
                          McGillivray, I. E. (2011). Riesz-type inequalities and maximum flux
exchange flow. Unpublished. https://arxiv.org/abs/1111.4381

Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). This version (version of record) is also available online via
https://arxiv.org/abs/1111.4381.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73984179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arxiv.org/abs/1111.4381
https://research-information.bris.ac.uk/en/publications/4732b185-7ed6-4174-889e-47adee3c6270
https://research-information.bris.ac.uk/en/publications/4732b185-7ed6-4174-889e-47adee3c6270


ar
X

iv
:1

11
1.

43
81

v1
  [

m
at

h.
A

P]
  1

8 
N

ov
 2

01
1

Riesz-type inequalities and maximum flux exchange flow

I McGillivray
School of Mathematics
University of Bristol
University Walk
Bristol BS8 1TW
United Kingdom

e maiemg@bristol.ac.uk
t + 44 (0)117 3311663
f + 44 (0)117 9287999

Abstract

LetD stand for the open unit disc in R
d (d ≥ 1) and (D, B, m) for the usual Lebesgue measure

space on D. Let H stand for the real Hilbert space L2(D, m) with standard inner product
(·, ·). The letter G signifies the Green operator for the (non-negative) Dirichlet Laplacian
−∆ in H and ψ the torsion function GχD. We pose the following problem. Determine the
optimisers for the shape optimisation problem

αt := sup
{

(GχA, χA) : A ⊆ D is open and (ψ,χA) ≤ t
}

where the parameter t lies in the range 0 < t < (ψ, 1). We answer this question in the one-
dimensional case d = 1. We apply this to a problem connected to maximum flux exchange
flow in a vertical duct. We also show existence of optimisers for a relaxed version of the above
variational problem and derive some symmetry properties of the solutions.

Key words: shape optimisation

Mathematics Subject Classification 2010: 35J20

1 Introduction

Let Ω stand for a bounded open set in R
d (d ≥ 1) and (Ω, B, m) for the usual Lebesgue measure

space on Ω. Let H stand for the real Hilbert space L2(Ω, m) with standard inner product (·, ·).
The letter G signifies the Green operator for the (non-negative) Dirichlet Laplacian −∆ in H and
ψ the torsion function GχΩ. We pose the following problem. Determine the optimisers for the
shape optimisation problem

αt := sup
{

(GχA, χA) : A ⊆ Ω is open and (ψ, χA) ≤ t
}

(1.1)

where the parameter t lies in the range 0 < t < (ψ, 1). We show that optimisers exist for a relaxed
version of this problem and derive certain symmetry properties of the solutions when Ω is replaced
by the open unit ball D. We obtain the explicit form of the optimisers in the one-dimensional
case d = 1 for the open interval D = (−1, 1) .

Define

Vt :=
{

f ∈ H : 0 ≤ f ≤ 1m-a.e. on Ω and (f, ψ) ≤ t
}

for t in the range 0 < t < (ψ, 1) and consider the relaxed variational problem

βt := sup
{

J(f) : f ∈ Vt

}

, (1.2)

where J(f) = (f, Gf). The first main result runs as follows.
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Theorem 1.1. For each t in the range 0 < t < (ψ, 1), there exists f ∈ Vt such that βt = J(f).

In case Ω is replaced by the open unit ball D centred at the origin, we can say more about the
symmetry properties of optimisers. In fact,

Theorem 1.2. Let f ∈ Vt such that βt = J(f). Then f possesses circular cap symmetry.

We now turn to the one-dimensional case d = 1 so that D = (−1, 1) and the torsion function
ψ is given explicitly by ψ(x) = (1/2) ( 1 − x2 ) for x ∈ D. Noting that (ψ, 1) = 2/3, define
ϕ : D → (0, 2/3) by ϕ(x) := (χ(x, 1), ψ), and specify ξt ∈ (−1, 1) uniquely via the relation

ϕ(ξt) = t (1.3)

for each t ∈ (0, 2/3). Set At := (ξt, 1). Then

Theorem 1.3. For any open subset A in D satisfying (ψ, χA) ≤ t it holds that

(GχA, χA) ≤ (GχAt , χAt),

and equality occurs precisely when either A = At or A = −At.

The inequality is somewhat reminiscent of the Riesz rearrangement inequality: this justifies the
epithet in the title. This problem has a probabilistic interpretation in so far as the function GχA
is the expected occupation time in A spent by absorbing Brownian motion in D (associated to
the Laplacian ∆). The d ≥ 2 case has not yet been resolved. It is tempting to speculate that a
hyperbolic cap optimises (1.1) in this case. Numerical evidence does not seem to bear this out,
however [5].

One reason why this problem is intriguing is because of its connection to maximum flux exchange
flow in a vertical duct, a model of lava flow in a volcanic vent (see [4]). In the two-dimensional
case d = 2, we imagine a configuration of two immiscible fluids in D × R with different physical
characteristics in a state of steady flow. The densities of the fluids are labelled ρ, ρ′ and we take
ρ > ρ′. Each fluid has unit viscosity. With respect to cylindrical coordinates (x, z) ∈ D × R,
gravity acts in the direction (0, −1) according to the model. The pressure p depends only upon z
and has constant gradient ∂ p/∂ z = −G. Suppose that the fluid with density ρ occupies a region
in D×R with cross-section A ⊆ D. Restricting the problem to D, the velocity u of the components
of the fluid may be described (informally) using the Navier-Stokes equation via

0 = ∆u+G− ρ g on A;
0 = ∆u+G− ρ′ g on D \A.

Non-slip (Dirichlet) boundary conditions are imposed on the boundary of D. It is also assumed
that u and its gradient are continuous on the interface between the two regions A and D \ A
(continuity of velocity and stress).

The parameter G lies in the interval (ρ′ g, ρ g). This allows the possibility of a bi-directional flow.
Upon rescaling (and relabelling the velocities) we obtain the system

0 = ∆u− λ− 1 on A;
0 = ∆u− λ+ 1 on D \A;

(1.4)

where

λ :=
(ρ′ + ρ)g − 2G

(ρ− ρ′) g
∈ (−1, 1)
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is a proxy for the pressure gradient. Two problems arise. One is to maximise the flux Q :=
(χD\A, u ) amongst all regions A which satisfy the flux balance condition (u, 1) = 0 with constant
λ; the other in which we optimize also over λ. In detail, we seek optimisers for the problems

γ := sup
{

(χD\A, u ) : (u, 1) = 0, A ⊆ D open, λ ∈ (−1, 1)
}

, (1.5)

γλ := sup
{

(χD\A, u ) : (u, 1) = 0, A ⊆ D open
}

, (1.6)

where in the latter λ is fixed in the interval (−1, 1). It turns out that problem (1.1) is closely
related to the two problems above. Note too that these problems have obvious analogues for the
case d = 1.

We come to our last main result. Note that the d = 2 analogue is discussed as a marginal case in
[4].

Theorem 1.4. In case d = 1,

(i) for each λ ∈ (−1, 1), the problem (1.6) is optimised precisely when either A = A 1−λ
3

or

A = −A 1−λ
3

;

(ii) the problem (1.5) is optimised precisely when either A = (0, 1) or A = (−1, 0) and has
optimal value 1/12.

We give a brief sketch of the organisation of the paper. In Section 2, we obtain existence of
optimisers for the relaxed problem (1.2) and derive some symmetry properties when Ω is replaced
by the ballD. Sections 3 to 8 deal with the proof of Theorem 1.3. Section 9 contains an application
to maximum flux exchange flow (Theorem 1.4).

2 Existence of optimisers and symmetry in a general relaxed setting

For the sake of clarity, we first of all remark that the (non-negative) Dirichlet Laplacian (D(−∆), −∆)
is associated with the Dirichlet form (F , E ) in H with form domain F :=W 1,2

0 (Ω) and

E (u, v) = (Du, Dv) (u, v ∈ F ).

We begin with the proof of Theorem 1.1.

Proof of Theorem 1.1. Let (fn)n∈N be a maximising sequence for βt. Now, Vt is weakly sequentially
compact in H . This follows by appeal to [6] Theorem 10.2.9 due to the fact that Vt is bounded,
closed and convex in the reflexive Banach space H . So we may assume that (fn) converges weakly
in H to some f ∈ Vt as n→ ∞ after choosing a subsequence if necessary.

Put un := Gfn. Then for each n,

‖un‖W 1,1
0

(Ω) ≤
√

2m(Ω) ‖un‖W 1,2
0

(Ω).

Additionally,

‖un‖
2
W 1,2

0
(Ω)

= E (un, un) + (un, un) = (fn, Gfn) + (Gfn, Gfn) ≤ (1, ψ) + (ψ, ψ).

In short, the sequence (un) is bounded in W 1,1
0 (Ω). In case d ≥ 2 by the Rellich-Kondrachov

compactness theorem ([3] 5.7 for example), we may assume that (un) converges in L1(Ω, m) to
some element u after extracting a subsequence if necessary. In case d = 1, we use Morrey’s
inequality (see [3] 5.6.2, for example) and the Arzela-Ascoli compactness criterion to extract a
uniformly convergent subsequence. The details are described in the proof of Theorem 3.1.

For each n ∈ N,

(un, ϕ) = (Gfn, ϕ) = (fn, Gϕ) for all ϕ ∈ H ,
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which yields

(u, ϕ) = (f, Gϕ) = (Gf, ϕ) for all ϕ ∈ H

upon taking limits. Therefore, u = Gf m-a.e. on Ω. Moreover,

J(f)− J(fn) = (u, f)− (un, fn ) = (u, f − fn ) + ( fn, u− un )

and the right-hand side converges to zero as n → ∞ in virtue of the weak respectively strong
L1(Ω, m) (or uniform in the case d = 1) convergence of the sequences (fn) respectively (un). As
βt = limn→∞ J(fn) it follows that βt = J(f).

In the remainder of this section, we replace Ω by the open unit ball D in R
d centred at the origin.

We first discuss the operation of polarisation for integrable functions on D (see [2] and references
therein). For ν ∈ Sd−1 the closed half-space H = Hν is defined by

Hν :=
{

x ∈ R
d : x · ν ≥ 0

}

with an associated reflection

τH : Rd → R
d; x 7→ x− 2 (x · ν) ν.

Refer to the collection of all these closed half-spaces by H. The polarisation fH of f ∈ L1
+(D, m)

with respect to H ∈ H is defined as follows. Choose an m-version of f , which we again denote by
f . Set

fH(x) :=

{

f(x) ∧ f(τHx) for x ∈ D ∩H,
f(x) ∨ f(τHx) for x ∈ D \H.

Its m-equivalence class is the polarisation of f . The definition is well-posed.

The Green kernel G(x, y) is given by

G(x, y) = Φ(y − x) − Φ(|x|(y − x∗)) for (x, y) ∈ D ×D \ d,

where Φ is the fundamental solution of Laplace’s equation in R
d, d stands for the diagonal in

D ×D and the decoration ∗ refers to inversion in the unit sphere. We note the inequality

G(x, y) > G(x, τHy) for any x, y ∈ D ∩ int H, (2.1)

which follows from the strong maximum principle.

Theorem 2.1. Let f ∈ L1
+(D, m) and H ∈ H. Then J(f) ≤ J(fH) with equality if and only if

either f = fH or f ◦ τH = fH m-a.e. on D.

Proof. We work with an m-version of f , again denoted f . Define

A+ := {x ∈ D ∩H : f(x) < f(τHx)}

and similarly B+ but with the strict inequality replaced by the sign >. Put A− := τHA
+ and

A := A+ ∪ A−. Set S := D \A. In this notation,

fH = χA f ◦ τH + χS f.

As a consequence,

J(fH) = J(χA f ◦τH)+2 (χA f ◦τH , GχSf)+J(χS f) = J(χA f)+2 (χA f ◦τH , GχSf)+J(χS f)
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and a similar identity holds for J(f) but without composition with reflection. We may then write
that

J(fH)−J(f) = 2

∫

A+

∫

B+

(f(τHx)− f(x))(g(x, y)− g(τHx, y))(f(y)− f(τHy))m(dy)m(dx).

It is clear from this representation with the help of (2.1) that J(f) ≤ J(fH).

In the case of equality, it holds that either m(A+) = 0 or m(B+) = 0. In the former case, f = fH
while in the latter, f ◦ τH = fH m-a.e. on D.

The spherical cap symmetrisation (see [7], [8], [9] for example) of A ∈ B with respect to the
direction ω ∈ Sd−1 is the set A∗ ∈ B specified uniquely by the conditions

A∗ ∩ {0} = A ∩ {0} ,
A∗ ∩ ∂B(0, r) = B(rω, ρ) ∩ ∂B(0, r) for some ρ ≥ 0,
σr(A

∗ ∩ ∂B(0, r)) = σr(B(rω, ρ) ∩ ∂B(0, r)),

for each r ∈ (0, 1). Here, σr stands for the surface area measure on ∂B(0, r). The spherical
cap symmetrisation of f ∈ L1

+(D, m) (denoted f∗ for brevity) is defined as follows. Choose an
m-version of f , which we again denote by f . Let f∗ be the unique function such that

{f∗ > t} = {f > t}∗ for each t ∈ R.

Its m-equivalence class is the polarisation of f . The definition is again well-posed. We also write
f∗ as Cωf .

Before proving Theorem 1.2, we prepare a number of lemmas. We first discuss a useful two-point
inequality. We introduce the notation

Q :=
{

(x1, x2) ∈ R
2 : x1 ≥ 0 and x2 ≥ 0

}

,
R := {(x1, x2) ∈ Q : 0 ≤ x2 < x1} ,
S := {(x1, x2) ∈ Q : 0 ≤ x1 < x2} .

Equip Q with the ℓ1-norm ‖x‖1 := |x1| + |x2| where x = (x1, x2) ∈ Q. Define a mapping
ϕ : Q→ Q via

(x1, x2) 7→ (x1 ∨ x2, x1 ∧ x2).

A geometric argument establishes the following lemma.

Lemma 2.1. For any x, y ∈ Q,

‖ϕx− ϕy‖1 ≤ ‖x− y‖1

with strict inequality if and only if x ∈ R and y ∈ S or x ∈ R and y ∈ S or the same with the
rôles of x and y interchanged.

For ω ∈ Sd−1 introduce the collection of closed half-spaces

Hω :=
{

x ∈ R
d : x · ν ≥ 0

}

.

Lemma 2.2. Let f ∈ L1
+(D, m) and ω ∈ Sd−1. For any H ∈ Hω,

‖fH − Cωf‖L1(D,m) ≤ ‖f − Cωf‖L1(D,m) (2.2)

with strict inequality if

m({f ◦ τH > f}) > 0.
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Proof. Select an m-version of f , again denoted f . Note that f∗
H = f∗. By the two-point inequality

Lemma 2.1,

|fH(x) − f∗(x)| + |fH(τHx)− f∗(τHx)| ≤ |f(x)− f∗(x)| + |f(τHx)− f∗(τHx)| (2.3)

for x ∈ D ∩H . It only remains to integrate over D ∩H to obtain the inequality.

For each x ∈ D ∩ H the pair (f∗(x), f∗(τHx)) belongs to R. By Lemma 2.1 the condition
(f∗(x), f∗(τHx)) ∈ S guarantees strict inequality in (2.3). This observation leads to the criterion
in the Lemma.

The next lemma is a spherical cap symmetrisation counterpart to [2] Lemma 6.3, and extends [7]
Lemma 3.9.

Lemma 2.3. Let f ∈ L1
+(D, m) and ω ∈ Sd−1 and assume that f 6= Cωf . Then there exists

H ∈ Hω such that

‖fH − Cωf‖L1(D,m) < ‖f − Cωf‖L1(D,m).

Proof. For shortness, write f∗ for Cωf . As f 6= f∗ there exists t > 0 such that

m({f > t}∆ {f∗ > t}) > 0.

It follows that the sets A := {f ≤ t < f∗} and B := {f∗ ≤ t < f} are disjoint and have identical
positive m-measure.

We claim that there exists H ∈ Hω such that m(A ∩ τHB) > 0. Taking this as read, on A ∩ τHB
we have that f∗ > t ≥ f∗ ◦ τH so that A ∩ τHB ⊆ H . Also, f ≤ t < f ◦ τH there. In short,
A ∩ τHB ⊆ {f ◦ τH > f} ∩H . So m({f ◦ τH > f}) > 0 and there is strict inequality in (2.2) by
Lemma 2.2.

To prove the claim, we assume for a contradiction that m(A ∩ τHB) = 0 for all H ∈ Hω. Let F
be a countable dense subset in Sd−1 ∩Hω. Then

m(A ∩
⋃

ν∈F

τHνB) = 0.

Therefore, for all r ∈ (0, 1), it holds that

σr(Ar ∩ τHνBr) = 0 for every ν ∈ F,

except on a λ-null set N . Here, λ stands for Lebesgue measure on the Borel sets in R, and
Ar := A ∩ ∂B(0, r) for the section of A (likewise for Br). Let ν ∈ Sd−1 ∩Hω with corresponding
reflection τ = τHν . Select a sequence (νj) in F which converges to ν in Sd−1. Write τj for the
reflection associated to closed half-space Hνj . For r ∈ (0, 1) \N ,

|σr(Ar ∩ τBr)− σr(Ar ∩ τjBr)| ≤ ‖χB − χB ◦ τ ◦ τj‖L1(∂B(0, r),σr),

and this latter converges to zero as j → ∞. This is due to the fact that the special orthogonal
group SO(d) acts continuously on L1(Sd−1, σ). We derive therefore that

σr(Ar ∩ τHνBr) = 0 for every ν ∈ Sd−1 ∩Hω (2.4)

for all r ∈ (0, 1) \N .

To conclude the argument, choose r ∈ (0, 1) \N such that σr(Ar) = σr(Br) > 0. Use Lebesgue’s
density theorem to select a density point x for Ar lying in Ar, and choose y in Br similarly. Then
f∗(x) > t ≥ f∗(y). So there exists ν ∈ Sd−1 ∩Hω such that with τ = τHν we have that τy = x.
But this means that

lim
ε↓0

σr(Ar ∩ τBr ∩B(x, ε))

σr(∂B(0, r) ∩B(x, ε))
= 1,
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so that, in fact, σr(Ar ∩ τBr) > 0, contradicting (2.4).

Proof of Theorem 1.2. Assume for a contradiction that f 6= Cωf for each ω ∈ Sd−1. Then there
exists ω ∈ Sd−1 such that

δ := inf
ν∈Sd−1

‖f − Cνf‖L1(D,m) = ‖f − Cωf‖L1(D,m) > 0.

By Lemma 2.3 there exists H ∈ Hω such that

‖fH − Cωf‖L1(D,m) < ‖f − Cωf‖L1(D,m).

It is plain that f 6= fH . But also f ◦ τH 6= fH , for otherwise,

‖f − Cσωf‖L1(D,m) = ‖fH − Cωf‖L1(D,m) < ‖f − Cωf‖L1(D,m),

contradicting optimality of ω. It follows by Theorem 2.1 that J(f) < J(fH) and this contradicts
the optimality of f in the expression for βt.

3 Preliminaries for the one-dimensional problem

In the remainder of the article we work in the one-dimensional setting where D = (−1, 1). In this
context, the corresponding Green operator G has kernel given by

G(x, y) =

{

1
2 (1− y)(1 + x) for x ≤ y,
1
2 (1 + y)(1− x) for x > y,

(3.1)

for x, y ∈ D. We record the useful inequality
∣

∣G(x, y)−G(x, x)
∣

∣ ≤
∣

∣ y − x
∣

∣ for all x, y ∈ D, (3.2)

for future use. As noted above, the torsion function ψ := GχD is given explicitly by ψ(x) =
(1/2) ( 1− x2 ) for x ∈ D, and

(1, ψ) = 2/3. (3.3)

The Green kernel may be bounded in terms of ψ; that is,

G(x, y) ≤ ψ(x) for all y ∈ D, (3.4)

with fixed x ∈ D.

For t ∈ (0, 2/3) introduce the shape space

Ut :=
{

f = χA : A ⊆ D is open and (f, ψ) ≤ t
}

.

We may then write

αt = sup
{

J(f) : f ∈ Ut

}

. (3.5)

For each t ∈ (0, 2/3) andm ∈ N define U
(m)
t to be the collection of all functions of the form f = χA

where A is a union of at most m disjoint open intervals in D with the additional requirement that
(f, ψ) ≤ t. We occassionally refer to the condition

intA = A. (3.6)

We also introduce the variational problem

α
(m)
t := sup

{

J(f) : f ∈ U
(m)
t

}

. (3.7)

We now derive the crucial property that (3.7) attains its optimum.
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Theorem 3.1. For each t ∈ (0, 2/3) and m ∈ N there exists f ∈ U
(m)
t with (f, ψ) = t such that

α
(m)
t = J(f).

Proof. Let (fn)n∈N be a maximising sequence for α
(m)
t . Each fn may be written in the form

fn =
∑kn
j=1 χAnj for some 1 ≤ kn ≤ m where Anj = (anj , bnj) and

−1 ≤ an1 < bn1 ≤ an2 < bn2 ≤ · · · ≤ ankn < bnkn ≤ 1.

After selecting a subsequence if necessary we may suppose that kn takes a fixed value k for some k
between 1 and m. On appeal to the Bolzano-Weierstrass theorem, we may assume (perhaps after
discarding a subsequence) that anj → aj and bnj → bj as n→ ∞ where

−1 ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ ak ≤ bk ≤ 1. (3.8)

Set f :=
∑k

j=1 χAj where Aj = (aj , bj). By the dominated convergence theorem, (fn) converges
weakly to f in H .

Put un := Gfn as before. Then the sequence (un) is bounded in W 1,2
0 (D) as in the proof of

Theorem 1.1. By Morrey’s inequality (see [3] 5.6.2, for example),

‖ un ‖C0,1/2(D) ≤ c for all n ∈ N

for some finite constant c; in particular,

|un(x) − un(y) | ≤ c |x− y |1/2 for any x, y ∈ D

and any n ∈ N. Thus, (un) forms a bounded and equicontinuous sequence in C(D). By the Arzela-
Ascoli compactness criterion, we may assume that (un) converges uniformly to some u ∈ C(D) as
n→ ∞ after extracting a subsequence if necessary. Now continue the argument as in the proof of

Theorem 1.1 to conclude that α
(m)
t = J(f).

We now show that (f, ψ) = t. First note that (f, ψ) ≤ t; this flows from the fact that f is a

weak limit of elements in U
(m)
t . Suppose for a contradiction that (f, ψ) < t. As (f, ψ) < 2/3,

in (3.8) there must exist j = 0, . . . , k such that bj < aj+1 with the understanding that b0 := −1
and ak+1 := 1. By choosing B to be a suitable (semi-)open interval in [bj , aj+1] we can arrange
that the function f1 := f +χB satisfies the requirement (f1, ψ) ≤ t as well as J(f) < J(f1). This
contradicts the optimality of f .

We now revisit the operation of polarisation in the one-dimensional setting. We use the letter P
to signify the polarisation operator with respect to the closed half-space [0, ∞). Thus, for f ∈ Ut,
the polarisation is defined by

Pf(x) :=

{

f(x) ∨ f(−x) if 0 ≤ x < 1,
f(x) ∧ f(−x) if −1 < x < 0.

(3.9)

Alternatively, suppose that f = χA where A is an open subset of D. Then Pf = χPA where PA
denotes the polarisation of the set A; in other words,

PA = A ∩ τA
⋃

(

A ∪ τA
)

∩ (0, 1) (3.10)

where τ : D → D stands for the reflection x 7→ −x. We shall sometimes refer to the symmetric
resp. non-symmetric parts of PA; that is,

A1 := A ∩ τA;
A2 :=

(

A ∪ τA
)

∩ (0, 1) \A ∩ τA.
(3.11)

Lemma 3.1. Let f ∈ Ut for some t ∈ (0, 2/3). Then the following statements are equivalent:
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(i) f ∈ PUt;

(ii) f = 1 on S := {x ∈ (0, 1) : f(−x) = 1 }.

Proof. Let f ∈ PUt so that f = Pg for some g ∈ Ut. Let x ∈ (0, 1) with f(−x) = 1. Then
1 = f(−x) = Pg(−x) = g(x) ∧ g(−x). So g(x) = 1 and f(x) = Pg(x) = g(x) ∨ g(−x) = 1. On
the other hand, suppose that f = 1 on S. For x ∈ S,

Pf(x) = 1 ∨ f(−x) = 1 = f(x) while Pf(−x) = 1 ∧ f(−x) = f(−x),

and for x ∈ (0, 1) \ S,

Pf(x) = f(x) ∨ 0 = f(x) while Pf(−x) = f(x) ∧ 0 = 0 = f(−x).

In other words, f = Pf .

It is sometimes useful to polarise with respect to the closed half-space (−∞, 0]. To distinguish
between these two polarisations we use the notations P+, P−. In particular,

P−f(x) :=

{

f(x) ∧ f(−x) if 0 < x < 1,
f(x) ∨ f(−x) if −1 < x ≤ 0.

(3.12)

Lemma 3.2. Let f = χA ∈ P+U
(m)
t for some m ∈ N and t ∈ (0, 2/3) where A satisfies condition

(3.6). Put g := χB where B := D \A. Then g is an m-version of 1− f and g ∈ P−U3/2−t.

Proof. We may suppose that A =
⋃k
j=1 Aj for some 1 ≤ k ≤ m and Aj = (aj , bj) with

−1 ≤ a1 < b1 < a2 < b2 < · · · < ak < bk ≤ 1.

We use the criterion in Lemma 3.1. Let x ∈ (−1, 0) such that g(−x) = 1. We first note that x
cannot be a boundary point (that is, x 6∈ {a1, . . . , ak, b1, . . . , bk }). For if it is, then either −x is a
boundary point or −x ∈ A. This is due to the fact that f is polarised to the right. In either case,
we obtain the contradiction that g(−x) = 0. We want to show that g(x) = 1 so suppose on the
contrary that g(x) = 0. Then for y = −x ∈ (0, 1), it holds that f(−y) = 1, but f(y) = 0. This
counters the fact that f ∈ P+Ut by the criterion.

4 A (non-)optimality criterion

In this section we develop a (non-)optimality criterion for configurations f in U
(m)
t . Given f ∈ Ut

define u := Gf . It is known that D(−∆) = W 1,2
0 (D) ∩W 1,2(D). Thus, u ∈ W 2,2(D) and by a

Sobolev inequality (see [3] 5.6.3 for example), u belongs to the Hölder space C1, 1/2(D). Define

h = hf :=
u

ψ
.

Then h ∈ C(D) and by l’Hôpital’s rule,

h(−1) = lim
x↓−1

u′(x)

−x
= u′(−1), (4.1)

and similarly h(1) = −u′(1) at the right-hand end-point. In short, h ∈ C(D).

Lemma 4.1. Suppose that f = χA for some open subset A in D. Let u ∈ C(D). Given a ∈ A∩D,
put Aη := [ a− η, a+ η] for η > 0 small. Then

(i) limη↓0
(fχAη , u)

(fχAη , ψ)
= h(a);
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(ii) limη↓0
(fχAη , G[fχAη ])

(fχAη , ψ)
= 0.

Proof. (i) Notice that A∩(a−η, a+η) 6= ∅ for each η > 0. Consequently, (fχAη , 1) = m(A∩Aη) >
0 for each η > 0 (small) and likewise for (fχAη , ψ). Write

(fχAη , u)

(fχAη , ψ)
=

u(a) (fχAη , 1) + (fχAη , u− u(a))

ψ(a) (fχAη , 1) + (fχAη , ψ − ψ(a))
= h(a) +

ψ(a)ζ1 − u(a)ζ2
ψ(a)(ψ(a) + ζ2)

where

ζ1 :=
(fχAη , u− u(a))

(fχAη , 1)
,

ζ2 :=
(fχAη , ψ − ψ(a))

(fχAη , 1)
.

Both these last vanish in the limit η ↓ 0 and this leads to the identity.

(ii) From the estimate (3.4), for η > 0 small,

ψ−1G[fχAη ] ≤ ψ−1G[χAη ] ≤ 2 η,

and this establishes the limit.

With this preparation in hand we arrive at the crucial (non-)optimality condition.

Theorem 4.1. Let t ∈ (0, 2/3), m ∈ N and f = χA ∈ U
(m)
t . Assume that A satisfies condition

(3.6). Suppose that a, b ∈ D with a 6= b such that

(i) h(a) < h(b);

(ii) a ∈ ∂A;

(iii) b ∈ ∂A.

Then there exists f1 ∈ U
(m)
t such that J(f) < J(f1).

Proof. Write f in the form f =
∑k

j=1 χAk
for some 1 ≤ k ≤ m where Aj = (aj , bj) and

−1 ≤ a1 < b1 < a2 < b2 < · · · < ak < bk ≤ 1.

Given η > 0 put Aη := [a− η, a+ η] and Bη := (b − η, b+ η). Set g := 1− f . The functions

η 7→ (χAη f, ψ) and η 7→ (χBζ
g, ψ)

are strictly increasing at least for η > 0 small. For ε > 0 sufficiently small, there exist unique
η > 0 and ζ > 0 depending upon ε such that

ε = (χAη f, ψ) = (χBζ
g, ψ).

Define

fε := f − f χAη + g χBζ
.

Then fε ∈ U
(m)
t for ε > 0 small. Now

J(fε)− J(f) = (fε, G fε)− (f, G f)

= (fε − f, G
[

fε + f
]

)

= (−fχAη + gχBζ
, G

[

2 f − fχAη + gχBζ

]

)

= 2 (gχBζ
, u)− 2 (fχAη , u) + (gχBζ

− fχAη , G
[

gχBζ
− fχAη

]

) (4.2)

where u = Gf as usual. Thus, by Lemma 4.1 (with the help of the Cauchy-Schwarz inequality to
deal with the cross-terms),

lim
ε↓0

ε−1
{

J(fε)− J(f)
}

= 2(h(b)− h(a) ) > 0.

In particular, there exists ε > 0 (small) such that f1 := fε ∈ U
(m)
t satisfies J(f1) > J(f).
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5 More on the (non-)optimality condition

In this section we verify condition (i) in Theorem 4.1 for some particular configurations f in Ut.

Lemma 5.1. Let f ∈ Ut for some t ∈ (0, 2/3) and set u := Gf . Then

(i) u′(−1) + u′(1) = −
∫

D x f dm;

(ii) u′(−1)− u′(1) =
∫

D
f dm.

Proof. (i) Using ψ′ = −x and the integration-by-parts formula,
∫

D

x f dm =

∫

D

ψ′ u′′ dm

= ψ′(1)u′(1)− ψ′(−1)u′(−1)−

∫

D

ψ′′ u′ dm

= −u′(1)− u′(−1).

(ii) This follows from
∫

D
u′′ dm = −

∫

D
f dm = u′(1)− u′(−1).

Assuming that f 6≡ 0, define a, b ∈ R by

a := inf
{

x > −1 : (χ(−1, x], f) > 0
}

,

1− b := inf
{

x > 0 : (χ[1−x, 1), f) > 0
}

;
(5.1)

so that a ∈ [−1, 1) and b ∈ (−1, 1].

Lemma 5.2. For each f ∈ Ut with f 6≡ 0,

(i) h(y) = 1
1−y

∫

D

(

1− x
)

f dm for each y ∈ [−1, a];

(ii) h(y) = 1
1+y

∫

D

(

1 + x
)

f dm for each y ∈ [b, 1].

Proof. (i) Suppose that a = −1. By (4.1) and Lemma 5.1,

h(−1) = u′(−1) = (1/2)

∫

D

(

1− x
)

f dm.

Now suppose that a ∈ (−1, 1). Using integration-by-parts,

u(y) =

∫

(−1, y]

u′ dm

= −

∫

(−1, y]

u′ ψ′′dm

= −u′(y)ψ′(y) + u′(−1)ψ′(−1) +

∫

(−1, y]

u′′ ψ′dm

= −u′(y)ψ′(y) + u′(−1)

as u′′ = −f = 0 m-a.e. on (−1, a]. For the same reason,

u′(y)− u′(−1) =

∫

(−1, y]

u′′ dm = 0.

Therefore,

u(y) =
(

1− ψ′(y)
)

u′(−1) =
1 + y

2

∫

D

(

1− x
)

f dm

from which the statement is clear. Part (ii) follows in a similar fashion.
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Proposition 5.1. Let f ∈ PUt for some t ∈ (0, 2/3). With a, b as in (5.1) assume that

(i) −1 < a < 0 < −a < b < 1;

(ii) f = 1 m-a.e. on (−a, b).

Then h(a) < h(b).

Proof. From Lemma 5.2,

h(b)− h(a) = −
a+ b

(1− a) (1 + b)

∫

D

f dm+
2− a+ b

(1− a) (1 + b)

∫

D

x f dm.

Put S := {x ∈ (0, 1) : f(−x) = 1 } as in Lemma 3.1. Then

∫

D

x f dm =

∫

S

x { f(x)− f(−x) } m(dx) +

∫

(0, 1)\S

x f dm

=

∫

(0, 1)\S

x f dm ≥

∫

(−a, b)

x f dm = (1/2)(b2 − a2)

making use of (ii). Thus,

(2− a+ b)

∫

D

x f dm ≥ (1/2) (2− a+ b) (b2 − a2) > b2 − a2 ≥ (a+ b)

∫

D

f dm

and hence h(b)− h(a) > 0.

In the next two sections, we show non-optimality of polarised configurations in three broad cases.

6 Two non-symmetric cases

Let t ∈ (0, 1/3] and imagine a configuration polarised to the right that charges the left-hand
interval (−1, 0) but which is not symmetric under reflection in the origin. We show this is non-
optimal.

Lemma 6.1. Let m ∈ N and t ∈ (0, 1/3]. Suppose that f ∈ U
(m)
t satisfies the properties

(i) f = Pf ;

(ii) ( f, χ(−1, 0) ) > 0.

(iii) ( f, χ(0, 1) ) > ( f, χ(−1, 0) ).

Then there exists f1 ∈ U
(m)
t with the property that f1 = P f1 such that J(f) < J(f1).

Proof. We may assume that f = χA where A satisfies condition (3.6). We may then write f in
the form described at the beginning of the proof of Theorem 4.1. By (ii), a1 < 0; and by (i),
bk ≥ −a1.

Case (a): −1 < a1 and bk < 1. Then, in fact, −1 < a1 < 0 < −a1 ≤ bk < 1. Put

k1 := min
{

j = 1, . . . , k : bj ≥ −a1
}

.

Suppose first of all that −a1 = bk1 . Decompose A into its symmetric and non-symmetric parts
A1 and A2 as in (3.11). By (iii), A2 6= ∅. Write f1 := χA1

and f2 := χA2
. By symmetry,

hf1(a1) = hf1(−a1). Further, hf2(a1) < hf2(−a1), this being a consequence of (2.1). Therefore, as
h = hf1 + hf2 , we obtain h(a1) < h(−a1). The conclusion follows with an application of Theorem
4.1.
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If −a1 6= bk1 then −a1 < bk1 and f = 1 on (−a1, bk1). If k1 = k then h(a1) < h(bk) by Proposition
5.1. On the other hand, if k1 < k define

f1 :=

k1
∑

j=1

χAj and f2 :=

k
∑

j=k1+1

χAj .

By Proposition 5.1, hf1(a1) < hf1(bk1). It can be seen from the representation in Lemma 5.2 that
hf2 is increasing on [−1, ak1+1]. In sum, then, h(a1) < h(bk1). Now apply Theorem 4.1 once more.

Case (b): −1 < a1 and bk = 1. In this situation, −1 < a1 < 0 < −a1 < bk = 1. Define k1 as
before. The case k1 < k may be dealt with in a similar way to case (a) above. So assume that
k1 = k. As f is polarised to the right, the interval ((−b1)∨0, −a1) must sit inside A and so it must
hold that ak < −a1. In case t ∈ (0, 1/3), it must also hold that 0 < ak. The situation t = 1/3
and ak = 0 forces ( f, χ(−1, 0) ) = 0 contradicting (ii). In either case, therefore, 0 < ak < −a1 and
k ≥ 2.

Consider the function g := χB where B := D \A. By Lemma 3.2, g ∈ P−U3/2−t. Thus,

−1 < a1 < −ak < 0 < ak < bk = 1,

and g = 1 just to the right of −ak as g is polarised to the left. This situation corresponds to the
one described at the start of the consideration of this case but for g instead of f . Use the fact
that hg = 1− hf .

Case (c): a1 = −1. Then bk = 1 and ak ≤ −b1 as f = Pf . Apply the arguments in case (a) to
the function g.

We now take t ∈ (0, 1/3) and imagine a configuration that lies entirely in the right-hand interval
(0, 1) but that has not yet been pushed rightwards to the maximum extent. We again show
non-optimality.

Lemma 6.2. Let m ∈ N and t ∈ (0, 1/3). Suppose that f ∈ U
(m)
t satisfies the properties

(i) ( f, χ(−1, 0) ) = 0;

(ii) ( f, χ(0, ξt) ) > 0.

Then there exists f1 ∈ U
(m)
t with the property that f1 = P f1 such that J(f) < J(f1).

Proof. Again take f = χA where A satisfies condition (3.6) and suppose f takes the form described
at the beginning of the proof of Theorem 4.1. By (i), a1 ≥ 0 and by (ii), a1 < ξt. Therefore
a1 < b1 < 1; for otherwise, if b1 = 1 then

(f, ψ) ≥ (χ(a1, 1), ψ) > (χ(ξt, 1), ψ) = t.

Again borrowing the notation of Theorem 4.1, put f1 := χA1
and f2 :=

∑k
j=2 χAj . By Lemma

5.2,

hf1(a1) =
1

1− a1

∫

(a1, b1)

(

1− x
)

dm =
b1 − a1
1− a1

{

1− (1/2)
(

a1 + b1
)}

and

hf1(b1) =
1

1 + b1

∫

(a1, b1)

(

1 + x
)

dm =
b1 − a1
1 + b1

{

1 + (1/2)
(

a1 + b1
)}

.

A little algebra yields hf1(b1) > hf1(a1). Lemma 5.2 also indicates that hf2 is monotone increasing
on [−1, a2]. Therefore, h(b1) > h(a1). The conclusion now follows with the help of Theorem
4.1.
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7 The symmetric case

In the last of the three cases, we consider a configuration that is symmetric under reflection in the
origin.

Proposition 7.1. Let m ∈ N and t ∈ (0, 2/3). Suppose that f ∈ U
(m)
t satisfies the properties

(i) f = Pf ;

(ii) ( f, χ(−1, 0) ) > 0;

(iii) ( f, χ(0, 1) ) = ( f, χ(−1, 0) ).

Then there exists f1 ∈ U
(m)
t with the property that f1 = P f1 such that J(f) < J(f1).

Before embarking on the proof of Proposition 7.1, we require a number of supplementary results.

Lemma 7.1. Suppose that f = χA ∈ U
(m)
t for some m ∈ N and t ∈ (0, 2/3). Assume that A

satisfies condition (3.6). Suppose that a ∈ ∂A ∩D. Then

lim
η↓0

(fχAη , G[fχAη ])

(fχAη , ψ)
2

= ψ(a)−1,

where Aη = [a− η, a+ η] as before.

Proof. Write

G[fχAη ](x) = ψ(a) (fχAη , 1) + {ψ(x)− ψ(a) } (fχAη , 1) + r(x)

where r(x) := (G(x, ·)− ψ(x), fχAη ) for x ∈ D. Since ψ(x) = G(x, x), the estimate (3.2) gives

∣

∣ ( fχAη , r)
∣

∣ ≤ 2 η (fχAη , 1)
2.

Forming the inner product we obtain

(fχAη , G[fχAη ]) = ψ(a) (fχAη , 1)
2 + (fχAη , ψ − ψ(a)) (fχAη , 1) + ( fχAη , r).

It is clear from this that

lim
η↓0

(fχAη , G[fχAη ])

(fχAη , 1)
2

= ψ(a).

A short step leads to the assertion.

Lemma 7.2. Suppose that f = χA ∈ U
(m)
t for some m ∈ N and t ∈ (0, 2/3) and that A satisfies

condition (3.6). Suppose that a, b ∈ D with a 6= b such that both a ∈ ∂A and b ∈ ∂A. Put
g := 1 − f . Given ε > 0 sufficiently small there exist unique η > 0 and ζ > 0 depending upon ε
such that ε = (f χAη , ψ) = (g χBζ

, ψ). Then

lim
ε↓0

(fχAη , G[gχBζ
])

ε2
=

G(a, b)

ψ(a)ψ(b)
.

Proof. Write

G[gχBζ
](x) = (G(x, ·), gχBζ

) = G(a, b) (gχBζ
, 1) + r(x)

where r(x) := (G(x, ·) −G(a, b), gχBζ
). For x ∈ Aη and y ∈ Bζ ,

∣

∣G(x, y)−G(a, b)
∣

∣ ≤ η + ζ
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by (3.2). Consequently,

∣

∣ ( fχAη , r)
∣

∣ ≤
(

η + ζ
)

(fχAη , 1) (gχBζ
, 1).

Now,

(fχAη , G[gχBζ
]) = G(a, b) (fχAη , 1) (gχBζ

, 1) + ( fχAη , r),

from which we derive

lim
ε↓0

(fχAη , G[gχBζ
])

(fχAη , 1) (gχBζ
, 1)

= G(a, b),

and the conclusion follows straightforwardly.

Lemma 7.3. Let b ∈ (0, 1) and a := −b. Let η > 0 small and define ζ = ζ(η) via the relation

(χ[a, a+η], ψ) = (χ[b, b+ζ], ψ).

Then ζ depends smoothly upon η in a neighbourhood of η = 0 and

ζ = η +
2 b

1− b2
η2 +O(η3)

in the limit η ↓ 0.

Proof. A short computation gives that

(χ[a, a+η], ψ) = (1/2)
{(

1− a2
)

η − a η2 − (1/3) η3
}

.

Define smooth functions f, g : R → R by

f(η) :=
(

1− b2
)

η + b η2 − (1/3) η3 and g(ζ) :=
(

1− b2
)

ζ − b ζ2 − (1/3) ζ3.

Now f ′(0) = g′(0) = 1 − b2 > 0. In particular, f is strictly increasing in a neighbourhood of
η = 0 and g possesses a local smooth inverse h in the neighbourhood of ζ = 0 by the inverse
function theorem. Note that ζ is characterised by the relation g(ζ) = f(η) for η > 0 small. Thus
ζ = (h ◦ f)(η) and depends smoothly upon η for η > 0 small. Implicit differentiation yields
ζ′(0) = 1 and ζ′′(0) = 4 b

1−b2 . Taylor’s theorem with remainder then yields the expansion.

Proof of Proposition 7.1. We may suppose that f = χA where A satisfies condition (3.6). Define
a as in (5.1). Assume in the first instance that a ∈ (−1, 0). Put b := −a. Conditions (i)-(iii)
entail that f is even. In particular, a, b ∈ ∂A. As in Lemma 7.2 we write

ε = (f χAη , ψ) = (g χBζ
, ψ)

for ε > 0 small. We aim to show that J(fε)− J(f) > 0 at least for ε > 0 small as in Theorem 4.1
and we shall borrow notation without comment from its proof. We first claim that (see (4.2))

lim
ε↓0

J(fε)− J(f)

ε2
= lim

ε↓0
ε−2

{

2 (gχBζ
, u)− 2 (fχAη , u) + (gχBζ

− fχAη , G
[

gχBζ
− fχAη

]

)
}

=
2

ψ(b)2
{ b h(b) + u′(b) + b (1− b) } . (7.1)

As u ∈ C1, 1/2(D) we have that

(fχAη , u) = u(a) η + u′(a) (1/2)η2 +O(η5/2).
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Also, with the help of Lemma 7.3,

(g χBζ
, u) = u(b) ζ + u′(b) (1/2) ζ2 +O(ζ5/2)

= u(b)

{

η +
2 b

1− b2
η2

}

+ u′(b) (1/2) η2 +O(η5/2)

= u(b) η +

{

2 b

1− b2
u(b) +

1

2
u′(b)

}

η2 +O(η5/2).

Now u′(a) = −u′(b) because u is even so

lim
ε↓0

(g χBζ
, u)− (f χAη , u)

ε2
= lim

ε↓0

(η

ε

)2 (g χBζ
, u)− (f χAη , u)

η2
=

1

ψ(b)2
{b h(b) + u′(b)} .

On the other hand, from Lemmas 7.1 and 7.2,

lim
ε↓0

(gχBζ
− fχAη , G

[

gχBζ
− fχAη

]

)

ε2
=

2

ψ(a)
−

2G(a, b)

ψ(a)ψ(b)
=

2 b (1− b)

ψ(b)2

as ψ(b)−G(a, b) = b (1− b). The combination of these identities establishes the claim (7.1).

We now show that the expression in (7.1) is positive. From Lemma 5.2 and the even property of
f ,

h(b) =
1

1 + b

∫

D

f dm

and from Lemma 5.1,

u′(b) = u′(1) = −
1

2

∫

D

f dm.

So we may write

b h(b) + u′(b) + b (1− b) =

{

b

1 + b
−

1

2

}
∫

D

f dm+ b (1− b)

≥

{

b

1 + b
−

1

2

}

2b+ b (1− b)

=
b2(1− b)

1 + b
> 0.

The conclusion now follows by Theorem 4.1.

The case a = −1 may be dealt with by applying the above argument (with appropriate modifica-
tions) to g := 1− f .

8 The main result

We are now in a position to prove the main result Theorem 1.3.

Theorem 8.1. Let t ∈ (0, 1/3] and m ∈ N and put At := (ξt, 1) with ξt as in (1.3). Then

α
(m)
t = J(f) where f = χAt .

Proof. By Theorem 3.1 there exists f ∈ U
(m)
t such that β

(m)
t = J(f). Now U

(m)
t is closed under

polarisation. So P f ∈ U
(m)
t and J(f) ≤ J(Pf) by Theorem ??. We may assume therefore that

f = Pf .

Assume that (f, χ(−1, 0)) > 0. Since f = Pf it must be the case that (f, χ(0, 1)) ≥ (f, χ(−1, 0))

(in consequence of Lemma 3.1). By Lemma 6.1 and Proposition 7.1, there exists f1 ∈ U
(m)
t with

16



the property that f1 = Pf1 and J(f) < J(f1). This contradicts the optimality of f . We conclude
that (f, χ(−1, 0)) = 0.

If t = 1/3 this compels f = χ(0, 1) bearing in mind that f ∈ U
(m)
1/3 and f = P f . So let us now take

t ∈ (0, 1/3). Suppose that (f, χ(0, ξt)) > 0. Then the requirements of Lemma 6.2 are satisfied and

hence there exists f1 ∈ U
(m)
t with the property that f1 = P f1 such that J(f) < J(f1). Again this

contradicts optimality. Hence, (f, χ(0, ξt)) = 0. In fact, (f, χ(−1, ξt)) = 0. As f ∈ U
(m)
t we draw

the conclusion that f = χAt .

Corollary 8.1. Let t ∈ (0, 1/3]. Then αt = J(f) where f = χAt .

Proof. Let f ∈ Ut. By Lindelöf’s theorem, we may write f in the form f = χA where A =
⋃∞
k=1 Ak is a countable union of disjoint open intervals Ak in D. Put fn :=

∑n
k=1 χAk

. By the

monotone convergence theorem, J(f) = limn→∞ J(fn). Note that fn ∈ U
(n)
t . By Theorem 8.1,

J(fn) ≤ J(χAt) and J(f) ≤ J(χAt) on taking limits.

Proof of Theorem 1.3. We only need to deal with the case t ∈ (1/3, 2/3) in view of Corollary 8.1.
Let f ∈ Vt for such a t. Then g := 1− f ∈ V2/3−t and

J(f) = 2(t− 1/3) + J(g) ≤ 2(t− 1/3) + J(χA2/3−t
) = J(1 − χA2/3−t

) = J(χAt).

This clinches the result in the final case.

9 Application: maximum flux exchange flow

In this section we prove Theorem 1.4.

Proposition 9.1. It holds that

(i) γλ = 2α 1−λ
3

− (1/3)(1− λ)2 for λ ∈ (−1, 1);

(ii) γ = supλ∈(−1, 1) γλ.

Proof. (i). Fix λ ∈ (−1, 1). Let A be an open subset in D. Suppose that u satisfies (1.4) along
with the flux-balance condition (u, 1) = 0. Put

f = fA,λ :=

{

−(λ+ 1) on A,
−(λ− 1) on D \A,

Then u = Gf . From the flux-balance condition and symmetry of the Green operator,

0 = (1, G f) = (ψ, f) = −(λ+ 1)(ψ, χA)− (λ− 1)(ψ, χD\A);

so that λ = (ψ, 1)−1(ψ, χD\A − χA) and (ψ, χA) =
1−λ
2 (ψ, 1). Moreover,

(χD\A, u) = (GχD\A, f)

= −(λ+ 1)(GχD\A, χA)− (λ− 1)(GχD\A, χD\A)

= 2(ψ, 1)−1
{

− (ψ, χD\A)(GχD\A, χA) + (ψ, χA)(GχD\A, χD\A)
}

= 2(ψ, 1)−1
{

(ψ, 1)(GχA, χA)− (ψ, χA)
2
}

= 2 J(χA)− (1/2)(1− λ)2(ψ, 1),

upon writing χD\A = χD − χA on each occurrence in the penultimate line. Now simplify using
(3.3). These considerations lead to the reformulation (i). The statement in (ii) then follows
immediately.
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Proof of Theorem 1.4. Part (i) follows from Theorem 1.3. For t ∈ (0, 2/3),

αt = 2(t− 1/3) + α2/3−t,

as can be seen from the proof of Theorem 1.3. Therefore, for λ ∈ (−1, 1),

γ−λ = 2α 1+λ
3

− (1/3)(1 + λ)2 = 2α 1−λ
3

− (1/3)(1− λ)2 = γλ.

We now show that γλ < γ0 for each λ ∈ (0, 1).

Let ξ ∈ (−1, 1) and u := Gf where f := χ(ξ, 1). Then

u(x) =

{

1
4 (ξ − 1)2(x+ 1) if −1 < x ≤ ξ,
− 1

2x
2 + 1

4 (ξ + 1)2 x+ 1
2 − 1

4 (ξ + 1)2 if ξ ≤ x < 1.

A computation leads to

J(f) = −
1

8
ξ4 +

1

6
ξ3 +

1

4
ξ2 −

1

2
ξ +

5

24
.

Also (see (1.3)),

1− λ

3
= (ψ, f) = ϕ(ξ) =

1

6

{

2− 3 ξ + ξ3
}

.

Therefore,

γλ = 2α 1−λ
3

− (1/3)(1− λ)2

= 2 J(f)− 3ϕ(ξ)2

=
1

12
−

1

4
ξ2 +

1

4
ξ4 −

1

12
ξ6

=: h(ξ).

Now h(0) = 1
12 and h(1) = 0 and h′(ξ) = −(1/2) ξ (1 − ξ2)2 < 0 for ξ ∈ (0, 1). This shows that

γλ < γ0 for each λ ∈ (0, 1) as desired. The result follows from this and (i) of the Theorem.
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