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The past decade has seen the development of a new class of rare event methods in which

molecular configuration space is divided into a set of boundaries/interfaces, and then

short trajectories are run between boundaries. For all these methods, an important

concern is how to generate boundaries. In this paper, we outline an algorithm for

adaptively generating boundaries along a free energy surface in multi-dimensional

collective variable (CV) space, building on the boxed molecular dynamics (BXD) rare

event algorithm. BXD is a simple technique for accelerating the simulation of rare

events and free energy sampling which has proven useful for calculating kinetics and

free energy profiles in reactive and non-reactive molecular dynamics (MD) simulations

across a range of systems, in both NVT and NVE ensembles. Two key developments

outlined in this paper make it possible to automate BXD, and to adaptively map free

energy and kinetics in complex systems. First, we have generalized BXD to

multidimensional CV space. Using strategies from rigid-body dynamics, we have derived

a simple and general velocity-reflection procedure that conserves energy for arbitrary

collective variable definitions in multiple dimensions, and show that it is straightforward

to apply BXD to sampling in multidimensional CV space so long as the Cartesian

gradients VCV are available. Second, we have modified BXD to undertake on-the-fly

statistical analysis during a trajectory, harnessing the information content latent in the

dynamics to automatically determine boundary locations. Such automation not only

makes BXD considerably easier to use; it also guarantees optimal boundaries, speeding

up convergence. We have tested the multidimensional adaptive BXD procedure by

calculating the potential of mean force for a chemical reaction recently investigated

using both experimental and computational approaches – i.e., F + CD3CN / DF +

D2CN in both the gas phase and a strongly coupled explicit CD3CN solvent. The results

obtained using multidimensional adaptive BXD agree well with previously published

experimental and computational results, providing good evidence for its reliability.
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1 Introduction

The solution to a wide range of problems that can be addressed with molecular
simulation consists fundamentally of determining rate coefficients. For example,
biochemical systems rely on a delicate balance of rate coefficients within larger
coupled kinetic networks.1 Similarly, bulk oxidation timescales in atmospheric
chemistry2 and combustion3 (required to predict pollutant lifetimes, or to opti-
mize an engine) are linked to detailed kinetic networks comprised of a wide range
of elementary kinetic steps.4 With developments in both statistical mechanics
and electronic structure theory, it is now possible to identify the important
stationary points on a molecular potential energy surface (PES),5 and carry out
accurate calculations of the energy and partition function at each point. This
enables extremely accurate calculations of the rates at which small molecules
undergo structural changes, in either canonical or microcanonical ensembles.6

However, calculating accurate rate coefficients for larger molecules (e.g., enzymes,
long-chain hydrocarbon fuels, unsaturated volatile organic pollutants, etc.)
remains an outstanding challenge for a number of reasons: (1) it remains difficult
to calculate an accurate PES along a given path, (2) there is a combinatorial
explosion in the number of paths with increasing system dimensionality, and (3)
the conformational exibility inherent in larger molecular systems makes it very
difficult to calculate accurate partition functions. Particularly as a result of the
latter two challenges, the calculation of rate coefficients in complex systems tends
to not to focus on stationary points, but rather on free energy surfaces along
a particular path between states, typically dened in terms of a small set of
collective variables (CVs). In cases where it is a good assumption that the full
system dynamics along a particular path is mostly associated with changes in
a small set of CVs, then the maximum on the free energy surface may be utilized
to calculate rate coefficients in the Eyring equation.7 In cases where this is not
a good assumption, an additional correction in the form of the so-called
‘recrossing coefficient’ is typically applied.8,9

In this paper, we present a relatively simple adaptive algorithm for discovering
minimum free energy pathways between states in a multidimensional space of
CVs, which can then be used to calculate rate coefficients in complex systems.
There is strong evidence within computational complexity theory that problems
of this sort are NP-complete10–12 – i.e., it is possible to verify (within polynomial
time) whether any proposed solution is indeed a solution, but there is no known
polynomial time algorithm to nd a solution in the rst place. This has rather
profound consequences for how we think about free energy path sampling in
complex molecular systems: the emphasis is less on nding an algorithm which is
well-suited to every type of rare event problem, but rather on having access to
a exible range of methods which can be practically used to tackle different
conformational search problems.

‘Boxed Molecular Dynamics’ (BXD),13–16 a method we have been actively
involved in developing over the last few years, allows one to obtain both ther-
modynamic and kinetic information from the same run, producing data that
produces a Markov master equation.1,4,14,17 BXD can be formulated so as to
conserve energy, accelerating NVE simulations as well as NVT simulations. As
a result of these features, BXD has been successfully utilized to provide
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microscopic insight into a range of problems within condensed phase chem-
istry.15,16,18–30 The fact that BXD preserves the dynamics (unlike umbrella
sampling, where dynamics is lost) has been experimentally conrmed for
a growing set of systems.18,20–22,24 The fundamental idea in BXD is to accelerate
dynamics simulations by introducing a set of hard boundaries within the hyper-
dimensional conguration space of the system being simulated. When a trajec-
tory passes a boundary, those components of the velocity vector that take the
trajectory across the boundary are reected. The statistics of reections at the
boundary of the box are subsequently used to renormalize the results. Within
BXD, ‘boxes’ refer to the conguration space domain between a particular set of
boundaries. In principle, it is possible to implement boundaries which depend on
the 6n dimensional phase space of Cartesian coordinates and momenta (where n
is the number of atoms); however, in practice the original implementations of
BXD utilized one-dimensional CVs in conguration space.

BXD falls within a class of sampling methods in which molecular congura-
tion space is divided into a set of boundaries (also called interfaces or hyper-
surfaces), and short trajectories are run between boundaries. These methods (e.g.,
milestoning,31,32 forward ux sampling,33,34 transition interface sampling,35

nonequilibrium umbrella sampling,36 and others37–39) have yet to displace
umbrella sampling40 as the most widely used method to determine free energies
(or potentials of mean force), but in fact they have a number of features which we
believe make them more attractive than umbrella sampling: (1) because they do
not require modication of the potential energy function, they perturb the
dynamics far less than umbrella sampling; (2) they allow for exact renormaliza-
tion of the results in each box (unlike the iterative numerical WHAM scheme
typically utilized to renormalize umbrella sampling results); (3) they require
specication of fewer parameters than umbrella sampling (i.e., BXD only requires
specifying a boundary location; umbrella sampling requires specifying the
umbrella position and force constant); (4) they can provide both thermodynamic
(free energy) and kinetic (rate) data simultaneously; (5) unlike umbrella sampling,
they provide results which are in fact dynamically meaningful; and (6) it is
possible to rigorously dene the regimes in which the accelerated dynamics they
provide map onto the results that would have been obtained using standard
unbiased simulations with standard initial conditions sampling strategies.

An important concern with these methods is how to generate boundaries
(analogous to the umbrella sampling issue of how best to choose ‘umbrella’
potentials). In a broad range of molecular simulation studies, boundaries (or
umbrella potentials) are located along a particular set of CVs which align with the
intuition of the investigator (i.e., “user”). For example, in enzyme catalysis, it is
usually possible to highlight a few key bonds as being particularly important;
similarly in a drug binding study, it is oen possible to identify a few key motions
as particularly important to binding. Such user intuition is not a panacea: it may
in fact fail to identify important CVs, and there are potential pitfalls41 owing to the
fact that it is oen extremely difficult to nd good CVs.42 Nevertheless, for
understanding dynamics in hyperdimensional systems, user ‘intuition’ as to the
important CVs usually constitutes an important guess as to where to initiate
sampling and make practical progress in a simulation study.

With BXD's implementation in the CHARMMmolecular simulation package,43

it has found application to a range of chemical systems. These applications have
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highlighted two important issues: (1) the BXD velocity reection procedure must
be generalized to deal with a wider range of CVs than the relatively small subset
with which it is currently compatible; (2) with the implementation of a wider
range of CVs, BXD must be formulated in a way that can automatically identify
optimal boundaries inmulti-dimensional collective variable space. The reason for
the latter point is that BXD in multi-dimensional CV space requires specifying
a large number of parameters. The number of parameters required scales as NCV

� NB, where NCV is the number of collective variables, and NB is the number of
boundaries (NB is typically between 10 and 100 in systems studied so far). For
relatively small systems where NCV ¼ 1 and which require no more than
�10 boundaries, a user can typically keep track of the number of parameters
requiring specication; however, for larger systems where NCV > 1, the number of
parameters which requires specication rapidly expands beyond what even an
expert can keep track of, becoming extremely tedious (if not altogether impos-
sible). By automating the boundary selection scheme outlined in this paper using
an adaptive algorithm, we avoid these problems entirely, and we also guarantee
the specication of optimal boundaries. Adaptive sampling strategies have been
previously explored in the context of umbrella sampling,44,45 force biasing,46

weighted ensemble sampling,39 transition interface sampling,47 accelerated
molecular dynamics,48 metadynamics49,50 and steered MD.51

BXD's robustness arises in part from the fact that it generates free energy
proles which are largely insensitive to the location of boundaries, so long as the
typical transit time from one boundary of the box to the other is larger than the
system's characteristic decorrelation timescale.13,14 This is in fact the only ‘hard-
and-fast’ rule which must be satised in order for BXD to yield physically
meaningful results: the average time between boundary reections in any given
box must be larger than the system's characteristic dynamical decorrelation
timescale in that region of the free energy surface.14 This rule places a lower limit
on the allowed distance between any box's boundaries; otherwise, ballistic
reection between box boundaries will occur, and the results are meaningless. So
long as the boundaries are far enough apart to avoid problems related to
dynamical decorrelation, then the choice of box boundaries is exible, and the
BXD results do not depend on boundary location.

However, the computational efficiency of BXD (i.e., the speed at which it
converges a free energy or a rate calculation) does depend on the boundary
placement. For maximum efficiency, the boundaries should be placed close
enough together so that a typical trajectory will visit the boundaries of any given
box in a reasonable amount of time. Optimally placed boundaries will result in
faster convergence. This is an issue that has become particularly apparent as we
have attempted to use BXD to accelerate dynamics obtained from on-the-y
electronic structure theory, and also in condensed phase reactions, where force
evaluations are very expensive. Our experience to date has shown that ‘user-
selected’ box boundaries are oen far from ideal, and can result in wasted clock
cycles, a point which is easily understood from Scheme 1. In regions with a large
gradient, boxes should be smaller, given that an unbiased trajectory free to
sample the box is more likely to get trapped downhill rather than travel uphill,
while in atter regions that have a small gradient, the boxes can be larger, given
that an unbiased trajectory will more readily sample wide regions of the cong-
uration space. Scheme 1 therefore allows us to understand how clock cycles are
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wasted as a result of two common boundary-selection pitfalls: (1) large boxes in
a region of the free energy surface with steep gradients, or (2) small boxes in
a relatively at region of the free energy surface. In the former case, the trajectory
will rarely visit high free energy congurations within the box, and convergence
will be slow. In the latter case, clock cycles are wasted on constraining sampling in
at regions of the free energy surface that the trajectory would have naturally
visited anyway – i.e., the boundaries actually slow down an intrinsic sampling rate
which was already satisfactory. Scheme 1 highlights a nal important point – i.e.,
sampling on any given free energy path oen requires boxes of varying sizes, with
the size of the box inversely related to the gradient of the free energy surface along
a particular coordinate, which is generally unknown in advance. Box boundary
placement is also sensitive to the local friction regime in which the dynamical
process of interest takes place (a point discussed in further detail below). In
general, efficient sampling in high friction environments (e.g., a chemical reac-
tion occurring in a solvent) requires closely spaced boundaries, while boundaries
in low friction environments (e.g., a chemical reaction in the gas phase) are
farther apart.

In this paper, we outline an extension of BXD to multidimensional CV space,
and an automated procedure that adaptively generates optimal BXD hypersur-
faces to sample dynamical pathways within a user-specied multidimensional CV
space. The underlying idea guiding this approach is simple, and exploits one of
the key advantages of BXD compared to a method like umbrella sampling:
because the underlying dynamics are in fact meaningful, ‘on-the-y’ analysis of
their information content is in fact the most reliable guide to boundary place-
ment. This philosophy allows us to use BXD for generating optimal boundaries in
multidimensional applications, which may be subsequently used to accelerate
rare events or carry out free energy sampling. We also report on results using this
multi-dimensional adaptive BXD scheme to accelerate free energy sampling along
the F + CD3CN/DF + CD2CN reactive pathway, in both CD3CN solvent and in the
gas phase. This system constitutes a stringent test of the methodology, owing to
the extreme asymmetry of the PES either side of the transition state (TS) – e.g.,
similar to that shown in Scheme 1. The results are in good agreement with

Scheme 1 Illustration of the relationship between a system's characteristic dynamics [red
lines] in a given region of the free energy surface G(r) [black line] sampled along some CV
r. Optimal boundaries are shown by grey lines. In steep regions ofG(r), optimal boundaries
are closely spaced; in flatter regions of G(r), optimal boundaries are farther apart.
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previous experimental and modelling studies, providing good evidence for the
reliability of our extended BXD algorithm. We believe that the adaptive scheme
described in this article may be useful to other methods that rely on sampling
between conguration space interfaces.

2 Theoretical framework
2.1 BXD along a single collective variable

BXD is an exact extension of transition state theory,13,14 with origins in Intra-
molecular Dynamics Diffusion Theory (IDDT),52–56 which describes the motion of
a trajectory along a reaction coordinate in terms of a diffusional equation or
equivalent Langevin equation. BXD was initially formulated in order to accelerate
dynamics by introducing a series of constraints along a one-dimensional collec-
tive variable, which provide a series of ‘boxes’ within which to lock the trajectory,
as illustrated in Fig. 1. The region dened by the collective variable r is split into
m boxes by the introduction of m + 1 user dened constraints. The trajectory is
constrained within each box, which allows one to sample regions that would
otherwise be visited only rarely.

The trajectory constraint procedure involves an elastic collision procedure
applied at the boundaries, which works as follows: whenever the next time step
in the dynamics would result in the trajectory crossing the boundary, the
trajectory is reset to the previous step, and a velocity inversion (i.e., reection)
procedure is applied to those atoms that contribute to the denition of the
collective variable. For a given box i bounded by ri and ri�1, the rate coefficient
for transfer from box i to i � 1 is determined by the inverse of the mean rst
passage time (MFPT) hsi. The simplest way to compute this is to keep track of
the number of times the trajectory has undergone velocity transformation at
each boundary, hi,i�1, along with the total amount of time, ti, that the trajectory
spends within box i. This gives the rate coefficient for transfer from box i to box i
� 1 as follows:

ki;j�1 ¼ hsi;j�1i�1 ¼ hi;j�1

ti
: (1)

Fig. 1 Illustration of the original one-dimensional BXD scheme along some collective
variable r.
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The equilibrium constant between box i and box i � 1 may then be obtained
from equilibrium statistical mechanics as

Ki�1;i ¼ ki�1;i

ki;i�1

¼ exp

��DGi�1;i

kBT

�
; (2)

where DGi�1,i is the free energy difference between box i and box i � 1. Eqn (2)
allows us to obtain a full set of box-to-box free energy differences. Dening some
arbitrary zero G0, the set of box-to-box free energy differences may then be sum-
med appropriately to obtain DGi, the free energy of any given box relative to G0.
This allows calculation of pi (the probability of the residing in box i) as follows:

pi ¼ 1P
i

expð � DGi=kBTÞ expð � DGi=kBTÞ: (3)

Having determined the probability of residing in any specic box according to
(3), it is then possible to determine p(r) to arbitrary resolution by renormalizing
the statistics within each box using histogram binning. Letting pi(r) be the
probability of a particular value of r observed in box i, estimated by histogram
binning from a sample within the box, then the probability of residing anywhere
along the reaction coordinate dened by the boxes is given by

p(r) ¼ pi(r) � pi. (4)

Since only the box-to-box rate coefficients need to be computed, the length of
time the trajectory needs to spend in each box is only determined by how long it
takes for these rate coefficients to converge. The BXD method of partitioning the
conguration space allows regions that are poorly sampled in standard MD
trajectories to be isolated within a box and sampled independently, which lends
itself well to parallelisation on modern cluster architectures. Alternatively, it is
easy to formulate the BXD algorithm so that a given trajectory – aer a specied
number of reection events at a particular boundary – is allowed to proceed to the
next box, as illustrated in Fig. 1. Such a ‘box-to-box’ strategy allows trajectories to
scan over adjacent boxes until convergence is achieved.

2.2 Extending BXD to multidimensional collective variable space

In this section, we present a generalisation of BXD to multidimensional collective
variables. For a system of N atoms, we dene ~r(t) ˛ R

3N to be the vector of
Cartesian coordinates of atoms in the system, and~v(t) ˛ R

3N to be the vector of
corresponding velocities. A collective variable at some time t is a function s(t) of
~r(t) and~v(t). In cases where one wants to characterize the dynamics of a molecular
system at some time t using M collective variables, then the CV space may be
represented as an M-dimensional vector~s(t) ¼ [s1(t), s2(t), ., sM(t)], where M is
generally much less than N. In the simplest case, where M ¼ 1, ~s(t) is oen
referred to as a reaction coordinate. In its original implementation, BXD parti-
tioned a one-dimensional collective variable space into an ordered set of zero-
dimensional points along the reaction coordinate. An intuitive route to general-
ising BXD is thus to partition theM-dimensional CV space into a series of (M � 1)
dimensional boundaries, which is a strategy that follows naturally from BXD's

Paper Faraday Discussions

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss.

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Ju

ne
 2

01
6.

 D
ow

nl
oa

de
d 

on
 1

0/
11

/2
01

6 
15

:4
2:

24
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/C6FD00138F


origins in transition state theory.54,57 For example, a two-dimensional CV space
may be partitioned by an ordered set of lines, a three-dimensional CV space by an
ordered set of planes, and so on – to the general case of hyperplanes. Within anM-
dimensional collective variable space~s(t) ¼ [s1(t), s2(t), ., sM(t)], any given BXD
boundary Bj may be dened as a plane in Hessian normal form – i.e., in terms of
a unit norm ~n ¼ [n1, n2, ., nM] and a constant Dj:

Bjh

 XM
i¼1

nisi

!
þDj ¼ 0: (5)

Using the notation outlined above, Fig. 2 schematically illustrates a set of BXD
boundaries that one might choose in order to partition a system dened in terms
of two collective variables.

2.3 General velocity reection procedure in multidimensional collective
variable space

Having specied a set of boundaries which partition the space of collective vari-
ables into smaller regions, a standard MD trajectory is performed within
boundaries Bj and Bj�1 at every step, the collective variable vector~s(t) is computed,
and the velocities and positions of the previous time step are stored. For times t
where the trajectory crosses either boundary Bj or Bj�1, a velocity reection
procedure is applied to constrain the trajectory so that it does not cross the
boundary. In what follows, we focus on the velocity reection procedure to be
used for reecting off multi-dimensional boundaries of the sort dened in eqn
(5), generalizing the one-dimensional velocity reection procedure outlined in
our previous BXD papers to multidimensional collective variable space.

Within the space of collective variables, eqn (5) species that a BXD boundary
Bj is dened in terms of a unit norm ~nj ˛ R

M, which lies a distance Dj from the
origin. The function f(~r(t)) ¼~s(t)$~nj + Dj provides a measure of how far the system

Fig. 2 Schematic illustration of BXD boundaries that one could choose to partition
a multi-dimensional system with two potential energy surface (PES) wells. The potential
energy isosurface in the figure is projected into the collective variable s

. ¼ ðs1; s2Þ.
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is from a particular boundary at time t, with changes in the sign of f(~r(t)) indi-
cating that the system has crossed Bj. In order to constrain dynamics so that they
lie to a specic side of a particular boundary Bj, we wish to satisfy the following
inequality:

f(~r(t)) $ 0. (6)

The inequality in this equation gives it the form of a so-called “unilateral
constraint”58 – i.e., a constraint which is enforced only at times when the
inequality is unsatised. For example, consider a case where f(~r(t)) $ 0 at time t,
and f(~r(t + Dt)) < 0 at the next timestep t + Dt. In this case, the BXD procedure
species that we revert back to~r(t), and invert the velocities to give new velocities
~v 0(t), propagation according to which ensures that the constraints are satised at
timestep t + Dt. By the chain rule, the time derivative of the constraint may be
written as the projection of the atomic velocities onto the gradient of f(~r(t)):

df
�
~rðtÞ

�
dt

¼
df
�
~rðtÞ

�
d~r

$
d~r

dt
¼ Vf$~vðtÞ: (7)

To ensure that the constraint will be satised at time t + Dt, the inverted
velocities must satisfy the following:

Vf$~v 0(t) + Vf$~v(t) ¼ 0. (8)

In the general case of a system of K constraints, Vf is a matrix of K rows by 3N
columns, but here we are restricting ourselves to the case of a single constraint,
and therefore Vf in eqn (8) represents a row vector. The inverted velocities are
related to the unbiased ones through eqn (8) in order to ensure a fully elastic
reection of the velocities normal to Bj. This procedure is in contrast to the sorts
of holonomic constraints typically employed in molecular dynamics (e.g.,
SHAKE59 and RATTLE60), in which velocities normal to the constraint are set to
zero in order to constrain the dynamics. The equation of motion for
dynamics58,60–62 under a single constraint may be written as:

M~a ¼ F + G, (9)

where M ˛ R
3N�3N is a diagonal matrix of atomic masses,~a ˛ R

3N is the vector of
accelerations, F is the force vector from the MD energy function, and G are the
forces due to the constraint, given by

G ¼ �lVfT, (10)

where l is a time-dependent Lagrangian multiplier, and fT represents the
transpose of f. Rather than applying the constraint directly as an acceleration, the
constraint is enforced upon the inverted velocities as follows:

~v 0(t) ¼ ~v(t) + lM�1VfT. (11)

By substituting eqn (11) into eqn (8) and rearranging for l we have
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l ¼ �2Vf$~vðtÞ
VfM�1VfT

: (12)

The Lagrangian multiplier and subsequent impulse is only computed and
applied for time steps in which an unaltered velocity would result in the
constraint being unsatised, similar to the strategy used in the original BXD
velocity reection algorithm. Dening BXD boundaries as hyperplanes ensures
that the derivatives of f in eqn (12) may be computed by combining the deriva-
tives of the components of~s as follows:

df

d~r
¼ n1

ds1

d~r
þ n2

ds2

d~r
þ.þ nM

dsM

d~r
: (13)

Eqn (13) means that the reection procedure can easily be constructed from
a linear combination of derivatives of collective variables. This allows for
straightforward combination of arbitrary reaction coordinates for which gradi-
ents are dened. The appendix to this paper includes an illustrative example of
how to implement a velocity inversion procedure in the space of two CVs.

2.4 Adaptively generated boundaries in multidimensional CV space

The extension of BXD to multidimensional collective-variable space raises inter-
esting questions as to where initial boundaries should be placed. For studies
involving only a single collective variable (i.e., a 1d case), determining those
boundary placements which most efficiently partition a reaction coordinate
(either for rare event acceleration or free energy sampling) has generally been
undertaken through some combination of ‘user intuition’ and trial and error. In
multidimensional collective variable space, such a strategy quickly becomes
unfeasible owing to the fact that the number of variables required to specify
a boundary increases with the dimensionality of the CV space. In this section we
present an automated adaptive path sampling procedure, in which optimal
boundaries are generated through on-the-y statistical analysis carried out during
a trajectory.

2.4.1 Overall adaptive scheme. Whereas previous implementations of BXD
required a list of box boundaries, the adaptive implementation of BXD requires
the user to provide the following input data, all of which are schematized in Fig. 2:

(1) Specication of the CVs which the user wishes to adaptively sample along
with a pair of limits that bound the sampling within a particular CV. In many
cases, one of the CV limits (e.g., B0 in Fig. 2) helps dene the extremum for what
can be considered a reactant state, and the other CV limit (e.g., Bn in Fig. 2) helps
dene the extremum for what can be considered a product state.

(2) A ‘starting’ or ‘reactant’ geometry (characterized by a set of ‘starting’ CVs).
(3) A ‘target’ or ‘product’ geometry (characterized by a set of ‘target’ CVs).
We dene G 3 R

M to be the region of CV space dened by two boundaries BR
and BP (in Fig. 2, BR h B0 and BP h Bn), and Bi to be some arbitrary boundary that
lies within G. The region G1 3 R

M lies between BR and Bi, while the region G2 3
R
M lies between Bi and BP, with G1 + G2 ¼ G. The approach of adaptive BXD is to

carry out a single sampling run that makes two passes over the CV space – i.e.,
from BR to BP, and then to reverse direction and go from BP to BR. Along the way,
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statistical analysis determines the most efficient location at which to place the
next bound. Aer the placement of a bound, the BXD velocity reection procedure
is used to enhance the sampling of the next region. Passes in both directions are
generally required so that barriers on the energy landscape are sampled in both
directions (i.e., what may not require any acceleration going downhill will in fact
require acceleration when going uphill).

The overall adaptive BXD procedure is illustrated by the owchart in Fig. 3,
which assumes that the adaptive procedure has been initialised near BR, so that
the rst pass involves generating boundaries en route to BP. At the start of the
trajectory, Bi ) BR, and BEnd ) BP (i.e., Bi and BEnd initially enclose the region
Gh G2, with G1 ¼ 0). Aer n steps of dynamics, sampling~s within G2 (constrained
through application of the BXD velocity reection procedure), there are two
possible outcomes: (1) velocity reections against BEnd were observed, implying
that the path from Bi to BEnd requires no additional acceleration, or (2) velocity
reections against BEnd were not observed, whichmeans that an additional bound
Bnew is required according to the procedure outlined below in section 2.4.2.
Dynamics are then run until the system crosses Bnew, at which point Bi ) Bnew.
The dynamics in this hitherto unexplored space are then restricted in the region
of G2 through the application of the BXD velocity reection procedure. The
sampling procedure is repeated until the dynamics reach BEnd, at which point Bi

Fig. 3 Flowchart illustrating the adaptive BXD boundary generation procedure.

Paper Faraday Discussions

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss.

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Ju

ne
 2

01
6.

 D
ow

nl
oa

de
d 

on
 1

0/
11

/2
01

6 
15

:4
2:

24
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/C6FD00138F


) BP and BEnd ) BR, and the dynamics sweep back for a second pass in the
opposite direction. Upon completion of the reverse pass, the Fig. 3 schematic
arrives at the “Stop” point, and G will have been partitioned into a set of boxes
with bounds BR, B1, B2,., Bn, BP for subsequent use in BXD runs to generate free
energy surfaces to a specied degree of convergence.

2.4.2 Procedure for adaptively generating a new boundary. An important
aspect of the adaptive BXD scheme is ‘on-the-y’ analysis of the statistics collected
during the sampling procedure for generation of a new boundary, Bnew. Let S ˛
R
n�M be the set of the sampled values of~s, illustrated as blue circles in Fig. 4A,

and let~R˛R
n be the vector of distances r from Bi to each sampled value~s in S. The

vector ~R provides information on how far from Bi the next boundary should be
placed, the location of which is determined as follows:

(1) A normalized histogram of~R is computed to give p(r), a probability density
function representing the distances from Bi that a trajectory samples between
reections, as shown in Fig. 4B.

(2) From p(r), we calculate the cumulative distribution function

Pðr0Þ ¼
Xr¼r0

r¼0

pðrÞ. We then identify a histogram bin bmax in p(r) with a bin centre

rmax chosen so that P(rmax) $ (1 � 3). 3 ˛ (0, 1) is a parameter which species the
“probability threshold” at which to place a new boundary (the value of 3 is
specied by the user, and typically ranges from 0.01–0.1). We then identify~smax

(the mean value of the sampled values in S that fall within bin bmax), illustrated in
Fig. 4B, as the point at which to place a new boundary Bnew.

(3) To determine the orientation of Bnew as an (M � 1)-dimensional plane, we
use a simple strategy consistent with BXD's origins in transition state theory (TST)
– i.e., Bnew should be more or less orthogonal to the path of the observed
dynamics.13,14 With bmin dened as the rst bin in the histogram of~R (see Fig. 4B),
we calculate~smin (the mean value of the sampled values in S that fall within bmin).
With this denition,~smin represents the average value of~s immediately prior to
and aer reection against Bi, i.e. the mean crossing point through Bi. Similarly,
~smax represents the average crossing point through Bnew. The vector from~smin to

Fig. 4 Illustration of the adaptive boundary generation procedure. Panel A shows
sampling of values within a 2d collective variable space, with an existing boundary Bi; panel
B shows histogram binning of the distances with respect to the existing boundary Bi.~smin

and~smax, located within histogram bins bmin and bmax, are both shaded in red. Panel C
shows generation of a new bound Bnew, where the norm defined in eqn (14) is illustrated by
the purple arrow.
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~smax thus serves as an approximate dynamical pathway through the box, and we
dene the unit norm for Bnew as

n̂new ¼ ~smax �~smin���~smax �~smin

��� : (14)

The unit norm in eqn (14), combined with~smax, allow us to fully dene the new
boundary Bnew, as illustrated in Fig. 4C. The next time the trajectory crosses Bnew,
it becomes enforced as a constraint (i.e., Bi ) Bnew), and an identical analysis will
be carried out to determine the next Bnew.

As discussed above, adaptive boundary generation in this fashion will even-
tually lead to reection against BP. Once a trajectory reaches the barrier via
adaptive boundary generation on the reactant side of the barrier, reection
against BP generally follows rapidly without any need for boundaries on the
product side of the barrier. To generate boundaries on the product side, a second
adaptive sweep from BP to BR is required. To do this, the direction of sampling is
reversed, and the adaptive boundary generation process is repeated going the
opposite way. The only difference is that – because adaptive boundaries are
already in place on the reactant side of the barrier – the reactant region is unlikely
to require any more boundaries on the second sweep. For example, consider
a BXD trajectory on its second sweep which is passing through the reactant region
enclosed by boundaries Bi and Bi�1 (both of which were adaptively generated in
the rst pass). It is likely for reection events against Bi�1 to be observed – i.e.,
sampling within this region is already suitably accelerated by BXD, and the
trajectory can move on to the region dened by boundaries Bi�1 and Bi�2. Should
we observe that the trajectory has not inverted against Bi�1 aer n steps, then an
additional boundary is adaptively generated as described above.

3 Multidimensional adaptive sampling of
chemical reactions in liquids

As an initial test of the multidimensional adaptive BXD scheme outlined above,
we investigated F + CD3CN / DF + CD2CN in CD3CN solvent. This system has
recently been the subject of both ultrafast transient IR spectroscopy experiments
and corresponding non-equilibrium MD simulations.63,64 As such, it provides an
excellent test case for investigating the algorithms described above, and also for
evaluating their performance and accuracy. The reaction, which takes place in
deuterated acetonitrile solvent (CD3CN), consists of deuterium abstraction from
acetonitrile by the uorine atom, snapshots of which are illustrated in Fig. 5.
Reactive molecular dynamics are possible using a customized version of the
CHARMMmolecular dynamics soware suite, using a parallel implementation of
the multi-state empirical valence bond (MS-EVB) method. The simulation
includes a single F radical embedded in a periodic box of 62 CD3CN solvent
molecules. With a total of 64 MS-EVB states parallelized across 64 CPU cores, our
simulations are able to treat the reactive process leading to DF as well as transient
deuterium transfer from the nascent DF to the nitrile group on the other solvent
molecules.64 The MS-EVB coupling elements were t to explicitly correlated
CCSD(T)-F12 electronic structure theory extrapolated to the innite basis set limit
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(the contours of this PES are shown in Fig. 6). This procedure yields an accurate
reactive PES, which is critical to understanding non-equilibrium energy deposi-
tion for reactions of this sort.

A one-dimensional implementation of BXD was previously used in these
simulations to restrict the distance between the F radical and the reactive
deuterium between 1.5 Å and 1.8 Å. This prevented the F radical diffusing away
from its co-reactant during pre-production equilibration sampling runs. In the
production NVE runs, the lower bound was removed. This allowed the reaction to
occur, so that we could obtain an accurate measurement of energy deposition and
relaxation in the nascent reaction products. At the time these studies were pub-
lished, it was not possible to use BXD to generate a free energy surface for this
reaction given that reversible reactive sampling requires the use of at least two
CVs: the distance between the F radical and deuterium (F–D distance), and the
distance between transferring deuterium and the carbon atom to which it is
bonded (C–D distance). Constraint of the F–D distance accelerates abstraction
over a relatively early barrier, and constraint of the C–D distance prevents the
product DF from immediately diffusing away from its co-product. In addition to
BXD sampling of the condensed phase reaction, we also carried out BXD sampling
of the gas phase reaction, which included only three EVB states: the reactant
F + CD3CN state, the co-product DF + CD2CN state, and the [CD3CND]

+/[F]�

state. Unless stated otherwise, all the results presented herein were run with

Fig. 5 Snapshots from a molecular dynamics simulation of F + CD3CN in an explicit
solvent of 62 CD3CN molecules. The images show: (1) approach of F to a CD3CN co-
reactant, (2) passage over the abstraction TS, (3) the nascent DF and its CD2CN co-
product, and (4) formation of a hydrogen-bonded complex between DF and another
solvent molecule.
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a time step of 0.1 fs, using a Langevin thermostat at 300 K with a friction coef-
cient of 20 ps�1.

3.1 Adaptively generated BXD boundaries along the F + CD3CN reaction path

We applied the adaptive boundary generation procedure described in section 2.4
to sample this reaction and create BXD boundaries that could be used to accel-
erate the calculation of a free energy surface. This constitutes an interesting and
particularly stringent test of our adaptive BXD procedure because of the large
change in gradients along the reaction pathway: the gradients on the reactant side
of the TS are very at, while those on the product side are very steep. Application
of adaptive BXD to this system also enables us to comment on an outstanding
experimental question – namely, to what extent does the free energy surface of the
gas phase chemical reaction resemble the free energy surface of the reaction in
a strongly coupled solvent like CD3CN? In the gas phase, the 0 K reaction enthalpy
is �37 kcal mol�1, most of which is potentially available for deposition into the
nascent DF product. Measurements carried out using ultrafast transient IR
spectroscopy in solution showed deposition of substantial vibrational energy (i.e.,
at least v ¼ 2) in the stretching motion of the nascent DF product for the reaction
taking place in solution. This value places a rm lower limit on exothermicity of
the reaction free energy; however, a detailed analysis of the free energy proles in
both the gas phase and in solvent is beyond experimental reach.

As outlined above, adaptive BXD free energy sampling was undertaken in a CV
space comprised of the F–D and C–D distances: an F–D distance of 2.7 Å was used
to dene BR, and a C–D distance of 3.5 Å was used to dene BP. Adaptive sampling
times of 100 ps (in the gas phase) and 30 ps (in solution phase) per box were used

Fig. 6 Time series illustrating the dynamical sequence that generates adaptive boundaries
along the F + CD3CN reaction path in the gas phase. The grey dots indicate points in CV
space that have already been sampled, and the black x indicates the position of the system
at the time when the snapshot for each respective panel was taken. Snapshot 1 shows
initial sampling near BR and snapshot 2 shows generation of the first boundary. Snapshot 3
shows the state of the system immediately following transition state passage and rapid
downhill transit toward BP. Snapshots 4–6 show adaptive boundary placement as the
system attempts to find its way back to the first box (i.e., that which is bounded by BR).
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to determine the placement of new boundaries, with 3 ¼ 0.01 (guaranteeing that
new boundaries are placed at a location visited no more than 1% of the time).
Fig. 6 shows a series of snapshots taken during the automated boundary location
procedure, illustrating how the adaptive algorithm works. Beginning from an
initial point sampled near BR, BXD adaptively generates a boundary, which allows
it to sample regions near the TS. Once the dynamics arrive at the TS, the system
rapidly descends toward products, and quickly arrives at BP. At this point, BXD
begins sweeping back in the opposite direction, adaptively generating boundaries
which eventually return it back to the rst box bounded by BR. Fig. 7 shows the
nal set of adaptively generated boundaries used to sample the free energy along
the reaction pathway in both solution phase and in the gas phase. The plots also
show the dynamical traces in CV space used to construct the BXD boundaries.
There are some important points to note with respect to Fig. 6 and 7: (1) the
adaptively generated boundaries generally follow the route taken by the dynamics
along the reaction pathway, with orientations that are roughly orthogonal to the
dynamical pathway through CV space; (2) the spacing between boundaries varies
as a function of the steepness of the free energy surface (the gradient) of the
underlying PES and the corresponding free energy prole – i.e., steep regions with
large gradients require several boundaries, whereas less steep regions with
smaller gradients require fewer boundaries; and (3) the reaction pathway in
solvent has more adaptively generated BXD boundaries than the corresponding
gas phase pathway, as a result of solvent friction effects that do not occur in the
gas phase. Placing such a large number of BXD boundaries by user trial and error
would be an extremely labour intensive process.

3.2 Free energy sampling within the adaptive boundaries

Having adaptively generated boundaries for both the solution and gas phase
reactions, the standard BXD sampling procedure could then be applied. For the
gas phase, the system is small enough that it was possible to gather all the
required statistics with a single 100 ns trajectory, where the trajectory was
sequentially restrained within each box until 100 reection events had occurred

Fig. 7 Grey lines show the final set of adaptively generated BXD boundaries along the F +
CD3CN reaction path in the gas phase, and in solution. The black traces show those values
of the CVs which were sampled during the dynamics used to construct the boundaries.
The contours indicate the underlying 0 K MS-EVB potential energy profile, and are
provided for reference. The 0 K reaction enthalpy is �37 kcal mol�1.
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on either side of the boundary before being allowed through to the next box
(another way of deciding how long to remain in the box is to monitor the point at
which the MFPT reaches a user-specied convergence criterion). Given the larger
size of the solution phase system along with the increased computational
requirements that result from the 64 EVB states, we exploited the trivial paral-
lelism of BXD to run trajectories in each box until meeting a user-specied
convergence criterion (i.e., that the box-to-box MFPTs did not change by more
than 0.1% with increased sampling), giving a total of 12 ns of dynamics across all
boxes. Fig. 8 shows examples of the sampled values of the CVs obtained in the
solution phase simulations, and demonstrates the sort of statistics obtained in
two different regions along the free energy prole: (A) in the vicinity of the tran-
sition state, and (B) along a steep ‘post-transition’ state region aer DF has
formed.

Once sampling was completed within each box (generating statistics similar to
those shown in Fig. 7), MFPTs were calculated as described in section 2.1, and the
results used to generate a ‘box-averaged’ free energy prole and corresponding
‘box-averaged’ probability spanning BR to BP. A higher-resolution free energy
prole was obtained placing the statistics for a particular box into histogram bins
and then using eqn (4) to renormalize by the box-averaged probabilities. Fig. 9A
shows the smaller histogram bins into which we partitioned the statistics in each
box to accomplish this. In the 1d case, high-resolution partitioning along the
dynamical pathway is straightforward; in this case (andmore generally for higher-
dimensional cases), our strategy is as follows:

(1) Dene a path r which passes through the average dynamical crossing
points through each boundary (i.e.,~smax), and spans BR to BP.

(2) Each region between a set of boundaries is then partitioned into a series of
bisecting hyperplanes, to an arbitrary user-specied resolution. The regions
between these bisecting hyperplanes constitute the high-resolution histogram

Fig. 8 2D histograms of observed values of the collective variables from BXD sampling in
solution. Panel A shows statistics sampled in the vicinity of the transition state, while panel
B shows observed values on a steep ‘post-transition state’ region of the PES after DF has
formed. The colors indicate the CV sampling frequency: dark red indicates a very high
frequency, deep blue indicates a lower frequency, and white indicates zero frequency.

Paper Faraday Discussions

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss.

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Ju

ne
 2

01
6.

 D
ow

nl
oa

de
d 

on
 1

0/
11

/2
01

6 
15

:4
2:

24
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/C6FD00138F


bins. The centre of each bin is chosen to be the point along r which is equidistant
from the hyperplanes that bound the bin.

The blue line in Fig. 9A shows the path r which spans BR to BP, and which was
used to generate ner histogram bins for plotting the high-resolution free energy
prole. Fig. 9B shows the corresponding high-resolution BXD free energy proles
for the gas phase reaction. The overlapping curves in this plot show how the free
energy proles change with increasing sampling time, giving some indication of
how quickly the BXD free energy prole converges in this particular system.

Fig. 10 shows a comparison of the reactive free energy surfaces obtained in
both the gas phase and in solvent. In the vicinity of the reactants and transition

Fig. 9 Panel A shows the BXD boundaries (black lines), and the high-resolution histogram
bins (light grey lines) generated using the procedure outlined in the text for the gas phase
reaction path. The blue line shows the path through the average dynamical boundary
crossing points. Panel B shows the corresponding high-resolution BXD free energy profile
for gas phase CD3CN. The overlapping curves in this plot show how the free energy
profiles change with increasing sampling time, giving some indication of the rate of
convergence for this particular system.

Fig. 10 Reaction free energy profile in both gas and solution phases.
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states, the proles are very similar; however, they show considerable differences
in the post-reaction region. The reason for this difference arises from post-reac-
tion hydrogen bonding complexes formed by the nascent DF. In the gas phase
BXD free energy sampling, the DF rotates around the backside of its CD2CN co-
product and nds a stable hydrogen-bonding complex with the nitrile moiety. In
solvent, such interactions are possible with any of a wide range of nearby solvent
molecules, and therefore no distinct minima can be observed along the free
energy prole. In terms of understanding the DF energy deposition observed in
the previously published experimental and MD results, the key quantity in Fig. 10
is the free energy difference between: (1) the maximum value observed near the
transition state region, and (2) the minimum observed near the product state
region. This quantity places an upper bound on the amount of energy which may
be deposited into the nascent DF: for the reaction taking place in solvent the value
is 27.6 kcal mol�1, and for the reaction taking place in the gas phase the value is
31.1 kcal mol�1. Both of these values are in good agreement with previous
experimental and modelling studies. Our previously published experimental and
MD studies indicated the prompt deposition of�23 kcal mol�1 into the stretching
motion of the nascent DF prior to relaxation.63,64While gas phase experiments of F
+ CD3CN are not available for direct comparison to our free energy results,
experiments examining gas-phase energy deposition into HF in the F + CH3CN
reaction have been performed,65 and suggest that the nascent diatomic product in
solvent contains slightly less excitation than in the gas phase.63 This is consistent
with the results in Fig. 10, which indicate that more energy is available to the
products in the gas phase reaction than in the solvent reaction.

4 Conclusions

In this paper, we have outlined an adaptive and automated procedure for gener-
ating boundaries in a multi-dimensional space of CVs. Our automated algorithm
reduces the user effort required to carry out both rare event and free energy
sampling in both one-dimensional and multi-dimensional cases; it generates box
boundaries which are far enough apart to avoid any problems related to dynamical
decorrelation, but which afford optimal acceleration. The extension of BXD to
multidimensional collective variables provides an effective way to sample increas-
ingly complex systems, but retains much of the simplicity and original properties of
the 1-dimensional BXD implementation. The adaptive BXD scheme tested in this
paper has been implemented in CHARMM, and will soon be available in the release
version (we have also made initial efforts toward a BXD implementation in the
TeraChem66 ab initio dynamics package). The tests reported in this paper were
carried out using the CHARMM implementation, in conjunction with parallelizable
MS-EVBmachinery also available in CHARMM.64 This framework allowed us tomap
free energy along a deuterium abstraction reaction pathway in both gas and solu-
tion phases. The results we obtained are in agreement with previously published
experimental and modelling studies, providing good evidence for the reliability of
our adaptive multidimensional BXD implementation.

We believe that the adaptive scheme outlined in this paper, which allows us to
generate hyperplanes inmulti-dimensional collective variable space, may bemore
broadly useful to a wide range of techniques which rely on splicing up congu-
ration space into a set of interfaces or boundaries. In the future, we will explore
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rigorous methods for estimating the error bars of free energy surfaces generated
using BXD.67 We also plan to explore extensions of the adaptive BXD scheme in
systems with CV spaces that have dimensionalities of three and higher – e.g.,
enzyme reactions and conformational dynamics,68 drug binding,69 and chemical
reactions at surfaces and in liquids.70 As shown in eqn (7), implementation of BXD
in multi-dimensional CV space requires denitions of the gradient in CV space,
Vf, a wide library of which are available in the PLUMED71 package. We are
presently working on writing the BXD algorithm as a portable, and mostly
‘standalone’ plugin that may be easily interfaced with a wide range of molecular
dynamics packages, a similar philosophy to that which has been adopted by
PLUMED.71 Implementation of adaptive BXD in a package of this sort should
allow it to be used in a wide range of contexts.

5 Appendix: velocity reflection in two-
dimensional CV space

In this section we give details on the calculations required to perform velocity
reection for a simple but illustrative case. Consider a system of atoms A, B and C
where our collective variables are the distances AB and BC. This style of collective
variable is useful in many situations, including the acceleration of abstraction
reactions as discussed in the main document.

For the sake of brevity we restrict ourselves to 2 spatial coordinates. Let~r ¼ [ax,
ay, bx, by, cx, cy] be the coordinates and ~v ¼ [Vx

a, Vy
a, Vx

b, Vy
b, Vx

c, Vy
c] be the

velocities of atoms A, B and C, and letM be the diagonal matrix of atomic masses,
i.e.:

M ¼

2
666664

ma

0

0
0

0
0

0

ma

0
0

0
0

0
0

mb

0

0

0

0

0

0
mb

0
0

0

0

0
0

mc

0

0

0

0
0

0
mc

3
777775: (A.1)

Our collective variable s(~r) is given by:

s
�
~r
�

¼ ðrAB; rBCÞ;

rAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðax � bxÞ2 þ

�
ay � by

	2q
;

rBC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbx � cxÞ2 þ

�
by � cy

	2q
: (A.2)

Suppose we have some BXD boundary B, dened as a two-dimensional line in
Hessian form with norm n̂¼ (n1, n2) and point D. The constraint on our dynamics
is

f h n1rAB + n2rBC + D $ 0. (A.3)

Suppose that we identify a timestep in which our constraint will no longer be
satised – i.e., the stepping forward using the current velocities will result in
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a boundary being crossed, and we require a velocity reection. In order to perform
the velocity reection using a Lagrangian multiplier, we need to compute Vf, the
transpose of which is given by

VfT ¼ df

d~r
¼ n1

drAB

d~r
þ n2

drBC

d~r
¼

2
6666664

n1ðax � bxÞ=rAB

n1
�
ay � by

	

rAB

n1ðax � bxÞ=rAB þ n2ðbx � cxÞ=rBC
n1
�
ay � by

	

rAB þ n2

�
by � cy

	

rBC

n2ðcx � bxÞ=rBC
n2
�
cy � by

	

rBC

3
7777775
: (A.4)

The expression above demonstrates how it is simple to construct the reection
procedure from the gradients of the individual collective variables. With Vf in
hand, it is a simple matter to determine the Lagrangian multiplier l with which
the velocities may be inverted. From eqn (12) we may compute l via

l ¼ �2Vf$~v

VfM�1VfT
; (A.5)

and then subsequently use it to compute inverted velocities from eqn (11) as~v0(t)
¼ ~v(t) + lM�1VfT. In the resulting velocities, the components normal to the
boundary are inverted, and thus the constraint is satised.
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