
 Guldas, H., Cemgil, T., Whiteley, N., & Heine, K. (2017). A practical
introduction to butterfly and adaptive resampling in Sequential Monte Carlo.
In Y. Zhao (Ed.), 17th IFAC Symposium on System Identification SYSID
2015 – Beijing, China, 19–21 October 2015. (pp. 787-792). (IFAC-
PapersOnLine; Vol. 48, No. 28). Amsterdam:Elsevier. DOI:
10.1016/j.ifacol.2015.12.225

Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.ifacol.2015.12.225

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at http://www.sciencedirect.com/science/article/pii/S2405896315028499. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73984156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ifacol.2015.12.225
http://research-information.bristol.ac.uk/en/publications/a-practical-introduction-to-butterfly-and-adaptive-resampling-in-sequential-monte-carlo(244542d1-c48e-4211-81bb-73008ccfc478).html
http://research-information.bristol.ac.uk/en/publications/a-practical-introduction-to-butterfly-and-adaptive-resampling-in-sequential-monte-carlo(244542d1-c48e-4211-81bb-73008ccfc478).html

A practical introduction to butterfly and
adaptive resampling in Sequential Monte

Carlo

Hakan Guldas ∗ A. Taylan Cemgil ∗ Nick Whiteley ∗∗

Kari Heine ∗∗∗

∗ Department of Computer Engineering Bogazici University, Istanbul,
Turkey (e-mail: taylan.cemgil@boun.edu.tr, hakan.guldas@boun.edu.tr)

∗∗ School of Mathematics, University of Bristol, UK. (e-mail:
nick.whiteley@bristol.ac.uk)

∗∗∗Department of Statistics, UCL, UK. (e-mail: k.heine@ucl.ac.uk)

Abstract: Parallel and distributed computing technologies offer great potential for speed-up of
Monte Carlo algorithms. However, in the development of most existing algorithms it has been
implicitly assumed that implementation would be on a serial machine, so algorithm structure
is often not well-suited to parallel architectures. In recent work the authors have studied the
theoretical properties of sequential Monte Carlo algorithms involving a “butterfly” resampling
method, whose conditional independence structure is intended to better match parallel and
distributed architectures, with resampling broken down into stages, allowing sampling tasks
for subsets of the particles to be handled concurrently. This paper provides a more practical
overview of these methods, including consideration of adaptive resampling schemes, numerical
results and an accessible account of theoretical properties.

Keywords: Particle filters, parallelization.

1. INTRODUCTION

Monte Carlo (MC) numerical methods are popular in
a broad spectrum of applications across various applied
fields, and Sequential Monte Carlo (SMC) methods in
particular (Gordon et al., 1993; Doucet et al., 2001)
are prominent due to their ease of implementation and
wide applicability to inferential computation involving
non-linear, non-Gaussian dynamical models. Historically,
SMC methods, also known as particle filters, have been
developed and analysed without much attention paid to
the architecture of the computer systems on which they
are implemented, the implicit assumption being that these
algorithms would be deployed on a single processor system.

The modern picture is somewhat different: due to phys-
ical barriers and energy consumption, it is becoming in-
creasingly difficult to design and develop processors with
a faster central clock rate. Hence, the natural tendency
for improved performance has been in moving towards
parallel and distributed computation, realizing algorithms
on systems consisting of slower but a very large number
processing units. Many logical and physical arrangements
for these very large number of processing units have been
realized. However, traditional analysis of SMC methods
has been focused on the behaviour of the error and does
not provide any guidance for practical implementations on
these modern architectures.

In modern parallel and distributed architectures, respect-
ing data locality and avoiding unnecessary data movement
is the key ingredient in the design of efficient algorithms.

Here, consideration of the communication pattern - the
structure via which computational elements exchange in-
formation, synchronize, balance computational load or ac-
cess global memory - is crucial, as otherwise the potential
benefits of parallel processing are easily lost (Lee et al.,
2010; Suchard et al., 2010). The communication pattern
of a SMC algorithm is naturally connected to the condi-
tional independence structure of the stochastic process it
simulates.

In this paper, we will focus on a new class of resampling
algorithms called butterfly resampling, which the authors
have recently proposed (Heine et al., 2014). The “butter-
fly” name reflects the fact that the conditional indepen-
dence structure of the algorithm matches the pattern of the
computation graphs of Cooley-Tukey Fast Fourier Trans-
form, where each computation stage is called a butterfly.
However, there several important practical and method-
ological issues which the theoretical work of Heine et al.
(2014) does not address.

We present a practical overview of butterfly resampling
algorithms with reference to their implementations on
graphical processing units (GPUs). We also discuss their
adaptive implementation based on monitoring the effective
sample size. The performance of a practical implementa-
tion on a given system such as a such as a cluster, multi-
core processor or GPU’s will depend on the details of a
careful implementation. We provide simulation results on
a GPU which are indicative of some of the key computation
speed, stochastic and numerical error behaviours of but-

terfly resampling algorithms with comparison to standard
resampling techniques.

2. RESAMPLING IN SMC

Resampling is a key operation in the design of stable SMC
algorithms and its somewhat collective nature hinders the
parallelization of the particle filters. There are various ex-
isting works on parallel implementations of SMC. Amongst
several others Brun et al. (2002) considered particle filters
in a distributed computing setting, Bolić et al. (2005) de-
vised algorithms in which interaction occurs occasionally
between blocks of particles, Hendeby et al. (2007) con-
sidered a GPU implementation, Vergé et al. (2013) have
suggested algorithms with resampling on two hierarchical
levels, and Murray et al. (2014) outlines some different ap-
proaches to parallel implementation of various existing re-
sampling techniques and compares their efficiencies. Paige
et al. (2014) propose an algorithm substantially different
form of SMC method and, which involves a branching
rather than resampling mechanism, so to deal with issues
of synchronicity issues.

2.1 Augmented resampling

In this paper we present resampling in terms of a set
of input particles xin = (xiin)Ni=1, their weights win =
(wiin)Ni=1, and the corresponding output quantities, wout =
(wiout)

N
i=1, wout = (wiout)

N
i=1. From henceforth for any

integer n ≥ 1, we write [n] := {1, . . . , n}.
Now let m ≥ 1 and Ak, k = 1, . . . ,m be non-negative
matrices, each of size N ×N . We shall assume that

A1 each Ak is doubly stochastic,
A2 (AmAm−1 · · ·A1)ij = 1/N, ∀i, j ∈ [N].

The starting point for butterfly resampling is the follow-
ing augmented resampling procedure, which introduces m
steps between the input and output.

− for i ∈ [N], set wi0 = wiin, ξ
i
0 = xiin,

− for k ∈ [m], i ∈ [N], set wik =
∑
j

Aijk w
j
k−1,

and sample ξik ∼

∑
j A

ij
k w

j
k−1δξj

k−1∑
j A

ij
k w

j
k−1

,

− for i ∈ [N], set wiout = wim, x
i
out = ξim.

Our interest in this procedure is that the matrices Ak
can be used to impose constraints on the conditional
independence structure of random variables it involves.
The specifics of these constraints are discussed a little
later, in Section 3. However, introducing those details
requires us to bring in another layer of notation, so before
doing that we establish some important regularity and
lack-of-bias properties of augmented resampling, in the
sense of the following Lemma.

Lemma 1. For any k =∈ [m],

max
i
wik ≤ max

i
wiin,

and for any integrable ϕ,

E

[
1

N

∑
i

wikϕ(ξik)

∣∣∣∣∣xin, win

]
=

1

N

∑
i

wiinϕ(xiin), (1)

and

E

[
1

N

∑
i

ϕ(xiout)

∣∣∣∣∣xin, win

]
=

∑
i w

i
inϕ(xiin)∑
i w

i
in

.

Proof. The first claim follows from the row-stochasticity of
the Ak and the fact that

wik =
∑
j

(AkAk−1 · · ·A1)ijwjin.

For the second claim, using the column-stochasticity of
each A`, or equivalently 1

N

∑
iA

ij
` = 1

N , we have

1

N

∑
i

wikϕ(ξik)− 1

N

∑
i

wiinϕ(xiin)

=

k∑
`=1

 1

N

N∑
i=1

wi`ϕ(ξi`)−
1

N

N∑
i=1

N∑
j=1

Aij` w
j
`−1ϕ(ξj`−1)

=

k∑
`=1

1

N

N∑
i=1

wi`∆
i
`,

where

∆i
` = ϕ(ξi`)−

∑
j A

ij
` w

j
`−1ϕ(ξj`−1)∑

j A
ij
` w

j
`−1

.

From the “sample” part of the procedure, we have

E
[
wi`∆

i
`

∣∣xin, win

]
= E

[
wi` E

[
∆i
`

∣∣xin, win, (ξ
i
`−1)i∈[N]

]∣∣xin, win

]
= 0,

hence (1) holds.

For the third claim, note that property A2 of the matrices
implies that for all i ∈ [N],

wim =
∑
j

(AmAm−1 · · ·A1)ijwjin =
1

N

∑
j

wjin, (2)

then re-arrange (1) with k = m. �

2.2 Adaptive strategies

In standard SMC algorithms, one may choose to perform
resampling at only certain time steps, determined as the
algorithm runs by monitoring the Effective Sample Size
(ESS) and triggering resampling when the ESS falls below
some chosen threshold, see (Whiteley et al., 2014) and
references therein for background information and analysis
of this approach. One can employ a similar strategy
within the augmented resampling procedure outlined in
the previous section. For instance with

ENk =

(
1
N

∑
i w

i
k

)2
1
N

∑
i(w

i
k)2

,

and τ ∈ (0, 1] a constant, define k? := min{0 ≤ k ≤ m :
ENk ≥ τ}. Note that as per (2), wim is in fact constant
across i, so ENm = 1 always. Thus k? is well defined.

An alternative to the procedure of the previous section is
then:

− for i ∈ [N], set wi0 = wiin, ξ
i
0 = xiin,

− for k ∈ [k?], i ∈ [N], set wik =
∑
j

Aijk w
j
k−1,

and sample ξik ∼

∑
j A

ij
k w

j
k−1δξj

k−1∑
j A

ij
k w

j
k−1

,

− for i ∈ [N], set wiout = wik? , x
i
out = ξik? .

Using A1,
1

N

∑
i

wik =
1

N

∑
i

∑
j

(Ak · · ·A1)ijwjin =
1

N

∑
i

wiin,

and elementary manipulations then show that the value of
k? is determined entirely by τ , win and A1, . . . , Am. Then
it can be shown using very similar arguments to those in
the proof of Lemma 1 (the details are left to the reader),
that this adaptive procedure has the following lack-of-bias
property:

E
[∑

i w
i
outϕ(xiout)∑
i w

i
out

∣∣∣∣xin, win

]
=

∑
i w

i
inϕ(xiin)∑
i w

i
in

.

3. BUTTERFLY RESAMPLING

3.1 Definition and properties

Let N = r1r2 · · · rm be a factorization of N with rk ≥ 2
for all k = 1, . . . ,m and then let A1, . . . , Am be the family
of matrices defined for k = 1, . . . ,m as

Ak = Irm ⊗ · · · ⊗ Irk+1
⊗ 1rk ⊗ Irk−1

⊗ · · · ⊗ Ir1 , (3)

where ⊗ denotes Kronecker product and for any positive
integer n, we write 1n for the n×n matrix which has 1/n
as every entry.

It follows by elementary properties of the Kronecker prod-
uct that: A1 is satisfied, each Ak is symmetric, AkAl =
AlAk for any 1 ≤ k < l ≤ m, Am · · ·A1 = 1N so A2
is satisfied, and each Ak matrix has exactly rk non-zero
elements on each row for k = 1, . . . ,m.

It can also be shown using elementary properties of the
Kronecker product that the nonzero entries of the matrices
Ak, k = 1, . . . ,m are be characterized by the following
modular congruence relations:

Aijk > 0 ⇐⇒
b i−1
r1···rk c = b j−1

r1···rk c and

(i− 1) mod(r1 · · · rk−1) = (j − 1) mod(r1 · · · rk−1).

These relations are important because it is the zero en-
tries of the matrices Ak which determine the conditional
independence structure of the random variables in the aug-
mented resampling scheme and influence which elements
can be implemented algorithmically in parallel.

A specific instance of this setup is the case in which
r1 = · · · = rm = r, and the directed acyclic graph in Figure
1 shows the conditional independence structure of the
resulting instance of augmented resampling when N = 8
and r = 2. The corresponding graph for multinomial
resampling is also shown.

Heine et al. (2014) established central limit theorems for
various instances of butterfly resampling. A particularly

unusual feature of these results is that they show that
butterfly resampling exhibits non-standard scaling: under
mild regularity assumptions on xin, win, the results of
(Heine et al., 2014) can be applied in the case r1 = · · · =
rm = r to show that the output from the procedure in
Section 2.1 with the matrices as in (3) has the property
that for any bounded test function ϕ,√
N logrN

[
1

N

∑
i

ϕ(xiout)−
∑
i w

i
inϕ(xiin)∑
i w

i
in

]
⇒ N (0, σ2

r),

where the convergence is in distribution as N tends to in-
finity along the sequence (rm;m = 1, 2, . . .). Thus depend-
ing on the choice of m and r1, . . . , rm butterfly resampling
may converge more slowly than standard methods, which
typically have

√
N scaling as opposed to

√
N logrN . Thus

speed-ups which butterfly resampling enjoys may trade off
against loss in statistical performance.

x
x

in
x
2

in
x
3

in
x
4

in
x
5

in
x
6

in
x
7

in
x
8

in

x
1
out

x
2
out

x
3
out

x
4
out

x
5
out

x
6
out

x
7
out

x
8
out

(a) Standard multinomial resampling

x
1

in
x
2

in
x
3

in
x
4

in
x
5

in
x
6

in
x
7

in
x
8

in

x
1
out

x
2
out

x
3
out

x
4
out

x
5
out

x
6
out

x
7
out

x
8
out

(b) Butterfly resampling

Fig. 1. Interaction structures of resampling algorithms

3.2 Implementation issues

In order to frame some of our considerations when imple-
menting butterfly resampling, it’s convenient to first dis-
cuss some properties of the standard multinomial method,
which one can obtain as a special case by setting m = 1
and A1 = 1N .

Pseudocode for multinomial resampling is given in algo-
rithm 1 and involves parallel calls of the InversionSam-
pling procedure, which itself consists of the generation
of a uniform random number u in the interval [0,WN)
and a binary search within the cumulative weights vector

W = (W k =
∑k
i=1 w

i
in)Nk=1 to locate the subinterval

[W j−1,W j) such that u ∈ [W j−1,W j). It returns the
index j such that u ∈ [W j−1,W j).

The pseudocode for butterfly resampling, which amounts
to the augmented resampling procedure of Section 2.1 with
the matrices (3), is given in algorithm 2, and expressed in
terms of the following quantities

Algorithm 1 Multinomial Resampling on GPU

1: function MultinomialResample(win, xin)
2: W ← PrefixSum(win)
3: for each i ∈ {1, . . . , N} do
4: ji ← InversionSampling(W, {1, . . . , N})
5: xiout = xj

i

in
6: end for
7: return xout
8: end function

(1) minimal elements of equivalence classes are given by:

ir,k,p = b p−1
r1···rk−1

cr1 · · · rk+(p−1) mod(r1 · · · rk−1)+1,

(2) and index of equivalence class [i] is given by:

Ir,k,i = b i−1
r1···rk cr1 · · · rk−1+(i−1) mod(r1 · · · rk−1)+1.

Algorithm 2 Butterfly Multinomial Resampling

1: function ButterflyResample(win, xin, r =
(rk)mk=1)

2: w0 ← win and ξ0 ← xin
3: for k ∈ {1, . . . ,m} do
4: for each p ∈ {1, . . . , N/rk} do
5: Wp ← PrefixSum(w

[ir,k,p]
k−1)

6: end for
7: for each i ∈ {1, . . . , N} do
8: ji ← InversionSampling(WIr,k,i

, [i])

9: ξik = ξj
i

k−1 and wik ←W rk
Ir,k,i

/rk
10: end for
11: end for
12: wout ← wm, xout ← ξm
13: return wout, xout
14: end function

The partitioning of the index set into equivalence classes
correspond to division of the resampling operation into
several resampling operations on smaller particle sets that
can be carried out in parallel. On a GPU, these smaller
resampling operations are mapped to thread blocks and
within a thread block resampling is performed coopera-
tively by the threads. This allows inversion sampling to
be carried out in shared memory and utilization of barrier
synchronization and local memory for in-place propagation
of particles.

4. EXPERIMENTAL RESULTS

We implemented the algorithms in CUDA C/C++ using
CUDA Toolkit version 5.5. All simulations are run on a
NVIDIA GeForce GTX680 GPU with CUDA capability
3.0.

4.1 Single Step of Resampling

We consider xin samples a distribution π0 and wiin =
g(xiin), for some non-negative function g. For test func-
tion ϕ(x) = x we consider estimation of π̂0(ϕ) =∫

(ϕ(x)g(x)/π0(g))π0(dx) and measure performance in
terms of numerical approximation of the MSE:

E

(N∑
i=1

wiout∑
j w

j
out

ϕ(xjout)− π̂0(ϕ)

)2
 ,

obtained over 1000 algorithm runs.

We consider two scenarios:

(1) π0 is uniform distribution on [−σ, σ] and g(x) =
exp(−x2/2σ2),

(2) π0 is Poisson distribution with parameter λ and
g(x) = λx/x!,

with σ = λ = 10.

For each number of particles N = 211, 212, . . . , 224, we took
m = dlogRNe where R = 1024 is the maximum number of
threads per thread block and then selected the sequence
r1, . . . , rm obeying N = r1 · · · rm and giving the fastest
performance.

We ran experiments in both single and double precision
arithmetics. Results are plotted in figures 2 and 3. We
see that butterfly resampling algorithm provides upto
two times speed-up, since we utilized shared memory.
However, with double precision, if look at the MSE against
CPU time we do not see an improvement over standard
multinomial resampling, this stems from the difference in
the scaling factors of butterfly and standard multinomial
resampling algorithms. While computation time grows at
the order of logN for both algorithms, MSE of butterfly
resampling decays at the order of logN/N and MSE of
standard multinomial resampling decays at the order of
1/N .

On the other hand, in single precision implementations,
standard multinomial resampling exhibits numerically in-
stability for large numbers of particles whilst butterfly
resampling does not. We believe this is due the fact that
in butterfly resampling, the prefix sum operation is ap-
plied to smaller subsets of the weights, which are in turn
“smoothed out” over the stages of the algorithm.

10 15 20 25
−18

−16

−14

−12

−10

−8

−6

−4

−2

log
2
N

lo
g

2
M

S
E

Standard multinomial

Butterfly multinomial

10 15 20 25
−4

−3

−2

−1

0

1

2

3

4

5

6

log
2
N

lo
g

2
 T

im
e

 i
n

 m
s

Standard multinomial

Butterfly multinomial

(a) Single precision.

10 12 14 16 18 20 22 24
−18

−16

−14

−12

−10

−8

−6

−4

−2

log
2
N

lo
g

2
M

S
E

Standard multinomial

Butterfly multinomial

10 12 14 16 18 20 22 24
−3

−2

−1

0

1

2

3

4

5

6

7

log
2
N

lo
g

2
 T

im
e

 i
n

 m
s

Standard multinomial

Butterfly multinomial

(b) Double precision.

Fig. 2. Comparison of standard and butterfly multinomial
resampling, potential function g(x) = exp(−x2/2σ2).

10 15 20 25
−18

−16

−14

−12

−10

−8

−6

−4

−2

log
2
N

lo
g

2
M

S
E

Standard multinomial

Butterfly multinomial

10 15 20 25
−4

−3

−2

−1

0

1

2

3

4

5

6

log
2
N

lo
g

2
 T

im
e

 i
n

 m
s

Standard multinomial

Butterfly multinomial

(a) Single precision.

10 15 20 25
−20

−18

−16

−14

−12

−10

−8

−6

−4

log
2
N

lo
g

2
M

S
E

Standard multinomial

Butterfly multinomial

10 15 20 25
−3

−2

−1

0

1

2

3

4

5

6

7

log
2
N

lo
g

2
 T

im
e

 i
n

 m
s

Standard multinomial

Butterfly multinomial

(b) Double precision.

Fig. 3. Comparison of standard and butterfly multinomial
resampling, potential function g(x) = λx/x!.

4.2 Experiments with Particle Filters

In our particle filter experiments, we estimate filtering
expectations π̂t(ϕ) for t ≥ 1 and for some test function
ϕ. We measure the Monte Carlo errors by numerically
estimating the the MSEs averaged over time (AMSE):

E

[
1

T

T∑
t=1

(
π̂Nt (ϕ)− π̂t(ϕ)

)2]
.

We implement two different particle filtering scenarios:

(1) resampling every time step, i) using multinomial and
ii) butterfly resampling

(2) resampling adaptively, i) using multinomial resam-
pling whenever the ESS of the weights falls below a
given threshold, τ and ii) using the method of Section
2.2.

We use the following state space model for the filtering
recursions:

xt+1 ∼ f(xt, .) = N (xt, σ1),

gt(x) = {exp((x− 0.5t)2/2σ2
2) + exp((x+ 0.5t)2/2σ2

2)}/2.
This is a synthetic model that admits closed form compu-
tation of expectations of the function ϕ(x) = x under a
multimodal filtering distribution.

We use the same settings for m and r1, . . . , rm as in
the previous experiments. Model parameters are set as
σ1 = 0.1, σ2 = 0.1. We run each experiment for M =
1000 particle filter instances with T = 100 timestep and
τ = 0.6 for adaptive resampling, then compute AMSE for
ϕ(x) = x.

MSE and speed results for bootstrap particle filters are
shown in figure 4 and for adaptive resampling particle
filters are shown in figure 5. As in single step resampling
experiments, we see that butterfly resampling performs
faster but produce more Monte Carlo error. In bootstrap
PFs, butterfly resampling can provide upto 4 times speed-

up but MSE per time does not differ substantially from
standard multinomial resampling. However, in adaptive
resampling PFs, butterfly resampling can provide upto
8 times speed-up and MSE difference is less than that
of bootstrap case as a results of adaptivity, so we see
an improvement over standard multinomial resampling in
terms of MSE per time.

10 12 14 16 18 20 22
−6

−4

−2

0

2

4

6

8

log
2
N

lo
g

2
T

im
e

10 12 14 16 18 20 22
−12

−10

−8

−6

−4

−2

0

2

log
2
N

lo
g

2
M

S
E

Butterfly Multinomial

Standard Multinomial

Fig. 4. Performance comparison of bootstrap particle fil-
ters.

10 12 14 16 18 20 22
−6

−4

−2

0

2

4

6

log
2
N

lo
g

2
T

im
e

10 12 14 16 18 20 22
−14

−12

−10

−8

−6

−4

−2

0

log
2
N

lo
g

2
M

S
E

Butterfly Multinomial

Standard Multinomial

Fig. 5. Performance comparison of adaptive resampling
particle filters.

4.3 Comparison of Resampling Strategies in a Practical
Application

In our final experiment, we compare resampling strategies
with constrained and full interactions within the context of
a parameter estimation method that uses a particle filter
as a subroutine. We have a family of state space models
parameterized by some parameter vector θ ∈ Θ, where
typically Θ = Rd, such that

X0 ∼ µθ,
Xn | {Xn−1 = xn−1} ∼ fθ(xn−1, ·),

Yn | {Xn = xn} ∼ gθ(xn, ·),
and a set of observations y = (y0, . . .) and we perform
maximum likelihood (ML) estimation of parameters θ to
find the values of θ that maximize log-likelihood function
defined as:

`(θ) = log

(∫
µθ(x0)

n∏
i=1

fθ(xi−1, xi)

n∏
i=0

gθ(xi, yi)dx0:n

)
,

via sequential Monte Carlo expectation-maximization
(SMCEM) algorithm (Olsson et al., 2008). SMCEM al-
gorithm is based on expectation-maximization algorithm,
a standard tool for ML estimation in the presence of
intractable likelihoods, and uses particle filter as a sub-
routine.

In the experiments of this section, we follow example 4.2
of Olsson et al. (2008) and estimate parameters of the
stochastic volatility model given as:

X0 ∼ N (0, σ2),

Xn ∼ N (αXn−1, σ
2), n ≥ 1,

Yn ∼ N (0, β2 exp(Xn)), n ≥ 0.

We simulate M = 10 different observation sequences
(ym0:n)Mm=1 of length n = 100 using the above model with
parameters θ∗1 = α∗ = 0.975, θ∗2 = β∗ = 0.63 and
θ∗3 = σ∗ = 0.16. For each observation sequence ym,m =
1, . . . ,M we perform SMCEM algorithm to obtain m

parameter estimates θ̂m,m = 1, . . . ,M and compute MSE

of the parameters given by the equations 1
M

∑M
m=1(θ̂mi −

θ∗i)2, i = 1, 2, 3.

We experiment with two different implementations of par-
ticle filter algorithms, one that uses standard multinomial
resampling and another one that uses a special case of
butterfly resampling algorithm. To simulate a situation
with hard communication constraints and a fair compar-
ison with standard multinomial resampling, we set the
maximum radix sequence to 256 and we the following
resampling strategy:

(1) for the particle filter with standard multinomial re-
sampling, we perform at every dlog256Neth timestep
and defer resampling at other timesteps,

(2) for the particle filter with butterfly multinomial
resampling, we perform one stage of butterfly re-
sampling algorithm at every timestep by cyclically
traversing the radix sequence.

For the choice of radix sequence we follow the guidelines
we described in section 4.1.

We repeat this experiment for the particle numbers
logN = 11, 13, . . . , 21 and plot the running time as a func-
tion of logN in figure 6. The accuracy of the parameter
estimates, as measured by MSE, were omitted as they were
qualitatively very similar. We observe that resampling un-
der constrained interactions can provide upto three times
speed-up over standard multinomial resampling while re-
sulting effectively identical parameter estimates.

10 12 14 16 18 20 22
−4

−3

−2

−1

0

1

2

3

log
2
N

lo
g

2
ti
m

e

Standard multinomial

Butterfly multinomial

Fig. 6. Speed comparison of resampling algorithms in
SMCEM algorithm.

5. CONCLUSIONS

Our goal was to investigate the tradeoff between particle
interactions and estimation error, as well as how the
reduced interaction structure can be used to obtain faster
algorithms on standard hardware. We have focused on
the GPU implementations of the resampling algorithms,
and we compared the performance of butterfly resampling
algorithm to standard multinomial resampling in terms
of speed and Monte Carlo error. In our experiments
with the reference implementations, we see that butterfly
resampling can provide upto eight times speed-up in an

adaptive resampling scenario with a competitive level of
Monte Carlo error and upto three times speed-up in a
parameter estimation problem with a competitive level of
estimation quality.

We believe that the constrained interaction structure of
the butterfly resampling provides additional flexibility in
the design of resampling algorithms. We speculate that
this additional flexibility may be exploited on alternative
platforms such as distributed computer clusters or con-
figurable hardware devices (e.g. field-programmable gate
array – FPGA) to obtain faster algorithms without com-
promising estimation quality. A particularly interesting
scenarioiu would be to use alternative sampling strategies,
such as stratified and systematic sampling, within the
butterfly method.

REFERENCES

Bolić, M., Djurić, P.M., and Hong, S. (2005). Resampling
algorithms and architectures for distributed particle
filters. IEEE Trans. Signal Process., 53(7), 2442–2450.

Brun, O., Teuliere, V., and Garcia, J. (2002). Parallel
particle filtering. J. Parallel Distrib. Comput., 62(7).

Doucet, A., De Freitas, N., and Gordon, N. (eds.) (2001).
Sequential Monte Carlo methods in practice. Springer,
New York.

Gordon, N., Salmond, D., and Smith, A. (1993). Novel
approach to nonlinear/non-Gaussian Bayesian state es-
timation. Radar and Signal Processing, IEE Proceedings
F, 140(2), 107–113.

Heine, K., Whiteley, N., Cemgil, A., and Guldas, H.
(2014). Butterfly resampling: asymptotics for particle
filters with constrained interactions. ArXiv:1411.5876.

Hendeby, G., Hol, J., Karlsson, R., and Gustafsson, F.
(2007). A graphics processing unit implementation of
the particle filter. 15th European Signal Processing
Conference (EUSIPCO).

Lee, A., Yau, C., Giles, M.B., Doucet, A., and Holmes,
C.C. (2010). On the utility of graphics cards to perform
massively parallel simulation of advanced Monte Carlo
methods. J. Comput. Graph. Statist., 19(4), 769–789.

Murray, L.M., Lee, A., and Jacob, P.E. (2014). Parallel
resampling in the particle filter. arXiv:1301.4019.

Olsson, J., Capp, O., Douc, R., and Moulines, r. (2008).
Sequential monte carlo smoothing with application to
parameter estimation in nonlinear state space models.
Bernoulli, 14(1), 155–179.

Paige, B., Wood, F., Doucet, A., and Teh, Y.W. (2014).
Asynchronous anytime sequential monte carlo. In Ad-
vances in Neural Information Processing Systems, 3410–
3418.

Suchard, M.A., Wang, Q., Chan, C., Frelinger, J., Cron,
A., and West, M. (2010). Understanding GPU program-
ming for statistical computation: Studies in massively
parallel massive mixtures. J. Comput. Graph. Statist.,
19(2), 419–438.

Vergé, C., Dubarry, C., Del Moral, P., and Moulines, E.
(2013). On parallel implementation of Sequential Monte
Carlo methods: the island particle model. Stat. and
Comput.

Whiteley, N., Lee, A., and Heine, K. (2014). On the
role of interaction in sequential Monte Carlo algorithms.
Bernoulli. To appear.

