mean age of
mother at birth

29.9 (95 % CI 29.7–30.2) 1068

Maternal smoking
during pregnancy

14.6 % 156/1068

Caesarian section 11.5 % 123/1068

Asthma at 3 years 32.9 % 351/1068

Ultrasound
estimated GA

279.6 (95 % CI 279–280.3) 1048

LMP estimated GA 282.3 (95 % CI 281.6–283.00) 1030

CI confidence interval

Table 2 Study population —MoBa 2

Covariate Occurrence/mean value N

Child’s sex, male 56.1 % 384/685

Mean age of
mother at birth

30.0 (95 % CI 29.7–30.3) 685

Maternal smoking
during pregnancy

10.2 % 70/685

Caesarian section 13 % 89/685

Asthma at 3 years 21.3 % 104/489

Ultrasound
estimated GA

279.4 (95 % CI 278.5–280.2) 644

LMP estimated GA 281.5 (95 % CI 280.7–282.4) 615

CI confidence interval
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by Houseman [21] but with negligible effect with re-
spect to the performance of the prediction models.

Gene ontology
The 22 genes found to overlap for both the ultrasound
and LMP prediction models were examined with both
DAVID (updated May 2016) [22, 23] and GOrilla (updated
June 25, 2016) [24] databases in order to shed more light
on the putative epigenetic influences responsible for the
fairly accurate GA predictions observed in our study.
However, FDR-significant associations were not identified
with either DAVID or GOrilla (q > 0.35) and since the
results from DAVID did not add anything to those
from GOrilla, we only present results from the latter.
GOrilla identified “Nuclear matrix” (GO:0016363,
genes “NCOR2”, “DNMT3A”, “HLCS”, p = 2.32E-4),
“Chromatin” (GO:0000785, genes “NCOR2”, “HGMA1”,
“DNMT3A”, “HLCS”, p = 6.19E-4) (in the component
ontology) “Positive regulation of cellular senescence”
(GO:2000774, genes “HMGA1”, “YPEL3”, p = 2.49E-5)
“Positive regulation of cell aging” (GO:0090343, genes
“HMGA1”, “YPEL3”, p = 3.48E-5), “Cellular response to

ethanol” (GO:0071361, genes “DNMT3A”, “ADCY7”,
p = 9.08E-5), “Negative regulation of gene silencing”
(GO:0060969, genes “NCOR2”, “HMGA1”, p = 2.51E-4),
“Regulation of cellular senescence” (GO:2000772, genes
“HMGA1”, “YPEL3”, p = 4.9E-4) and “Regulation of cell
aging” (GO:0090342, genes “HMGA1”, “YPEL3”, p =
8.05E-4)“ (in the process ontology). While not FDR-
significant, it was of interest to note that several of the
pathways identified were related to cell aging and cellular
senescence.

Gestational age and chronological age
The prediction model for chronological age previously
mentioned [12] was also based on a glmnet-trained
model using 353 CpGs from the same Illumina Human-
Methylation450 platform employed in the present study.
These CpGs were compared to the ones used in both
our ultrasound- and LMP-based GA prediction models.
Surprisingly, we found that only one CpG (cg08965235
associated with the gene LTBP3) common to both ultra-
sound GA and chronological age prediction models (only
cg08965235 and cg11299964, respectively, associated with

Fig. 1 A Manhattan plot of regression model-based estimates of 473,731 CpGs (response) with ultrasound estimated gestational age as the ex-
planatory variable. The regression model was adjusted for selection bias, offspring sex, maternal smoking, caesarian section, and estimated
cell-type differences
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the genes LTBP3 and MAPKAP1 for the LMP GA predic-
tion model). Since multiple CpGs mapped by the Illumina
HumanMethylation450 BeadChip platform are linked to
each gene, we also examined the number of overlapping
genes and found one for the ultrasound-based prediction
model, LTBP3 (two for LMP-based prediction model:
LTBP3 and TOM1L1). The difference between GA- and
chronological age-related DNA methylation has been ex-
amined in greater detail in the Aries cohort study, which
included DNA methylation data from cord blood as well

as for ages 7, 15, and 17 years [10]. Furthermore, the
substantially larger number of unique genes linked to
the CpGs used by the respective prediction models
(297, 64, and 43 genes for the chronological age and
ultrasound and LMP GA prediction models, respect-
ively) may suggest that different mechanisms linked to
aging may be operating throughout life, something also
mentioned in the Aries study [10]. The CpGs and genes
that differed between the GA and chronological age
prediction models can also be seen in Additional file 1:
Tables S5.

Practical implications
The prediction model described here is based on DNA
extracted from cord blood from newborns. Our GA
predictor establishes a more assured link between GA and
methylation, which may have important applications. For
instance, since GA is related to many childhood health
outcomes, being able to assess GA in circumstances where
it is uncertain or unresolved could be critical for effective
treatment. Furthermore, blood spots from newborns are
routinely stored and can be useful to study in utero factors
related to childhood disease. For such studies, GA can be
determined by using methylation analyses and, thus, be
adjusted for when a potential confounder. Although we
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Fig. 2 A volcano plot based on the 5474 significant CpG coefficient estimates (horizontal axis), resulting from the ultrasound estimated GA-based
regression models, plotted against the corresponding pB values (vertical axis). Negative coefficient estimates indicate decreased methylation, while
positive estimates designate increased methylation

Table 3 GA prediction results

R2 SE Number of CpGs

Ultrasound (Bonferroni adjusted) 0.65 12.7 105

LMP (Bonferroni adjusted) 0.52 14.6 84

Ultrasound (FDR adjusted) 0.67 12.4 132

LMP (FDR adjusted) 0.53 14.5 107

Ultrasound (MoBa 1) 0.66 12.5 96

LMP (MoBa 1) 0.5 14.9 58

Boferroni/FDR refers to Lasso models trained with CpGs from the regression
model adjusted for a set of covariates, including cell-type, as well as multiple
testing. MoBa 1 models were trained using the complete MoBa 1 methylation
data. The R2 column shows the goodness-of-fit statistics, based on MM-type
robust regression, followed by standard error (SE) in ± days (95 % prediction
interval) and the rightmost column designates the number of CpGs retained in
each model
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used a class of models that are widely referred to as
“prediction” models, for this purpose, we are “estimating”
GA after birth rather than predicting it in advance. For
true prediction before birth, one would need fetal blood
while still in utero, which is difficult to obtain and extrac-
tion of which is associated with high risk. Using fetal cells
in the maternal circulation, however, the method pre-
sented here might eventually enable actual prediction of
GA and the due date in pregnant women.

Conclusions
We found that DNA methylation signatures at birth were
strong predictors of GA. In addition, the prediction was
more precise for ultrasound GA than for LMP GA. This is
not unexpected, however, since ultrasound is generally
regarded as a more reliable way to estimate GA amongst
practitioners. Genes associated with chronological age do
not appear to be strongly linked to genes associated with

GA, suggesting that different epigenetic mechanisms are
at work during different stages of life.

Methods
Study population
MoBa cohort
For this analysis, we included 1068 + 685 newborns
sampled at different occasions from the Norwegian Mother
and Child Cohort Study (MoBa), which has previously
been described in detail [11, 14, 15] (Tables 1 and 2). The
data collection in MoBa is approved by the Norwegian
Data Inspectorate and the Institutional Review Board of
the National Institute of Environmental Health Sciences,
National Institute of Health, USA. The current study was
also approved by the Regional Committee for Medical and
Health Research Ethics of South East Norway.

Variables
GA estimates at birth were collected from the Medical
Birth Registry of Norway, for which it is mandatory for
health professionals at birth clinics to report birth out-
comes. The birth registry provides two estimates for preg-
nancy length (GA), one based on ultrasound measurements
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Fig. 3 Output from the regression models with ultrasound- and LMP-estimated gestational age (GA) as the response (vertical axis) and predicted
GA as the explanatory variable (horizontal axis) in the left and right panels, respectively. The models, which were based on 96 (ultrasound) and 58
(LMP) CpGs, were trained using 1068 samples from MoBa 1. Prediction was carried out on 685 samples from MoBa 2. The dotted lines represent
the adjacent regression estimates

Table 4 Number of CpGs associated with the different
prediction/regression models

Ultrasound CpGs pB < 0.05 (FDR q< 0.05) 5474 (44,359)

LMP CpGs pB < 0.05 (FDR q< 0.05) 10,784 (44,544)

Common (intersect) 3654

Total unique CpGs (union) 12,604

Ultrasound predictor CpGs 96

LMP predictor CpGs 58

Overlapping predictor CpGs 23

Total unique predictor CpGs 131

Ultrasound unique predictor CpGs 73

LMP unique predictor CpGs 35

Table 5 Overlapping CpGs with previous studies

Total unique ultrasound and LMP CpGs pB <0.05 12,604

Significant CpGs in Schroeder/Aries studies 260

Overlapping ultrasound and LMP CpGs with Schroeder and
Aries studies

223

Unique predictor CpGs from both ultrasound/LMP models 131

Overlapping predictor CpGs with Schroeder and Aries 26

The number of CpGs associated with GA in our study found to overlap with
CpGs in other studies on GA
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from around week 18 of pregnancy and one based on
the maternally reported LMP. The birth registry also
provided data on maternal age. Information on mater-
nal education was obtained from the MoBa question-
naire for early pregnancies completed by the mother or
based on data from the Medical Birth Registry of
Norway (MBRN) [14, 15]. Additional details regarding
the covariates particular to MoBa 1 in the present study
can be found in Table 1 (Table 2 contains similar infor-
mation for the MoBa 2 covariates).

Pre-processing and quality control of methylation datasets
MoBa 1
The methylation data set used for training the prediction
models consisted of 1204 Illumina HumanMethylation450
arrays based on cord blood DNA, each having 485,577
probes before quality control. Only singletons from
unique mothers were included. Arrays not fulfilling the
5 % detection p value were removed together with all du-
plicates. Examination of plate effects revealed no bias;
therefore, between-array normalization was not per-
formed. However, within-array normalization was carried
out using BMIQ from the wateRmelon package [25] to
calibrate bias in type I and II probe technology. In
addition to the Illumina control probes, we removed all
probes on the X and Y chromosomes, resulting in total of
1068 arrays each consisting of 473,731 probes. For
complete information and details regarding quality control
of the Illumina HumanMethylation450 data used in the
present study see [11, 26].

MoBa 2
This replication dataset consisted of the methylomes
from 864 newborns each of which contained 485,577
probes. Only singletons from unique mothers were
included in the dataset. All duplicates were removed and
arrays not fulfilling the 5 % detection p value were
excluded. Examination of the dataset revealed some
mild-to-moderate plate effects; therefore, ComBat, utiliz-
ing empirical Bayes methodology, from the R package
sva [27], was used for between-array normalization.
Within-array normalization of type I and II probes was
performed using BMIQ from the R package wateRmelon
[25]. After exclusion of probes associated with the X and
Y chromosomes, the Illumina control probes, and probes
not found in the MoBa 1 dataset, the total number of
probes was 473,731 for each of the 685 samples retained.
Complete information regarding preparation of cord
blood and quality control can be found in recent publi-
cations by Joubert et al. [28, 26].

Statistical analysis
MM-type robust linear regression [29] was first performed
on the MoBa 1 newborn methylomes, with β values

(0 ≤ β ≤ 1) from each of the 473,731 CpG sites as outcome
variables. GA reported for the MoBa cohort (ultrasound/
LMP) was the explanatory variable. The regression models
were adjusted for a set of covariates believed to be poten-
tial confounders. These included cell type composition
estimates based on the Houseman procedure [21] (as
computed from the minfi package with the Reinius dataset
used as reference [30, 31]), child’s sex, maternal smok-
ing, maternal age, study design (asthma diagnosed later
at three years yes/no) and caesarian section (yes/no).
Gestational age was based on (a) ultrasound measure-
ments at around pregnancy week 18 and (b) reported
LMP. Details regarding these covariates can be found
in Tables 1 and 2 for both MoBa 1 and MoBa 2 data-
sets. We found 5474 CpGs to be significant (pB < 0.05)
for ultrasound-estimated GA (10,784 CpGs for LMP-
estimated GA).

Prediction models
The 5474 and 10,784 CpG probes found to be significant
(pB < 0.05; as well as 44,359 and 44,544 FDR-significant
(q < 0.05) CpG probes) for ultrasound- and LMP-estimated
GA from the regression models discussed in the previous
section were added as predictors to “glmnet” elastic net
models with α set to 0, 0.5, and 1. The most appropriate α
(i.e., type of regression method) was found using leave-
one-out cross-validation. Lasso-type regression (α = 0)
resulted consistently in lower mean-squared error and was
therefore our method of choice for the GA prediction
models. The models based on α values of 0.5 and 1 where
therefore not pursued further. Estimated Lasso penalties
(also found using leave-one-out cross-validation) of 1
standard error above the minimum (λ1se), as suggested by
Breiman [32], were preferred to minimum Lasso-penalties
(λmin) as the latter penalties resulted in models with only a
marginally higher coefficient of determination (R2) than
the former at the cost of retaining a substantially larger
set of CpGs. To test the model’s predictive abilities, we
trained the Lasso model on all 1068 MoBa 1 samples
with Bonferroni- and FDR-significant CpGs obtained
from the regression model discussed in the previous
section. In addition, the Lasso model was trained with
the complete MoBa 1 dataset containing 473,731 CpGs
and 1068 newborns. The corresponding CpGs from the
685 newborns in the MoBa 2 dataset were subsequently
added to the trained Lasso models, which then returned
estimated GAs for each newborn. All Lasso models
were run with the same seed (1999). The predicted
GAs for the 685 newborns from the Lasso model were
regressed against the GA estimations reported by the
MoBa cohort (response variable) using MM-type robust
regression, the result of which can be observed in Fig. 3.
The prediction model accuracy, in days, was reported
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as the 95 % prediction interval based on the robust re-
gression models (Table 3).
Since the “glmnet” model will not run with missing

values, all missing GA estimations and probes were im-
puted using impute from the Hmisc R-package (median
imputation) [33]. The CpGs used in the prediction model
for chronological age are freely available as supplementary
material from the study by Steve Horvath [12]. Further in-
formation regarding the CpGs used in the GA prediction
models can be found in Additional file 1: Tables S3.

Additional file

Additional file 1: An Excel file containing information regarding CpGs
and genes discussed in the present study. Table S1. All pB < 0.05 and q <
0.05 significant CpGs associated with ultrasound-estimated gestational age.
Table S2. All pB < 0.05 and q < 0.05 significant CpGs associated with last
menstrual period-estimated gestational age. Table S3. All unique CpGs
used in both ultrasound and LMP prediction models. Table S4. CpGs
reported by the Aries and Schroeder et al. studies overlapping with the
CpGs used in the prediction models of the present study. Table S5.
Information regarding genes associated with the CpGs from the different
prediction models. (XLSX 8210 kb)
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