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Abstract 18 

Where high resolution topographic data are available, modellers are faced with the decision 19 

of whether it is better to spend computational resource on resolving topography at finer 20 

resolutions or on running more simulations to account for various uncertain input factors (e.g. 21 

model parameters). In this paper we apply Global Sensitivity Analysis to explore how 22 

influential the choice of spatial resolution is when compared to uncertainties in the 23 

Manning’s friction coefficient parameters,  the inflow hydrograph, and those stemming from 24 

the coarsening of topographic data used to produce Digital Elevation Models (DEMs).. We 25 

apply the hydraulic model LISFLOOD-FP to produce several temporally and spatially 26 

variable model outputs that represent different aspects of flood inundation processes, 27 

including flood extent, water depth and time of inundation. We find that the most influential 28 

input factor for flood extent predictions changes during the flood event, starting with the 29 

inflow hydrograph during the rising limb before switching to the channel friction parameter 30 

during peak flood inundation, and finally to the floodplain friction parameter during the 31 

drying phase of the flood event.  Spatial resolution and uncertainty introduced by resampling 32 

topographic data to coarser resolutions are much more important for water depth predictions, 33 

which are also sensitive to different input factors spatially and temporally. Our findings 34 

indicate that the sensitivity of LISFLOOD-FP predictions is more complex than previously 35 

thought. Consequently, the input factors that modellers should prioritise will differ depending 36 

on the model output assessed, and the location and time of when and where this output is 37 

most relevant. 38 
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1. Introduction 48 

Flood inundation models have been utilised widely to make flood hazard predictions. These 49 

models are typically run in either steady state, where the boundary conditions (for a river this 50 

would typically be the river discharge) are fixed in time, or in unsteady state, where the 51 

boundary conditions change through time. Steady state models have been applied for various 52 

applications, including to undertake flood hazard mapping from reference return period 53 

events (e.g. Cook and Merwade, 2009) and to compare different hydraulic models 54 

(Bradbrook et al., 2004), whilst models run in an unsteady state enable modellers to 55 

understand the dynamic variation of flood hazard throughout the passage of the flood wave 56 

(e.g. Bates and De Roo, 2000; Mignot et al., 2006; Skinner et al., 2015). The application of 57 

these models has allowed the mapping of regions at risk of inundation from coastal (e.g. 58 

Westerink et al., 1992; Poulter and Halpin, 2008; Lewis et al., 2013; Quinn et al., 2013; 59 

Skinner et al., 2015; Ramirez et al., 2016), fluvial (Bates et al., 1992; Werner et al., 2005; 60 

Mignot et al., 2006; Yu and Lane, 2006; McMillan and Brasington, 2007; Tayefi et al., 2007; 61 

Wilson et al., 2007; Apel et al., 2009; Falter et al., 2013; Yin et al., 2013; Rudorff et al., 62 

2014; Jung and Merwade, 2015) and pluvial (e.g. Chen et al., 2005; Schubert et al., 2008; 63 

Leandro et al., 2009; Sampson et al., 2012; Liu et al., 2015; Yu and Coulthard, 2015) flood 64 



events. However, flood inundation models are approximations of reality and are therefore 65 

subject to a number of uncertainties. These uncertainties include aleatory uncertainties 66 

relating to the randomness of a flood event occurring in the first place and epistemic 67 

uncertainties which exist as a result of our inexact understanding of the environment being 68 

modelled, such as uncertainties in the model structure (for example the underlying equations 69 

and numerical methods), parameters and boundary conditions (Merz and Thieken, 2005; 70 

Renard et al., 2010; Warmink et al., 2010; Beven et al., 2011). In hydraulic modelling, many 71 

studies have looked at the effect of these uncertainties on predictions of flood hazards 72 

(Romanowicz and Beven, 1997; Apel et al., 2004; Hall et al., 2005; Pappenberger et al., 73 

2005; Pappenberger et al., 2006; Apel et al., 2008; Di Baldassarre and Montanari, 2009; 74 

Domeneghetti et al., 2013). These uncertainties are typically represented probabilistically by 75 

computing multiple realisations of the model under different forcing conditions informed by 76 

the uncertainties under consideration, for example using the Generalised Likelihood 77 

Uncertainty Estimation (GLUE) methodology (Beven and Binley, 1992). The resultant suite 78 

of simulations may contain multiple models that satisfy the performance criteria set when 79 

assessing the skill of the models, a phenomenon often referred to as equifinality (Beven and 80 

Freer, 2001; Savenije, 2001; Beven, 2006; Ebel and Loague, 2006; Vrugt et al., 2009).  81 

 82 

An important decision faced by flood inundation modellers is the representation of 83 

topography. Advances in remote sensing over the last two decades have increased the 84 

availability of high resolution elevation data that can be utilised to represent topography by 85 

modellers, particularly through the increase in abundance of data collected through Light 86 

Detection and Ranging (LIDAR) imagery (i.e. Bates, 2012). These data are valuable for flood 87 

inundation models as finer resolution topography will allow smaller floodplain features to be 88 

explicitly represented within the Digital Elevation Model (DEM). The combination of high 89 



resolution LiDAR data with computational advances and improved coding, for example, 90 

running simulations on Graphical Processing Units (GPUs) (Lamb et al., 2009; Kalyanapu et 91 

al., 2011) and parallelised model codes (Neal et al., 2009; Yu, 2010) has enabled hydraulic 92 

models to simulate flood events at resolutions fine enough to resolve urban areas where 93 

buildings and roads have a major control on the inundation patterns observed (Werner et al., 94 

2005; Yu and Lane, 2006; Fewtrell et al., 2008; Neal et al., 2011; Parkes et al., 2013; 95 

Sampson et al., 2014). However, running multiple models at such fine scale resolutions 96 

remains computationally expensive, which limits our ability to fully analyse the inherent 97 

uncertainties of the modelling process by running multiple model realisations. Consequently, 98 

topographic data is commonly resampled to a coarser resolution than its original form, 99 

however the choice of method applied to produce the coarser DEM can result in different 100 

model predictions (Fewtrell et al., 2008). 101 

 102 

The development of more spatially complex models opens up a complexity-uncertainty trade 103 

off, whereby for a given amount of computational resource the total number of Monte Carlo 104 

simulations that can be run to quantify uncertainty in model predictions is limited by the 105 

spatial complexity of the model. One example of this issue is described by Beven et al. (2015) 106 

where the requirement for multiple simulations for forecast ensembles competes with the 107 

increasing spatial complexity of models. Despite the increasing availability of high quality 108 

data, the continued improvement in hydraulic models and computational advances, one of the 109 

key barriers for a more widespread uptake of flood inundation models for decision making 110 

during emergency situations is the time taken to perform simulations (Leskens et al., 2014). 111 

This time is highly dependent on the spatial resolution of the model, particularly for models 112 

developed on Cartesian grids where the simulation run time increases by approximately an 113 

order of magnitude for a doubling of resolution (Bates et al., 2010). Furthermore, the choice 114 



of spatial resolution is subjective like many other choices made in the modelling process 115 

(Pappenberger et al., 2007b), yet it could have key implications on the output of flood 116 

inundation models. It is therefore important to understand the relative importance of spatial 117 

resolution in comparison to other uncertainties, particularly if a model will be utilised to 118 

inform time critical decisions. 119 

 120 

A formal methodology that allows us to explore the complexity-uncertainty trade-off is 121 

Sensitivity Analysis (SA). SA quantifies the contribution of various input factors, e.g. the 122 

model’s forcing data, parameters or boundary conditions, to the variability in the model 123 

output (Saltelli et al., 2008).  SA techniques are typically classified into two main groups, 124 

local and global strategies. Local methods vary uncertain input factors in the neighbourhood 125 

of a nominal value, for instance the “optimal” parameter estimate. Global Sensitivity 126 

Analysis (GSA) strategies instead vary the input factors across a wider pre-defined region 127 

that reflect the modeller’s estimate of the uncertainty in each factor (Saltelli et al., 2008; 128 

Pianosi et al., 2016). Furthermore, global methods such as the Sobol’ method (Sobol, 2001) 129 

allow all factors to be varied simultaneously, so that interactions among input factors can be 130 

evaluated. In recent years the use of GSA has become feasible for increasingly complex 131 

environmental models (van Werkhoven et al., 2008; Nossent et al., 2011; Yang, 2011; Zhang 132 

et al., 2013; Hartmann et al., 2015). In hydraulic modelling, GSA has been utilised to 133 

understand the dominant processes affecting model performance (Bates and Anderson, 1996), 134 

for defence breach (de Moel et al., 2012) and dam break scenarios (Hall et al., 2009), to 135 

assess how influence of channel friction parameter varied downstream (Hall et al., 2005) and 136 

to understand how implied sensitivities vary when using different GSA methods 137 

(Pappenberger et al., 2008).  138 



Although we know that the choice of spatial resolution can have a large influence on 139 

hydraulic model output (Bates et al., 1998; Horritt and Bates, 2001b; Yu and Lane, 2006; 140 

Savage et al., 2016), only the studies by Bates et al. (1998) and Savage et al. (2016) have 141 

considered this effect alongside other inherent uncertainties and none have done so using a 142 

formalised sensitivity analysis framework. In this paper we close this gap and demonstrate 143 

the use of GSA to quantify the relative importance of the choice of spatial resolution and the 144 

uncertainty this introduces when resampling a DEM in comparison to uncertainties in the 145 

boundary conditions and model parameters for flood inundation predictions. We use the 146 

hydraulic model LISFLOOD-FP (Bates and De Roo, 2000; Bates et al., 2010) and Sobol’s  147 

variance-based GSA method (Saltelli et al., 2008). Using variance-based GSA allows us to 148 

incorporate both continuous variables such as model parameters and discrete choices like the 149 

spatial resolution of the model, using a tailored sampling strategy similar to the one adopted 150 

by Baroni and Tarantola (2014). By applying such a methodology we show how GSA can be 151 

applied to complex, spatially-distributed models using input factors that extend beyond the 152 

commonly incorporated model parameters and boundary conditions. This approach is 153 

transferrable to other environmental models for example in cases where modellers are 154 

interested in understanding the importance of decisions during model set-up in comparison to 155 

other uncertainties. We analyse different spatially and temporally variable flood outputs 156 

including flood extent, water depth and floodwave travel time. This allows us to explore 157 

whether model sensitivities to different input factors change in time and space and how 158 

implied sensitivities differ depending on the flood output assessed. By analysing the 159 

importance of spatial resolution in relation to other uncertain input factors, our approach also 160 

allows us to explore whether it would be more beneficial to spend computational resources 161 

running fewer models at finer spatial resolutions or running an increased number of 162 

simulations that explore the effect of other uncertain factors at coarser spatial resolutions. 163 



 164 

2. Methodology 165 

Figure 1 summarises the methodology applied in this study, which comprises four steps: the 166 

definition of the variability space of the input factors (Step 0 in Figure 1); the definition of 167 

which input factor combinations will be sampled (Step 1); the execution of the model (Step 168 

2); and finally the quantification of the relative influence of the input factors on output 169 

variability by means of sensitivity indices (Step 3). In the following paragraphs we will 170 

provide more details on the key elements used at each of these steps, including the hydraulic 171 

model and the study site area (Sec. 2.1 and 2.2.), the definition of the sensitivity indices (Sec. 172 

2.3), the sampling approach (Sec. 2.4), the definition of the variability space of the input 173 

factors (Sec. 2.5) and the choice of model outputs to be analysed (Sec. 2.6). 174 

2.1 Case Study 175 

The case study area used in this application is the Imera basin in Sicily which covers an area 176 

of approximately 2000 km2 (Aronica et al., 1998). The river flows southwards from the centre 177 

of Sicily to the coastal city of Licata where it meets the Mediterranean Sea. The floodplain is 178 

mostly rural with land mainly used for agricultural purposes. There are artificial levees along 179 

the major roads on the floodplain with flood defences located in the urban development of 180 

Licata. There is also a venturi-flume structure in the Imera channel upstream of Licata that 181 

partially restricts the flow during flood events and diverts some of the flow along a secondary 182 

channel. This meant that the Southern region of the basin was widely inundated on 12th 183 

October 1991 when 229 mm of rain fell at an intensity of up to 56 mm h-1 over a period of 21 184 

hours (Aronica et al., 1998). Data available to model this flood event using a flood inundation 185 

model include a 2 m Digital Elevation Model (DEM) covering an area of 50 km2 and 186 

collected from LiDAR (see Savage et al., 2016, Figure 1) with a vertical accuracy of ± 0.3 m, 187 



and a hydrograph of the flood event that has been reconstructed through rainfall-runoff 188 

modelling and has been used previously by Aronica et al. (2002). The hydrograph had to be 189 

reproduced as the river gauge was washed away during the flood. Observational data of the 190 

flood exists in the form of heights of water marks collected at 25 locations and an outline of 191 

the flood extent collected post-event using loss data and field surveys. Previous studies have 192 

already demonstrated the ability of hydraulic models to simulate the observed flooding 193 

reasonably well for this event in comparison to these observational data (Aronica et al., 2002; 194 

Savage et al., 2016) so our analysis will focus on model predictions and behaviours rather 195 

than on performance against observed data. 196 

2.2 Hydraulic Model 197 

The hydraulic model used in this study is LISFLOOD-FP (Bates and De Roo, 2000; Bates et 198 

al., 2010). This is an explicit finite difference model that solves an inertial approximation of 199 

the shallow water equations where advection is neglected. The equation used to calculate 200 

flow between two cells is: 201 

𝑄𝑡+∆𝑡 =
𝑞𝑡−𝑔ℎ𝑓𝑙𝑜𝑤

𝑡 ∆𝑡
∆(ℎ𝑡+𝑧)

∆𝑥

(1+𝑔∆𝑡𝑛2|𝑞𝑡|/(ℎ𝑓𝑙𝑜𝑤
𝑡 )7/3)

∆𝑥   202 

Equation 1 203 

Where 𝑄 is flow (m3s-1), 𝑔 is acceleration due to gravity (ms-1), ℎ is depth (m), 𝑛 is the 204 

Manning’s coefficient of roughness (sm1/3), 𝑞 is water flux (m2s-1), 𝑡 is time, ∆𝑥 is cell 205 

resolution (m), 𝑧 is cell elevation (m) and ℎ𝑓𝑙𝑜𝑤
𝑡  is the depth that water can flow through the 206 

lateral boundary of two adjoining grid cells (m), calculated as the difference between the 207 

highest bed elevation and the highest water surface elevation between two cells. 208 

It is possible that applying inertial terms particularly at fine resolutions can lead to 209 

instabilities in the model solution (Bates et al., 2010). To overcome this, (de Almeida et al., 210 



2012) introduced an additional diffusion term (θ) that adds a minor and controlled amount of 211 

diffusion, which has been shown to stabilise the model without significantly changing the 212 

results (de Almeida and Bates, 2013). We introduce this term for the finest spatial resolution 213 

in this study when Manning’s friction coefficients are less than 0.03 as initial simulations 214 

found these simulations to otherwise be unstable. 215 

This model has been proven to perform well in comparison to other hydraulic models for 216 

simulations of both rural and urban flood events and in comparison to analytical solutions 217 

(Horritt and Bates, 2001a; Hunter et al., 2008; Bates et al., 2010; Néelz and Pender, 2013). 218 

The version of the model applied will be the sub-grid channel implementation (Neal et al., 219 

2012). In this the channel is defined separately to the floodplain allowing the channel widths 220 

to be defined independently to the spatial resolution of the model. However, flows in both the 221 

channel and floodplain are coupled and solved using the same inertial Shallow Water 222 

Equation (SWE) approximation, as described by (Neal et al., 2012). The channel width and 223 

bed elevations are extracted from the 2 m LiDAR data every 10 m along the channel. A mean 224 

of these values is taken at the coarsest resolution applied in this study (50 m), which then 225 

defines the channel geometry for all model simulations. The channel shape is fixed as 226 

rectangular for each model resolution. This approach allows the channel widths to remain 227 

fixed and consistent across the different spatial resolutions and DEMs, thus making them grid 228 

independent. 229 

2.3 Variance-based Sensitivity Indices 230 

The key idea of variance-based Sensitivity Analysis is to measure the relative influence of the 231 

uncertainty in each input factor by its contribution to the variance of the model output. In 232 

particular, for each input factor, two sensitivity indices are typically computed, the first-order 233 

sensitivity index (or main effect) and the total-order sensitivity (or total effect) (Saltelli, 234 



2002). The former measures the direct contribution to the output variance from individual 235 

variations of a factor, while the latter measures the overall contribution both from individual 236 

variations and through interactions with other factors. High sensitivity indices indicate a large 237 

influence over the variability of the output whilst low sensitivity indices indicate a small 238 

influence. If the difference between the total and main effects is large then this indicates 239 

strong interactions with other input factors.  240 

For each input factor, say the i-th, the two indices are defined as 241 

Si = Vxi [ E x~i( y|xi ) ] / V(y) 242 

Equation 2.1 243 

STi = 1 - Vx~i [ Exi( y|x~i ) ] / V(y) 244 

Equation 2.2 245 

where y is the (scalar) model output, xi is the i-th input factor, x~i is the vector of all input 246 

factors but the i-th (i.e. x~i = [ x1,…,xi-1,xi+1,…xM]), E denotes the expected value and V the 247 

variance. In our case study, the model output y is a temporal or spatial aggregation of the 248 

simulation results produced by LISFLOOD-FP. The multiple definitions of y considered in 249 

this study will be described in Sec. 2.6. The five input factors that are assessed in this study 250 

are: (1) the spatial resolution of the model; (2) the Digital Elevation Model (DEM) that is 251 

obtained by resampling high resolution LiDAR data to coarser resolutions; (3) and (4) the 252 

model parameters (Manning’s channel and floodplain friction coefficients); and (5) the 253 

boundary condition (the forcing hydrograph). Their space of variability and the strategy 254 

adopted to handle non-numerical input factors like the spatial resolution and the multiple 255 

realisations of the DEM generated by resampling fine resolution topographic data to coarser 256 

resolutions, are described in the next section  257 



Given that the complexity of the relationship between input factors and the model response 258 

does not allow the sensitivity indices of Equations 2.1 and 2.2 to be computed analytically, 259 

we approximate their values using the estimators described in Saltelli et al. (2010). The 260 

uncertainty associated to these sensitivity estimates is assessed by bootstrapping (Efron and 261 

Tibshirani, 1993). In particular, we associate each estimated index with its mean, 5th and 95th 262 

percentile across a prescribed number of bootstrap resamples. Since confidence intervals 263 

defined by these percentiles might be too large to draw meaningful conclusions, we also use a 264 

different approach focusing on the input ranking provided by sensitivity estimates: for each 265 

bootstrap resample we derive the ranking of the input factors and then compute the 266 

proportion of bootstrap resamples where each input factor is ranked 1st, 2nd, 3rd, 4th and 5th 267 

most influential. The consistency and values of these two approaches are discussed in the 268 

Results section. The sensitivity analyses were performed using the SAFE Toolbox (Pianosi et 269 

al., 2015). 270 

2.4 Sampling Strategy for Handling Numerical and Non-numerical Input Factors 271 

In order to compute the sensitivity indices of Equations 2.1 and 2.2, all the input factors 272 

under study must be regarded as stochastic variables and are therefore associated with a 273 

probability distribution, from which input samples are drawn. This is not straightforward for 274 

input factors that are not immediately represented by numerical quantities, such as the spatial 275 

resolution of the model. . To handle such a situation where some input factors are represented 276 

by scalar numerical quantities while others are not, we use a sampling strategy similar to the 277 

one described in Baroni and Tarantola (2014) (earlier applications of such sampling 278 

approach are Tarantola et al. (2002) and Lilburne and Tarantola (2009)), and further 279 

illustrated in Figure 1. 280 



First, each input factor is associated with a list of its possible realizations. It is important that 281 

the ranges or choices sampled are as indicative of the uncertainty or range of likely choices as 282 

possible. If one factor has a disproportionately large sampling range in comparison to other 283 

factors, then the computed sensitivity indices could be unfairly skewed towards this factor 284 

being identified as highly influential. For discrete variables like the spatial resolution, the list 285 

includes the finite number of possible choices for that input (for instance, a resolution of 10, 286 

20, 30, 40 and 50 m in our application). For continuous variables like the model parameters, 287 

the list includes a very large sample of possible values so as to approximate the underlying 288 

continuous distribution (for instance, 100 values in the range [0.025-0.05] for the floodplain 289 

friction). Then, the index of each element in the list is defined as the desired scalar quantity 290 

xi, and associated with a discrete uniform probability distribution. Following these 291 

definitions, sampling is performed with respect to the scalar indices x1,..., xM, while the 292 

model is evaluated against the original input factors defined by the sampled indices. Output 293 

samples so obtained are then used to approximate the main and total effects. 294 

In our application, we use a list of 5 choices for the spatial resolution, 25 for the DEMs 295 

produced by resampling LiDAR data multiple times (and explained fully in Section 2.5.2), 296 

100 for the forcing hydrograph, and 100 values for each of the two friction parameters, which 297 

corresponds to a total of 125,000,000 possible combinations of the forcing inputs. This is not 298 

an exhaustive list of possible input factors; other factors that could be assessed include the 299 

underlying equations and numerical methods of the hydraulic model and the uncertainty of 300 

the LiDAR data. However, our focus for this paper is on the influence of the spatial 301 

resolution and its comparative importance in relation to the manning’s friction coefficient 302 

parameter, the inflow hydrograph and the resampling of elevation data to coarser DEMs, 303 

which are the input factors most commonly varied by studies undertaking uncertainty 304 

analysis or hydraulic model calibration (for example: Aronica et al., 2002; Werner et al., 305 



2005; Di Baldassarre and Montanari, 2009; Jung et al., 2012; Domeneghetti et al., 2013). 306 

From this input variability space, we randomly draw a base sample of N=15,000 input 307 

combinations. Then the estimation of the main and total effects according to the 308 

approximation strategy described in Saltelli et al. (2010) requires the construction of an 309 

additional N/2 x M = 37,500 combinations of input factors, where M is the number of input 310 

factors, by recombining the elements in the base sample. In total, the model is thus evaluated 311 

against 52,500 input combinations.  312 

2.5 Definition of variability space of the input factors 313 

The following paragraphs provide details on the definition of the possible choices or range of 314 

variation of the five input factors. 315 

2.5.1 Spatial Resolution 316 

Here we consider five choices for the spatial resolutions: 10, 20, 30, 40 and 50 m. These 317 

values are chosen to encompass simulation run times ranging from seconds to minutes whilst 318 

also ensuring that the ability of the model to simulate the flood extent would remain 319 

consistent across all simulations. Previous studies that applied LISFLOOD-FP to this study 320 

site and other rural locations found the model to perform reasonably well at resolutions up to 321 

50 m when comparing to flood observations (Horritt and Bates, 2001b; Aronica et al., 2002; 322 

Savage et al., 2016). Although models can be run at coarser spatial resolutions, these are 323 

typically for much larger regional scale domains encompassing many catchments (e.g. Neal 324 

et al., 2012) and the model performance does tend to tail off even for rural floodplains. 325 

Conversely, models can also be run at finer resolutions, however given that the floodplain is 326 

predominantly rural, we felt that it was not necessary to resolve length scales finer than 10 m. 327 

2.5.2 Digital Elevation Model 328 



When running the hydraulic model at a coarser resolution, it is necessary to resample the fine 329 

scale LiDAR data to produce a coarser resolution DEM. Doing so inevitably leads to a loss of 330 

information regarding the sub-grid scale topographic variability. In order to understand how 331 

important this loss is for model predictions we produce 25 different DEMs for each spatial 332 

resolution and include the DEM choice among the input factors of our GSA.  333 

These DEMs are produced by systematically sampling different elevation values within each 334 

of the coarser grid cells. This is achieved by splitting each of the coarser grid cells into 25 335 

smaller cells (in a 5 x 5 matrix) and then extracting the ground elevations measured from 336 

LiDAR at the centre of each of these cells in turn. This gives 25 possible elevation values for 337 

each cell which are systematically chosen in order, producing 25 DEMs. We have chosen this 338 

approach as opposed to using a random sampling approach to ensure that the distance 339 

between each retained elevation value remains consistent with the spatial resolution of the 340 

coarser DEM. 341 

One limitation of this approach is that small scale features may not be represented in all of 342 

the resampled DEMs. Alternative methodologies that identify features within the coarser 343 

resolution DEMs, or other resampling approaches such as those investigated by (Fewtrell et 344 

al., 2008), could be adopted by other modellers to allow small-scale features to be 345 

represented in coarser DEMs. These approaches typically aim to produce the best 346 

representation of topography, however when resampling a DEM to a coarser resolution there 347 

are a number of possible nodal elevation values that could be retained in the new DEM and it 348 

is the variation in the underlying topography that we are exploring in this paper.  349 

2.5.3 Manning’s Friction Coefficients 350 

The parameter most commonly calibrated in hydraulic modelling studies and therefore the 351 

parameter that is varied within our GSA is the Manning’s roughness coefficient. We take the 352 



approach chosen by many hydraulic modelling studies (i.e. Horritt and Bates, 2001a; Aronica 353 

et al., 2002; Werner et al., 2005; Jung et al., 2012) where the Manning’s coefficient is 354 

spatially disaggregated into two values only, one for the floodplain and the other for the 355 

channel. This approach is broadly justified by Werner et al. (2005) who found that there is 356 

little benefit in applying spatially distributed roughness parameters. When the uncertainty of 357 

these parameters is considered in modelling studies, these parameters are typically sampled 358 

from a wide parameter space with sampled values often outside the physically realistic range 359 

for their environment (e.g. Pappenberger et al., 2007a). This reflects that parameters are 360 

often treated as effective parameters which subsume many of the other errors in the 361 

modelling process. However if the parameter sample space is unrealistically large then the 362 

sensitivity indices of these parameters may increase inappropriately (e.g. Kelleher et al., 363 

2013). Therefore in this study we assess the plausible space from which to sample these 364 

parameters by comparing images of the Imera channel and surrounding floodplain with 365 

Manning’s friction definitions in the literature (Chow, 1959; Arcement and Schneider, 1989). 366 

The plausible ranges for the roughness parameters are subsequently chosen as 0.025 – 0.04 367 

for the channel and 0.025 – 0.05 for the floodplain. A total of 100 roughness coefficients 368 

were sampled for each parameter within those ranges. 369 

2.5.4 Boundary Conditions 370 

The lack of gauged data for this flood event means that we are unable to make a more 371 

informed assessment of the specific discharge uncertainty characteristics, for example by 372 

performing a rating curve analysis (Di Baldassarre and Montanari, 2009; McMillan et al., 373 

2012; Coxon et al., 2015). Instead, as the base hydrograph was recreated through rainfall 374 

runoff modelling (Aronica et al., 1998), we represent the boundary condition uncertainty by 375 

applying an additive residual model to represent the fact that errors from rainfall runoff 376 

models typically show signs of autocorrelation and heteroscedasticity (Schoups and Vrugt, 377 



2010; Pianosi and Raso, 2012). This error model is easily transferrable to other time series 378 

data where it is known that the data may be subject to error. The method requires two 379 

parameters to be defined, the 𝛼-parameter and the 𝛽-parameter. These parameters control the 380 

proportion of error that propagates into the next timestep and the amount of error 381 

respectively. This reflects that errors are unlikely to change erratically during a singular 382 

event. 383 

The perturbed discharge Qupdated at a given timestep 𝑡 is calculated as the base discharge Qbase 384 

multiplied by the residual error term 𝜌: 385 

𝑄𝑡
𝑢𝑝𝑑𝑎𝑡𝑒𝑑 =  𝑄𝑡

𝑏𝑎𝑠𝑒 +  𝜌𝑡 386 

Equation 2.3 387 

 388 

Where the residual error term 𝜌 is a function of the 𝛼-parameter, the error term at the 389 

previous time step and the discharge error term 𝜀: 390 

𝜌𝑡 =  𝛼𝜌𝑡−1 +  𝜀𝑡 391 

Equation 2.4 392 

 393 

The discharge error term 𝜀 can take both positive and negative values and is randomly 394 

sampled from a normal distribution between the values zero and the fractional error term 𝜎: 395 

𝜀𝑡~ 𝑁([0, 𝜎𝑡]) 396 

Equation 2.5 397 

Where 𝜎 is a function of the 𝛽-parameter and Qbase: 398 



𝜎𝑡 =  𝛽𝑄𝑡
𝑏𝑎𝑠𝑒 399 

Equation 2.6 400 

This set of equations is computed for each timestep to calculate a perturbed hydrograph that 401 

is then used as a potential boundary condition. 402 

When applying this error model, the parameters are set to control the amount and propagation 403 

of error introduced to the timeseries data. Like the Manning’s friction parameters, the values 404 

applied to these parameters are critical in determining the variability within the perturbed 405 

time series data generated and subsequently the calculation of sensitivity indices. The 406 

assumption of normal errors combined with the properties of variance and application of a 407 

Gaussian distribution allows Equations 2.4 and 2.6 to be reformulated to determine the value 408 

at which three standard deviations of the residuals will fall between, shown in Equation 2.7: 409 

𝜌3𝑆𝐷 =  ±
3𝛽

√1 −  𝛼2
 410 

Equation 2.7 411 

Discharge uncertainty for gauged flows has previously been estimated to be up to 40 % (Di 412 

Baldassarre and Montanari, 2009; McMillan et al., 2012) and we may expect this to be at the 413 

upper limits in this case where the discharge has been reproduced using a rainfall-runoff 414 

model rather than measured (Aronica et al., 1998) and where the flooding experienced was an 415 

extreme event. We have therefore set our parameter values to allow approximately three 416 

standard deviations of the error residuals to be within 40 % of the base discharge level. This 417 

amount of uncertainty is consistent with higher estimates of boundary condition uncertainty 418 

and reflects the use of a reconstructed hydrograph and the extremity of the event. To allow 419 

for these error characteristics we assign the 𝛼-parameter a value of 0.3 and the 𝛽-parameter a 420 

value of 0.127. The error model is then run 100 times to produce 100 different perturbed 421 



boundary condition realisations, which are shown within Figure 1. It is important to note that 422 

there are many ways that hydrograph uncertainty can be assessed and different parameter 423 

combinations could be applied. However the spread of uncertainty in the perturbed 424 

hydrographs appears sensible (Figure 1) and we therefore believe our method to be adequate 425 

to meet the objectives of this study. 426 

2.6 Definition of Model Outputs 427 

Previous studies using LISFLOOD-FP at this location have shown that the model is able to 428 

perform reasonably well when compared to observed data (Aronica et al., 2002; Savage et 429 

al., 2016). This allows us to assess a number of other model predictions at a temporal and 430 

spatial resolution that is far greater than any currently available datasets, enabling us to 431 

develop an understanding on how model sensitivities vary through time and space.  432 

We assess both spatially lumped and spatially distributed model outputs. The spatially 433 

lumped variables that we assess our model simulations against are the Average Maximum 434 

Water Depth (AMWD) across the domain, calculated by taking the average of the maximum 435 

water depth across all cells that experienced flooding, and the maximum flood extent, defined 436 

as the percentage of cells flooded (where maximum water depth is greater than 0.10 m) in the 437 

domain. Since both of these variables vary along the simulation horizon, we introduce a 438 

temporal disaggregation. Model output is therefore assessed at 11 time slices to represent 439 

different stages of the flood event. We also define spatially disaggregated outputs by taking a 440 

grid of locations with an interval of 500 m. At each of these locations we consider as model 441 

outputs the time of initial and maximum inundation and the maximum water depth over the 442 

simulation horizon. Additionally we assess the spatial sensitivity of water depth to the 443 

different input factors at each of the 11 time slices. This combination of outputs allows us to 444 

capture whether model sensitivities vary spatially and temporally during a flood event. 445 



3. Results 446 

3.1 Spatially Lumped Outputs 447 

Figure 2 reports the first-order sensitivity indices (Equation 2.1) for the maximum flood 448 

extent and Average Maximum Water Depth (AMWD). We can see from the top panels of 449 

Figure 2 that the values of the sensitivity indices are highly variable when computed over 450 

different bootstrap resamples. This indicates that the sample size is too small for the 451 

sensitivity indices to be estimated precisely. However, Sarrazin et al. (2016) have shown that 452 

precision and convergence of GSA results is reached at different sample sizes depending on 453 

the GSA aspect being assessed, e.g. the value of the sensitivity indices or the ranking of the 454 

input factors based on those values. This is relevant for this study as we are interested 455 

primarily in determining the most influential input factors rather than the exact values of the 456 

sensitivity indices. The bottom panels of Figure 2 show the rankings of input factors based on 457 

the sensitivity indices obtained at different bootstrap resamples. Each input factor takes a 458 

specific position in such rankings with a clearly highest frequency: for example in the bottom 459 

left panel, hydrograph (Hyd) is most often ranked first, flood friction (Flo) second, channel 460 

friction (Cha) third, spatial resolution (Res) fourth, and DEM fifth. Notice that this ranking is 461 

also consistent with the ranking of the mean value of sensitivity indices shown in the top left 462 

panel. We therefore consider the ranking of factors sufficiently precise and from now on will 463 

use look at rankings rather than the values of the sensitivity indices themselves.  464 

From Figure 2 we can identify that the boundary conditions are the most influential factor for 465 

both outputs. The channel and floodplain friction parameters were the second most influential 466 

factors for maximum flood extent and AMWD respectively. 467 

The fact that the boundary conditions are influential for maximum flood extent and AMWD 468 

is intuitive as the volume of water that enters the basin directly influences the volume of 469 



water available to inundate the floodplain especially for a large flood event where out of bank 470 

flow is inevitable. It is also intuitive for the channel friction to be influential for flood extent 471 

as a higher Manning’s friction coefficient will increase the frictional force of water in the 472 

channel, reducing its velocity and consequently increasing the channel water level so that 473 

more water would flow out of bank. Likewise the influential effect of the floodplain friction 474 

parameter for AMWD would be similar, by having a larger frictional force the velocity of 475 

flood waters on the floodplain is reduced, which allows water to build up; increasing water 476 

depths. The effect of the spatial resolution and DEM resampling is shown to be relatively 477 

unimportant for these outputs, meaning that any variations on a local scale are cancelled out 478 

when averaged out over the whole domain indicating that there are no large scale variations 479 

in conveyance between the different resolutions and DEMs. 480 

When assessing how flood extent varies over the simulation horizon we see that the most 481 

influential input factor changes in time (Figure 3). The middle panel in this Figure reports the 482 

proportion of bootstrap resamples where an input factor was ranked most influential at a time 483 

slice. It shows that the factor that has the most influence on flood extent at the start of the 484 

flood is the boundary condition, however as the flood extent increases, the channel friction 485 

parameter becomes the most influential factor. This remains the case until the flood wave is 486 

almost fully receded at which point the floodplain friction parameter becomes the most 487 

influential factor. Although we might expect locally high floodplain velocities close to the 488 

channel as the floodplain drains, the fact that floodplain friction becomes influential at the 489 

end of the event for the spatially aggregated flood extent is unexpected given the small 490 

velocities experienced on the majority of floodplain and the resulting small frictional force. 491 

However at this stage in the simulation the incoming discharge is small meaning there is little 492 

absolute variation in the perturbed hydrographs. Consequently the effect of the channel 493 

friction parameter is also reduced as the river velocities will be decreased while frictional 494 



force is proportional to Manning’s friction parameter and the square of velocity. This 495 

illustrates that during the drying phase of a flood event, which could be important for 496 

assessments regarding how long a location is inundated for, it is important to account for 497 

uncertainty in the floodplain friction parameter. However uncertainty in the input factors 498 

produces less variation in flood extent at the end of the simulation than during the flood peak. 499 

Interestingly, although the boundary conditions are most influential for maximum flood 500 

extent (Figure 2), the channel friction is ranked the most influential for the majority of time 501 

slices (middle panel in Figure 3). This is because once bankfull discharge is reached, the 502 

channel friction parameter has the most influence on how quickly water is routed onto the 503 

floodplain and therefore affects the rate of floodplain inundation, whereas the boundary 504 

conditions are more influential on the maximum limit that floods will spread to within the 505 

domain and how quickly bankfull discharge is reached as these are controlled by the volume 506 

of water available to flood. The fact that the influence of Manning’s roughness coefficients 507 

changes during a flood event indicates that it may be important for future studies to allow 508 

these parameters to be either time or depth varying parameters. 509 

 510 

The bottom panel of Figure 3 reports the difference between the total-order sensitivity index 511 

(Equation 2.2) and the first-order sensitivity index (Equation 2.1), averaged over all bootstrap 512 

resamples. Such differences give an indication of the degree of interaction of each input 513 

factor with the others. Results in the bottom panel show that interactions among input factors 514 

are minimal during the wetting phase of the flood event but increase as the flood wave starts 515 

to recede. Interestingly, the spatial resolution of the model and, particularly towards the end 516 

of the simulation, the choice of DEM show high levels of interactions. Variations in the 517 

topography caused by the different spatial resolutions and DEMs could lead to different 518 



floodplain flow pathways that would be blocked or opened up depending on the sampling of 519 

these factors. This suggests that during the wetting phase where there is minimal interaction, 520 

the water levels are sufficiently large to overcome any potential blockages or flow pathways 521 

because of the extensive overland flow. However at the end of the flood event, the channel 522 

water levels drop and water is supra-elevated on the floodplain above the hydraulic gradient.  523 

This water then finds its way back to the channel along smaller pathways than during the 524 

wetting phase.  Consequently, variations in these smaller pathways caused by differences in 525 

the spatial resolution and sampling of the DEM exert most influence on the draining of the 526 

water on the floodplain back to the channel. This reflects a change in the dynamics of the 527 

flood event as the rising limb is usually much shorter than the falling limb and this affects the 528 

ability to identify the operation of smaller pathways during the wetting phase. This hysteresis 529 

behaviour has previously been identified in the field (Nicholas and Mitchell, 2003) and in 530 

both rural (Bates et al., 2006) and urban (Neal et al., 2011) flood inundation modelling 531 

studies. 532 

3.2 Spatially Distributed Outputs 533 

The top panel of Figure 4 reports sensitivity of maximum water depth at different locations in 534 

the model domain. It shows that there is large spatial variability in the classification of the 535 

most influential input factor. Although spatial resolution and choice of DEM are not highly 536 

influential when water depths are averaged over the whole domain (Figure 2), we find these 537 

factors to be more influential in many areas when assessing individual locations. The spatial 538 

resolution of the model is most commonly ranked as the most influential factor across the 539 

basin. One reason for this could be a result of differences in the representation of floodplain 540 

features and embankments at different spatial resolutions. Furthermore, an extreme difference 541 

in the elevation between neighbouring cells could alter flow pathways that would 542 

significantly affect local inundation patterns. Over the whole domain, however, this effect is 543 



averaged out across the cells, which is why we do not see similar influence of spatial 544 

resolution for the spatially lumped outputs. This shows that if a decision maker is concerned 545 

with water depths at a specific location then the spatial resolution and DEM becomes very 546 

important. However despite this, there are still locations in the flood domain where the 547 

influence of parametric and boundary condition uncertainty overcomes the local surface 548 

elevation variability introduced by the choice of spatial resolution and the resampling of the 549 

DEM. 550 

Figure 5 shows how these sensitivities vary over time at each of the 11 time slices during the 551 

flood event. From this Figure it can be seen that there is significant spatial and temporal 552 

variability in identifying the most influential input factor across the basin. The general pattern 553 

we see is that the hydrograph appears to be most influential factor at a location first, followed 554 

by channel friction and then spatial resolution. Finally the choice of DEM becomes highly 555 

influential during the drying phase. The floodplain friction parameter appears to be the least 556 

influential and does not become influential during the drying phase unlike for flood extent. 557 

This can be explained as the water depth of a cell does not explicitly consider those cells that 558 

are classified as dry, while the flood extent does. Furthermore, a location may only remain 559 

inundated due to certain elevations for certain DEMs, whereas the effect of individual cells 560 

would be averaged out at the domain level that the flood extent is calculated for. This 561 

highlights an advantage of assessing both temporally and spatially lumped and distributed 562 

outputs as it allows different model dependencies and sensitivities to be identified. 563 

3.3 Time of Inundation 564 

The bottom panel of Figure 4 indicates that there are also spatial variations of the sensitivity 565 

of the initial and maximum inundation timings. As with water depth, there is significant 566 

spatial variability in determining the most influential input factor. The factor most influential 567 



for the time of initial inundation is not necessarily the same as the factor most influential for 568 

the time of maximum inundation. The most influential factor for the eastern part of the flood 569 

basin remains the same for both and there is a large section of the NE basin that is highly 570 

sensitive to the channel friction parameter for both indicators. There is a region in the centre 571 

of the basin (2422879, 4109638) that is most sensitive to the channel parameter for the time 572 

of initial inundation, but becomes sensitive to the boundary conditions for the time of 573 

maximum inundation. One reason for this could be the fact that in some of the hydrograph 574 

perturbations the maximum discharge is reached one hour earlier than for others (Figure 1). 575 

Any location that is influenced by spatial resolution or the DEM for one output is likely to be 576 

influenced by the same factor for the other output. This indicates that the pattern of surface 577 

elevation is having a significant effect on the routing of flood waters to these locations. 578 

 579 

4. Discussion 580 

Incorporating spatial resolution into a Global Sensitivity Analysis of a flood inundation 581 

model has allowed us to gain new insights into how the sensitivities of different flood 582 

inundation model outputs vary in both time and space. By identifying the outputs for which 583 

different input factors become influential we can highlight, depending on the output of 584 

interest, how these factors may benefit from further knowledge/observations, research and 585 

development. This would help us to improve future model predictions through enhancements 586 

in the quality of data (if improving the boundary conditions, model parameters and DEM).  587 

As discussed in Section 3.1, it became apparent early in the analysis that the sample size was 588 

too small for the convergence of the sensitivity indices to be reached. However we found 589 

that, despite the uncertainties in the sensitivity index values, the ranking of input factors was 590 

robust and consistent with the ranking obtained by considering the mean of the sensitivity 591 



indices over the bootstrap resamples. This is shown particularly in Figures 3, 4 and 5 where 592 

on many occasions the proportion of bootstraps where a specific factor is ranked most 593 

influential was close to 100%. The fact that the ranking of factors is robust even if the values 594 

of the indices themselves were still very uncertain is not surprising and is consistent with 595 

previous findings (e.g. Sarrazin et al., 2016). 596 

We have ascertained that the factors identified as most influential vary depending on the 597 

chosen model output. This agrees with a previous study by Pappenberger et al. (2008) who 598 

found that different factors were influential for different performance metrics. It is therefore 599 

not possible to identify singular factors that are consistently influential across all outputs. 600 

Given the complex nonlinearities of simulating a flood using an inundation model and the 601 

relatively intuitive importance of the different input factors considered in this study this is 602 

perhaps not surprising. This result also suggests that the sampling strategy has not biased the 603 

computed sensitivity indices by over or under exaggerating our input factor sampling ranges.  604 

That is, none of the input factors have been classified as influential (or not) due to 605 

unreasonably large (or small) bounds in the sampling range. In other cases where the number 606 

of parameters is much larger it may be that a subset of influential factors is identified more 607 

easily (e.g. Dobler and Pappenberger, 2013).  608 

We have shown that using lumped outputs alone may hide temporal and spatial variability in 609 

factor influence. Particularly interesting findings include the differences in the classification 610 

of influential factors between spatially lumped and distributed predictions of water depth and 611 

the changing sensitivity of the model when assessing changes in flood extent during a flood 612 

simulation. 613 

Although we have shown that the model sensitivities vary across space, time and chosen 614 

output, our findings indicate that some of the input factors may require more or less 615 



consideration depending on the decisions that the flood inundation model is being used to 616 

support. If a decision maker requires predictions of maximum flood extent, for example when 617 

producing return interval flood hazard maps (i.e. Neal et al., 2013), our particular case study  618 

analysis suggests that it would be most important to consider the boundary conditions and the 619 

Manning’s channel friction parameter. This partly agrees with Hall et al. (2005) who found 620 

that the Manning’s channel friction parameter was the most influential factor when assessing 621 

flood extent against observational data. Despite this we would expect that the most influential 622 

factor for different model outputs could vary depending on the specific characteristics of the 623 

study site chosen, the quality of the input data, the model structure and the sampling approach 624 

adopted to consider uncertainties in the model parameters and boundary conditions.   625 

We also assessed the sensitivity of flood extent through time, which has not been evaluated 626 

previously. The variation in the most influential factor through time, from the boundary 627 

conditions to the channel friction and finally to floodplain friction, indicates that if a decision 628 

maker is interested in the dynamics of inundation through the passage of the flood wave then 629 

they should carefully consider each of these uncertainties. It is important to note that the 630 

variation in modelled flood extent at the end of the flood event is smaller than the variation 631 

during the peak of the flood (Figure 3). However, the influence of floodplain friction on the 632 

recession of floodwaters could still be of interest for emergency planners who may be 633 

concerned with quantifying the uncertainty when determining how quickly flood waters will 634 

recede, for example for traffic management if roads or railways become inundated. 635 

Furthermore, the recession and duration of a flood event is also of interest for insurance 636 

purposes, such as for estimating business interruption losses, though the importance of 637 

floodplain friction would depend on the uncertainty of the boundary conditions for a given 638 

forecast or design flood event. 639 



It is clear for an event of this magnitude that when determining flood extent, spatial 640 

resolution and DEM are not influential on their own. However the fact that they show signs 641 

of interaction with other factors as flood waters recede suggests that the different topographic 642 

realisations do exert an influence on the flow paths flood waters take when draining from the 643 

floodplain. As this was a large flood event where the rising limb was much more rapid than 644 

the falling limb, it is perhaps not surprising that spatial resolution and the DEM were not 645 

influential during the wetting phase of the event as the floodwaters would be deep enough to 646 

traverse the small scale fluctuations in topography caused by changing spatial resolution and 647 

DEM. However, for a smaller flood this may not be the case if the floodwaters are much 648 

shallower. It would therefore be interesting to assess whether the sensitivity of flood extent 649 

changes for different magnitude flood events and for events with different hydrological 650 

characteristics. 651 

The choice of spatial resolution and DEM does become important for local scale predictions 652 

of water depth, but not at the expense of parameter and boundary condition uncertainty. The 653 

spatial and temporal variability of the models’ sensitivity to each these factors (except for 654 

floodplain friction) reflects the complexity of predicting water depths and suggests that a 655 

finer model resolution may be necessary if a decision maker is interested in local scale 656 

inundation predictions. The variability of water depth sensitivity is consistent with the 657 

findings by Pappenberger et al. (2008) who also found boundary conditions and channel 658 

friction to be more influential than floodplain friction when comparing predictions of water 659 

depth against observational data. Modellers producing spatially distributed predictions of 660 

water depth should therefore carefully consider the resolution of their model and the 661 

uncertainty associated with degrading topographic data to coarser resolutions in their study, 662 

as for example assessed by Fewtrell et al. (2008). These spatial and temporal variabilities in 663 

output sensitivity to different input factors suggest that more complex observations of flood 664 



events that vary in both time and space would be extremely valuable in benchmarking model 665 

performance and constraining behavioural model simulations. 666 

Our analysis has therefore allowed us to identify that for some model applications, resources 667 

would be better spent on improving our understanding of the uncertain data, whilst for others 668 

it would also be important to improve the spatial resolution. The methodology we have 669 

applied in this study is transferable to other models where the modeller wishes to determine 670 

the relative influence of discrete choices and continuous variables within a Sensitivity 671 

Analysis. By including spatial resolution as a discrete variable, a modeller can use Sensitivity 672 

Analysis to assess whether running hyperresolution models (Wood et al., 2011; Beven et al., 673 

2015) is really beneficial for their specific study example It would also be possible to apply a 674 

similar approach to assess the comparative influence of other discrete choices, such as the 675 

choice of hydraulic model or the adoption of time-varying Manning’s friction coefficients. 676 

However it is important for future studies to carefully consider and document the definition 677 

of the variability space of input factors so as not to artificially influence the computed 678 

sensitivity indices. In fact, as also shown in other studies this definition can have a significant 679 

impact on the computed sensitivities, and therefore should be carefully considered when 680 

applying GSA. Any GSA study therefore only investigates a user specified region of the 681 

input factor space, which has to be defined by the modeller based on previous model 682 

applications or a priori information available. The GSA results are then conditional on the 683 

applied overall experimental design considering the assumptions and choices made. 684 

Clearly there are limitations to extrapolating these findings to other flood events. These 685 

findings are valid for one model at one location and for a flood of one magnitude. The 686 

computed sensitivities and rankings of input factors may be different for different magnitude 687 

events and at different locations. For example for a smaller flood event where the channel 688 

bank-full level is only just reached, uncertainties in the boundary conditions and channel 689 



friction parameters may be more important factors to include as they will determine whether 690 

or not rivers reach bank-full discharge. Alternatively, an urban environment where critical 691 

flow pathways get blocked at coarser resolutions may be more sensitive to the spatial 692 

resolution of the model. We also acknowledge that the ranking of input factors can also vary 693 

depending on the specific GSA method applied (Pappenberger et al., 2008). However 694 

LISFLOOD-FP has been previously shown to perform similarly to a suite of other hydraulic 695 

models (Hunter et al., 2008; Néelz and Pender, 2013) and similarities between our approach 696 

and those by Hall et al. (2005) and Pappenberger et al. (2008) are encouraging in terms of 697 

the applicability of the GSA approach undertaken in this study. 698 

 699 

5. Conclusions 700 

This study has applied a GSA methodology, which allowed us to assess whether variability in 701 

spatial resolution, DEM, model parameters or model boundary conditions produce the most 702 

variance in the output of the hydraulic model LISFLOOD-FP. For our case study we have 703 

found that the sensitivity to the various input factors changes in time and space and differs 704 

depending on the type of model output that is being assessed. For predictions of flood extent, 705 

the dominant input factor shifts during the flood event from the hydrograph to the channel 706 

friction and then to the floodplain friction. However, for localised water depths the spatial 707 

resolution and DEM become much more influential although there is a great deal of spatial 708 

and temporal variability as to which of the five factors is classified as most influential. We 709 

also found that the factors affecting the timing of flood waters at locations across the domain 710 

can be different to the factors that most influence water depths. It is therefore more important 711 

to account for the spatial resolution of a model for decisions based on water depths and time 712 

of inundation than for decisions based on the extent of a flood. 713 



The fact that the sensitivities are so variable in time and space demonstrates the value that 714 

performing SA can add in gaining an understanding of these complex patterns and 715 

dependencies. It also demonstrates that a simple SA, in which spatial and temporal variability 716 

are ignored, can be very misleading. These complex behaviours are indicative of the non-717 

linearity that is inherent in such flood events and demonstrate that it is not possible to identify 718 

a singular factor that is most influential for all types of flood inundation prediction. 719 

Subsequent work should test whether output sensitivities differ for events of different 720 

magnitude and for events at different locations. Additionally, it would be useful to explore 721 

what impact the channel geometry has on the temporal and spatial variation in flood 722 

inundations and whether the observed variability in the sensitivity to water depths is also 723 

found when assessing predictions of velocity By improving our understanding of the factors 724 

that have the most influence on flood inundation predictions it will be possible to identify 725 

areas for future modelling improvements; whether that is a need for improved topographic 726 

representation, boundary condition data, parameter classification or model structures. 727 

Finally, the approach adopted in this paper to include discrete, non-numerical choices within 728 

a GSA and to explore how sensitivity changes in time and space could be adopted by any 729 

modeller that wishes to learn more about the impacts of their choices and modelling 730 

assumptions on various aspects of the model’s response. 731 
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8. Figures 1033 

 1034 

Figure 1: Flow diagram outlining the methodology utilised to perform Global Sensitivity 1035 

Analysis (GSA) and to incorporate the choice of non-numerical input factors (spatial 1036 

resolution and Digital Elevation Model (DEM)) in the analysis. Step 0 consists of creating a 1037 

large catalogue of possible combinations of the input factors, which is then sampled from in 1038 

Step 1. The flood inundation model is then run for each of these samples in Step 2 and 1039 

sensitivity indices are calculated from these simulations in Step 3.  1040 

 1041 



 1042 

 1043 

Figure 2: GSA results for two selected model outputs. The top panels show the first-order 1044 

sensitivity index (or main effect) of the average maximum water depth (left) and flood extent 1045 

(right) to each input factor (abbreviations are defined in Figure 1). Crosses are sensitivity 1046 

index values obtained on each bootstrap resample, coloured bars are the mean values over 1047 

such resamples. The bottom panels show the proportion of bootstrap resamples for which 1048 

each input factor is ranked either 1st, 2nd, 3rd, 4th or 5th most influential. 1049 



 1050 

Figure 3: GSA results for flood extent during the flood simulation. a) Variation in flood 1051 

extent through time as simulated by the 52,500 model realisations. The black line is the 1052 

median flood extent and the dashed red lines the 5th and 95th percentiles. Flood extent is 1053 

calculated as the percentage of cells classified as wet (i.e. having water depth higher than 1054 

0.10 m). b) Proportion of bootstrap resamples where an input factor was ranked most 1055 

influential at each time slice. c) Interactions between input factors at each time slice. 1056 

Interaction is calculated as the mean difference between the total and main effects over all 1057 

bootstrap resamples. Any occurrence where such difference was negative was treated as an 1058 

unreliable resample and not included in the calculation. The input factor abbreviations are 1059 

defined in Figure 1. 1060 
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 1063 

Figure 4: Nodal maps showing the spatial distribution of the most influential input factor for 1064 

the maximum water depth, time of initial inundation and time of maximum inundation model 1065 

outputs. The colour of the dots represents the most influential factor and the size of the dots 1066 

represents the proportion of bootstrap resamples where that factor was ranked most 1067 

influential. Each point is separated from one another by 500 m. The background on the plots 1068 

is the 2m LiDAR DEM which has dimensions of 7.95 x 6.58 km. The input factor 1069 

abbreviations are defined in Figure 1. 1070 
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 1075 

Figure 5: Nodal maps showing the spatial distribution of the most influential input factor for 1076 

water depth at 9 time slices during the flood event. Meaning of colour and size of the dots, 1077 

and background image as in Figure 4. Input factor abbreviations are defined in Figure 1. 1078 
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