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We consider a binary Lennard-Jones glassformer whose super-Arrhenius dynamics

are correlated with the formation of particles organized into icosahedra under simple

steady state shear. We recast this glassformer as an effective system of icosahedra

[Pinney et al. J. Chem. Phys. 143 244507 (2015)]. From the observed population of

icosahedra in each steady state, we obtain an effective temperature which is linearly

dependent on the shear rate in the range considered. Upon shear banding, the system

separates into a region of high shear rate and a region of low shear rate. The effective

temperatures obtained in each case show that the low shear regions correspond to

a significantly lower temperature than the high shear regions. Taking a weighted

average of the effective temperature of these regions (weight determined by region

size) yields an estimate of the effective temperature which compares well with an

effective temperature based on the global mesocluster population of the whole system.
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I. INTRODUCTION

The mechanism behind the rapid dynamic slowing in liquids approaching the glass tran-

sition remains a mystery. There are many theoretical approaches to this problem, but a

consensus on the nature of the liquid-to-glass transition is yet to be reached1,2. It has been

proposed that icosahedral arrangements of the constituent atoms may form in some super-

cooled systems3 and that dynamic arrest may be related to a (geometrically frustrated) tran-

sition to a phase of such icosahedra4,5. Geometric motifs such as icosahedra and other locally

favoured structures (LFS) can be identified in particle-resolved colloidal experiments6–12 and

computer simulations13–20. In particular, it has been shown that the onset of slow dynamics

in simulated Lennard-Jones systems is closely coupled to the local structure, characterized

by the LFS18,21,22.

A significant barrier to understanding the glass transition is its inaccessibility. Glassy

systems have timescales that far exceed the practical limits of experimental or computational

analysis2,23. The operational glass transition is currently defined as the point when the

liquid’s viscosity exceeds a high enough value, i.e. when the particles exhibit dynamic arrest

on “reasonable” timescales2. The temperature at which this happens is Tg. Direct detection

of LFS and analysis of particle-resolved colloidal experiments and computer simulations are

restricted to the first 4-5 decades of dynamic slowing, compared to 14 decades required to

reach the operational glass transition (Tg) in molecular systems. Note that Tg is distinct

from lower temperatures at which the relaxation time of the material may diverge, such as

that predicted by the Vogel-Fulcher-Tamman expression2,23.

A complete picture of the glass transition therefore necessitates data extrapolation far

below the accessible regime24. Our previous publication25 details how we have used the

behavior of the LFS (icosahedra) to recast a well-studied binary Lennard-Jones glassformer

into an effective system of LFS. To do so we have developed a population dynamics model

of domains of icosahedra which we term mesoclusters. Our model successfully describes

the increase in relaxation time in terms of increasing mesocluster sizes and lifetimes as

temperature is decreased and can be used to predict system behavior at significantly colder

temperatures than those accessible to simulations. By construction, our model does not

predict a thermodynamic phase transition to an “ideal glass”.

In direct simulation and colloid experiments26, a possible approach to probing deeper
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supercooling is to impose a shearing force on the system. Quiescent glasses exhibit dynamic

heterogeneity; regions of high and low mobility. Shearing such an amorphous system can

highlight the structural and dynamical subtleties that underlie glassy systems which may

not have been otherwise observable. It has been shown that the local liquid-like (high

mobility) regions can act as “plasticity carriers”27 and shearing amorphous systems can allow

the observation of some (otherwise elusive) long-range correlations in a colloidal glass28.

In both experiments and computer simulations, locally “soft” and “hard” regions of the

system, characterized by normal vibrational modes of inherent structures (soft modes)29–32,

configurational fluctuations that are susceptible to stress driven shear transformations (shear

transformation zones, STZs)33–35 and localized regions of strong deformations (hot spots)36

have been shown to play a key role in the dynamics of supercooled liquids and the mechanics

of amorphous solids. These can be used to predict when and where deformations will take

place in sheared systems37–40. Recently, shear has been used to access the so-called Gardner

transition41 between glass states with differing stabilities42,43.

Imposing different shear rates can result in observing transitions between different states,

such as: a continuous phase transition between brittle and hardening behavior44, a dynamic

transition between diffusive and arrested states45 and a first-order phase transition between

banded and non-banded states46–48. Shear banding is the separation of a sheared system into

two regions of different viscosity and internal structure48,49. Some suggested mechanisms

for the formation of shear bands are via the percolation of STZs39,50 or from high stress

localization in inherent defects or voids in the system51. Shearing has also been shown

to increase the energy of soft glassy materials, called rejuvenation52,53, and varying the

shear rate can yield systems with different effective temperatures54–56. That is, increasing

(decreasing) the shear rate is akin to increasing (decreasing) the temperature of the system.

Here we study the Wahnström binary Lennard-Jones glassformer57 under an imposed

uniform planar shear. The LFS for this system was identfied as the icosahedron following

an analysis of local environments of the constituent particles14. Subsequently one of us

investigated the lifetimes of 33 different structures, chosen to minimise the local potential

energy58,59. Of these, the icosahedron was found to last around a decade longer than other

structures with a distinct bond topology18.

We find it is possible to obtain steady state behaviour at temperatures both above and

below the glass transition temperature, which for our purposes is the temperature at which
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a Vogel-Fulcher-Tamman fit would diverge, TVFT ≈ 0.46 (Fig. 1). At sufficient shear

rates, temperatures which were inaccessible in quiescent simulations will reach a steady

state and exhibit some characteristics, probed by structural properties of the LFS, typical

of an effective temperature that is higher than the actual simulation temperature. Previ-

ous attempts to define effective (or fictive) temperatures have used quantities such as free

volume60, energy61,62 and interparticle forces63. It is our aim to understand these sheared

systems with an effective temperature determined by local structure, i.e. mesoclusters. Us-

ing the observed mesocluster properties in the sheared system and comparing them to our

existing (temperature dependent) quiescent mesocluster model25, it is possible to determine

the effective temperature of the sheared system. For systems that exhibit shear banding, we

can determine the effective temperature of each region (high and low shear bands) using the

same method. We find that increasing the shear rate results in an increase in effective tem-

perature of the whole system and that the high and low shear bands have distinct effective

temperatures; the high shear band has a significantly increased effective temperature.

This paper is organized as follows: we discuss the simulation protocol in Section II.

Section III shows our effective temperature analysis for all simulations (all temperatures,

all shear rates) looking at the “global” system; the system as a whole. Section IV focuses

on the systems that have exhibited shear banding where we study the high and low shear

bands separately by cutting the simulation boxes into their relevant segments. We conclude

with a summary and discussion in Section V.

II. SIMULATION DETAILS

We simulate the Wahnström equimolar binary Lennard-Jones model57. The size ratio is

5/6 and the well depth between all species is identical. The mass of the large particles is

twice that of the small. We use molecular dynamics simulations of N = 10976 particles.

We equilibrate for at least 100τα in the NVT ensemble for 0.56 ≤ T ≤ 0.8 and use the final

configuration for T = 0.56 to initiate further NVT simulations at temperatures 0.3 ≤ T ≤ 0.5

for as long as computationally possible. Here τα is the structural relaxation time determined

by a stretched exponential fit to the intermediate scattering function25.

The final configuration of each simulated temperature is used as the initial configuration of

a sheared simulation following the SLLOD algorithm with Lees-Edwards periodic boundary
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conditions. All of these sheared simulations were carried out using LAMMPS64. The shear

rates studied (in simulation units) are: 10−5 ≤ γ̇ ≤ 0.25 for 0.56 ≤ T ≤ 0.8 and 2.5× 10−6,

5× 10−6 and 10−5 for 0.3 ≤ T ≤ 0.5. In our simulations, the yield point occurs at a strain

γ ≈ 0.1. Here we take the steady state to correspond to γ > 165. We simulate up to strain

values in excess of γ = 2, except in the case T = 0.3, γ̇ = 2.5 × 10−6 where computational

limits restrict the amount of strain simulated to γ = 1.5.

We identify icosahedra with the topological cluster classification (TCC) and consider

those which last longer than 0.1τα (for 0.56 ≤ T ≤ 0.8) or longer than 150 simulation time

units (for 0.3 ≤ T ≤ 0.5) to suppress the effects of thermal fluctuations. Here τα is the

structural relaxation time, determined from a fit to the intermediate scattering function25.

Our structural analysis protocol is detailed in Ref.66.

III. SHEARED SYSTEMS: A GLOBAL APPROACH

Shearing the system enough to reach a steady state (far beyond the yield point where

steady stress is achieved) enables us to reach a steady state to temperatures that are other-

wise inaccessible. By simulating a sheared system at an otherwise inaccessible temperature

and modeling the mesocluster properties, it is possible to obtain a shear-rate dependent

mesocluster model alongside the existing temperature-dependent mesocluster model. By

combining two such models, we can more accurately predict the mesocluster properties (and

thus the relaxation times) at temperatures approaching the glass transition. An overview

of the results, and the state space accessible to the simulations, is shown in Fig. 1.

A. Recap of population dynamics model

First, we briefly introduce the population dynamics model which generates the meso-

cluster size distribution from Ref.25. Mesoclusters are structures made up of particles in

icosahedra, the LFS for the Wahnström model glassformer14,18. We assume that mesoclus-

ters of size m (m being the number of centres of icosahedra) can only change in size by

±1 and are restricted in size by a system-size dependent constant M . For high tempera-

tures, pm (the probability of a mesocluster being size m) follows an exponential decay with
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FIG. 1. State diagram for the Wahnström model under shear. The effective temperatures obtained

when systems with set simulation temperature T are sheared with rates γ̇τα (Eq. 3). Effective

temperatures are shown as colour contours. Circular points indicate systems where τα is directly

calculable; triangular points are placed on the effective temperature contour corresponding to the

simulation temperature T . Black points indicate banding, white points do not exhibit banding (see

Eq. 6 for criteria).

steady-state solution

pm(T ) = a(T )m−1p1(T ) (1)

where a(T ) is the temperature-dependent decay parameter. At lower temperatures, the

mesoclusters percolate, and as such the shape of their size distribution changes. We account

for this change by including a Gaussian weighting to obtain the steady state solution

pm(T ) = a(T )Wm(T )pm−1(T ) (2)

where a(T ) is an underlying decay parameter and Wm(T ) is the Gaussian weight which

include “mean” and “variance” parameters to control the shape of the distribution. Our
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previous publication25 discusses our mesocluster size model parameters in detail.

The mesocluster size distribution expected for a quiescent system at simulation temper-

ature, T , may be described by Eq. 2. Supposing a sheared system exhibits mesocluster size

distributions that are well described by this model (with no changes to the parameteriza-

tion), we can conclude that at the level of our population dynamics model, the structure of

the sheared system is similar to a quiescent system at model temperature T . Since the struc-

ture (characterized by LFS) and dynamics have been shown to be coupled in Lennard-Jones

systems18,21,25, we could expect the system dynamics of the sheared system to be similar to

those of the quiescent system at model temperature T .

B. The effect of shear on the mesoclusters

We consider the changing mesocluster size distributions with varying shear rate for the

full simulation box. Using the mesocluster size model as parameterized using the quiescent

data from Ref.25 (recalling Eq. 2),

pm(T ) = a(T )Wm(T )pm−1(T )

we can select a value of T = Teff which results in the best fit of the model distribution to

the observed mesocluster data for the sheared systems. It is this value of Teff that we use

as the effective temperature of the system. Figure 2 shows the different mesocluster size

distributions produced by varying the shear rate γ̇ imposed on systems with T = 0.58. The

mesocluster model distributions for the quiescent system (solid lines) are plotted alongside

the simulation data for the system under shear. In each case, higher shear rates produce

mesocluster size distributions typical of systems at higher temperatures.

For all systems, Teff → Ttrue as the shear rate is decreased. Here Ttrue is the “true”

simulation temperature. Figure 3 shows the effective temperature in the sheared systems

converging to the true simulation temperature. This can be fitted linearly using the follow-

ing:
Teff

Ttrue

= 0.271γ̇τα + 1 (3)

At low shear rates ταγ̇ < 0.01 for any simulated temperature, Teff ≈ Ttrue.

Figure 4 shows the mesocluster size distributions for T = 0.3; a significantly lower tem-

perature than what is accessible in the quiescent regime, and in fact lower than TVFT. Thus
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FIG. 2. The mesocluster size distribution for systems with T = 0.58 and varying shear rate, given

in terms of ταγ̇ in the legend for 0 ≤ ταγ̇ ≤ 3.02.

the α-relaxation time, τα, for this low temperature system is assumed to be infinite. Us-

ing the mesocluster size distributions from our population dynamics model25, we see that

the effective temperatures of these sheared systems decrease as the shear rate is decreased,

and are significantly colder than we have previously been able to access via quiescent sys-

tems (Teff = 0.556, 0.552, 0.548 in these sheared systems; quiescent systems are limited to

T & 0.57).

Across all temperatures and shear rates studied, the overall observed shape of the meso-

cluster distributions in the data sets and the model predictions are in excellent agreement

with each other. Thus the data in the sheared systems can be accurately described by the

mesocluster population model, and based on this observation we can assign an effective

temperature to each. Furthermore, the deviation of the effective temperature from the true

system temperature is linearly dependent on the rate of shear. In other words, within our

mesocluster model shear rate and temperature can be superposed over one another. This

8



10
−2

10
0

10
2

10
4

0

1

2

3

4

5
T

e
ff
 /
 T

tr
u

e

1/ταγ̇

 

 

T = 0.8

T = 0.6

T = 0.58

T = 0.56

linear fit
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included on some T = 0.8 data points where the mesocluster statistics are limited due to low

numbers of icosahedra and fitting the data is less constrained. Low temperature data, i.e. T = 0.3,

is not included in this figure since τα for such systems is not defined under our VFT fit with

T0 = 0.46.

observation is made all the more remarkable by the fact that some of the state points we

consider exhibit shear banding, which we now consider. Figure 1 shows the effective temper-

atures, Teff , of systems with varying simulation temperatures, T , and shear rates following

Eq. 3.

IV. SHEAR BANDING

So far, we have looked at the global mesocluster properties of the sheared systems. How-

ever, these systems exhibit shear banding, characterized in this case by a persistent y-axis
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corresponding to a decrease in temperature as shear rate decreases.

dependence (perpendicular to the flow direction) in the icosahedra population and the corre-

sponding local particle displacements measured using the non-affine deformation parameter,

D2
min

33, and local shear rate. Figure 5 shows a schematic of D2
min values expected in affine

and non-affine displacements. Equation 4 is the definition of D2
min as given in Ref.67, where

N is the number of neighbouring particles within the interaction range of a central particle,

and the positions of the central particle, n = 0, and neighbouring particles, n ∈ [1, N ], given

by rn(t) and rn(τ) at times t and τ = t−∆t respectively. We henceforth drop the subscript

“min” for ease of notation in later equations.

D2(τ, t) =
N∑
n=1

Rn ·RT
n (4)
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Affine deformation: D  is minimised (zero in ideal case):
2

Non-affine deformation: High D  values at discontinuity:
2

FIG. 5. A schematic of D2 values in affine (top) and non-affine (bottom) displacements. For

affine displacements, D2 is uniformly minimized (equal to zero in the ideal case). In non-affine

displacements, D2 takes larger values located along the shear gradient discontinuity.

Rn =
(
rn(t)− r0(t)

)
−
(
XY−1

)
·
(
rn(τ)− r0(τ)

)
X =

N∑
n=1

(
rn(t)− r0(t)

)(
rn(τ)− r0(τ)

)
Y =

N∑
n=1

(
rn(τ)− r0(τ)

)(
rn(τ)− r0(τ)

)
(5)

Figure 6 shows examples of banded and non-banded sheared systems, distinguished by

the values of shear rate, D2 and the relative density of icosahedra in each binned region of

the y-axis for progressing simulation time. We see that D2 provides a clearer interpretation

than the local shear rate.

In Fig. 6, we consider two representative temperatures, T = 0.56 and T = 0.8. In the
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FIG. 6. Time-evolution of shear rate for each y-axis region given in terms of particle diameters σ

from the bottom of the y-axis, (a,b), non-affine dynamics (c,d) and population of icosahedra (e,f)

for selected state points. Left column: T = 0.56, ταγ̇ = 0.0132 exhibits banding. Right column:

T = 0.8, ταγ̇ = 5.91× 10−5 does not exhibit banding.

former case, the product of the shear rate and the structural relaxation time ταγ̇ = 0.0132:

here both the structure (in terms of the population of icosahedra) and the shear band are long

lived. Conversely, at the higher temperature, ταγ̇ = 5.91×10−5 and no banding is observed.

Figure 7 shows the total correlation coefficient between D2 and the density of icosahedra

for all T and γ̇ obtained from data such is those shown in Fig. 6. In banded systems,

the correlation coefficient is strongly negative. The correlation between shear rate and D2

across the binned regions of the y-axis is strong in systems where banding is exhibited. This

suggests that there may be a causal relationship between the icosahedra dense regions of

the system and the slow shear bands (this will be investigated in a future publication65).

The simulation box was segmented along the y-axis to form 20 equal bins of roughly

1 particle diameter in height. Each bin is characterized by the average D2 value of all

the particles residing within that bin. To quantify whether or not a system is banding, we
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0.6, 0.65, 0.7 and 0.8 respectively.

compare the average range of different D2 values observed across the y-axis with the average

range of D2 values observed within each y-axis slice through time:

R =
〈D2

max −D2
min〉y

〈D2
max −D2

min〉t
(6)

where subscripts y, t are the parameters to be averaged over; y-axis and time respectively.

The value of R quantifies how strongly banded the system is. Strong banding is characterized

by large values of R. Systems which appear to fluctuate between banding and not banding

through time have values 0.9 . R . 1.1. R < 0.9 suggests that the system is not banding

at all. Figure 8 shows the resulting values of R for a number of state points.
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A. Identifying the shear bands

Since the population of icosahedra has a y-axis dependence in the shear banded systems,

it should be the case that the mesocluster distributions vary across these regions. The

average non-affine deformation, D2, and the proportion of particles in icosahedra, φ, values

were calculated for each y-axis bin. From these we obtain local deviations in D2 and φ as

follows:

∆D2 =
D2 − D̄2

D̄2

∆φ =
φ− φ̄
φ̄

(7)
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∆D2 and ∆φ are plotted against each other in Fig. 9. From this plot, we can see that the

proportion change in φ can be determined (and predicted) from a linear mapping of the

proportion change in D2. Note that this linear mapping passes through the origin; i.e. no

change in D2 means no change in φ.

The banded systems exhibit one low shear region (low D2, high icosahedra density) and

one high shear region (high D2, low icosahedra density). We can quantitatively define these

regions by using the D2 values. The simplest way of separating these regions would be to

cut along the average D2 value and look at the above (below) average segments. However,

the D2 values do not show any sharp transition from above (below) average. Instead, they

smoothly increase (decrease) over the y-axis bins, thus blurring the exact boundary locations

between the two regions. For this reason, we partition the simulation box into three types
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of regions: high shear, low shear and “interface”. These interface regions are often small

(the system is dominated by the high and low shear regions) and likely to be non-trivial

combinations of low and high shear behavior, however we would expect them to behave

approximately as an “average” between high and low. Since we are mainly interested in the

behavioral differences between the high and low shear regions, we will focus only on these

segments. The different segments can be defined using the following boundary definitions:

Sh = D2
av +

D2
max −D2

av

A

Sl = D2
av −

D2
av −D2

min

A
(8)

where A is a number which can be chosen to increase or decrease the size of the interface

regions (we set A = 2), and Sh(Sl) represents the lower (upper) D2 boundary value of the

high (low) shear segment.

B. Mesoclsuster sizes in the bands

Once the different shear rate segment locations have been determined, mesocluster size

analysis can be carried out on each segment individually. Now the mesocluster size model

is system size dependent, due to the effect of the percolating mesocluster upon the size

distribution. We have previously determined suitable parameters for the model for N =

1372, 10976 and 8780825. These we interpolate here, noting that the model parameters

were obtained for cubic systems. This is achieved by using the same methods developed in

our previous publication25, but only considering icosahedra whose centres reside inside the

segment, and only counting the particles in icosahedra which lie inside the segment. This

will result in some partial icosahedra along the boundary edges, but is the simplest method

of partitioning the simulation box and its mesoclusters.

Further to this, since the exact location and height of the shear bands vary slightly

through time, the simulations are split into 8 equal time windows (i.e. 400τα is split into

8 × 50τα time windows) and the segment boundaries defined for each. When defined with

the interface parameter A = 2 in Eq. 8, most of the low/high shear segments are ≥ 20%

of the height of the simulation box, which can all be reasonably described with system

size dependent mesocluster size models. These system size dependent models can become

somewhat inaccurate in describing the observed mesocluster size distributions in thinner
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FIG. 10. The effective temperatures of the segments plotted against the global effective tempera-

tures. The low (filled) and high (unfilled) shear segments display effective temperatures that are

(respectively) below and above the global values. Different shear rates are denoted by the shapes

of the symbols: triangle down: γ̇ = 2.5 × 10−6; square: γ̇ = 5 × 10−6; circle: γ̇ = 10−5; diamond:

γ̇ = 2.5× 10−5; triangle right: γ̇ = 5× 10−5; star: γ̇ = 10−4;

segments. A handful of the high and low shear segments fall below this threshold, but they

are infrequent enough not to cause significant effects in the results. Generally, the high

shear segments are ≈ 20− 25% of the simulation box height and the low shear segments are

≈ 40− 50% of the simulation box height.

Figure 10 shows the fitted effective temperatures of the high and low shear segments for

different temperatures and shear rates. The low shear segments have effective temperatures

lower than the global averages (calculated as in Section III for the 8 time windows), and the

high shear segments have significantly higher effective temperatures. This is mirrored in the

observed values of φ across these segments.
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FIG. 11. The fitted effective temperatures and their corresponding observed values of φ. The model

φ(T ) was formulated using quiescent data which was only accessible in the region 1/T < 1.74. The

data points of the fitted effective temperatures follow the model φ(T ) reasonably closely for all

observed effective temperatures.

Figure 11 shows the fitted effective temperatures compared to the observed φ values and

the existing model for φ(T ) from25. The data points follow the model φ(T ) with reasonable

accuracy. The fitted effective temperatures are higher than what the observed φ would have

predicted, however, it is likely that the system size dependent mesocluster size models give

effective temperatures that are too high. This is evidenced in a small number of windows

where the low shear segment has been fitted with an effective temperature that is actually

higher than the global average; suggesting a possibility that the models may be biased

towards higher temperatures, although quantifying this bias would prove challenging.

Using these fitted effective temperatures, we can formulate a very simple linear combina-

tion of the high and low shear segments to estimate an average effective temperature, T b
eff
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FIG. 12. The global effective temperature estimated from a simple linear combination of high and

low shear segments (Eq. 9).

for the banded system. Note that we have neglected the “interfaces” between the banding

and non-banding regions since they form a relatively small part of the system. Specifically:

T b
eff =

Teff(h)L(h) + Teff(l)L(l)

L(h) + L(l)
(9)

where L(h) and L(l) are the sizes of the high and low segments as a proportion of the box

height (e.g. 0.5 for half box height). The results for this are shown in Fig. 12. Given

the simplicity of this linear combination and the potential combined inaccuracies from the

system size dependent mesocluster size models, the estimated global effective temperatures

are in reasonable agreement with the expression.

We therefore have two models describing the effective temperature(s) of the system.

Taking a global view of the system, the effective temperature is determined by a linear

relationship with the shear rate (Eq. 3). If shear banding is exhibited, a local analysis

shows that the system forms two distinct regions of high and low shear (determined by the
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local D2 values). Hence taking account of shear banding, the effective temperatures of these

regions and their relative sizes can be used to estimate the global effective temperature of

the system (Eq. 9). The combination of Eqs. 3 and 9 gives a complete description of

the mesocluster size distributions expected for any simulation temperature and/or shear

rate, including the segment differences which would be observed in systems exhibiting shear

banding.

Before closing, we discuss the relevance of our findings in the context of shear banding.

When a system undergoes shear banding, one expects that the bands have differing rigidities.

Given that quiescent vitrification involves a change in rigidity, it is natural to expect that

some properties of the quiescent case may carry over to the shear banding case. This is what

we indeed find. In particular, a drop in the population of icosahedra in the shear bands

seems entirely consistent with the idea that icosahedra are involved in the increased rigidity

of the Wahnström model. This is also consistent with the negative correlation identified

between locally weak “soft spots” and icosahedra in a metallic glassformer68 and banding

behaviour69,70. Fitting the shear bands with our population dynamics model25 suggests

that the banding regions can be treated as if they are at a higher effective temperature.

Interestingly, other work also correlates sheared systems with higher temperature, both in

simulation71,72 and also in experiment73. Our analysis thus forms a structural connection

for these observations of the relationship between temperature and shear.

,

V. SUMMARY AND DISCUSSION

In this paper, we analyzed the Wahnström binary Lennard-Jones model under different

rates of shear for a wide range of temperatures. The system under was sheared for long

enough to reach the steady state (i.e. steady stress had been achieved) before obtaining

data. In this way, we were able to access temperatures inaccessible to quiescent systems.

Additionally, increasing the rate of shear can be shown to act like increasing the temperature

of the system. This was evidenced in the mesocluster size distributions. In particular, once

the shear rate is slow enough (γ̇ . 0.01/τα), the system shows no obvious behavioural

differences from their corresponding quiescent systems.

We conclude that (i) at the level of our mesocluster model, shearing may be regarded
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as equivalent to changing temperature; (ii) shear behaviour in regions poor in icosahedra

provides strong evidence that icosahedra-rich regions are more rigid. This suggests that

the formation of icosahedra may be related to local rigidity in the Wahnström model. Such

behaviour has been noted in metallic glasses68. Shear banding leads to two different effective

temperatures, which approximately obey a simple linear superposition to the global effect

temperature.

The sheared systems were initially fitted with an effective temperature using the meso-

cluster size distribution model from25. From this, we were able to identify an effective

temperatures as a function of shear rate. For 0.56 ≤ T ≤ 0.8, the effective temperatures are

well described by a linear function of the shear rate (Eq. 3). This model is only relevant in

the regime where τα can be evaluated. However, even in the low temperature simulations

(T ≤ 0.5), decreasing the shear rate resulted in decreasing the effective temperature of the

systems. In these low temperature simulations, the observed effective temperatures were sig-

nificantly colder than can be obtained in equilibrated quiescent systems. Thus, this method

allows us to probe deeper into the energy landscape than can be achieved with quiescent

simulation.

Many of the state points studied here exhibited shear banding. These have two distinct

regions; one with a low shear rate, and the other with high shear rate. The high and low shear

rate regions were identified using the non-affine deformation parameter, D2, which measures

the relative movement of neighbouring particles compared to a central one33. Higher D2

values identify regions of high mobility (high shear rate) while lower values identify regions

of low mobility (low shear rate). To analyze the banding, the average D2 values and average

icosahedra density in the y direction was considered. A very strong negative correlation

coefficient was found between the values of D2 and density of icosahedra, suggesting a

measurable difference in the mesocluster size distributions between the high shear and low

shear regions. We used the D2 values to construct boundaries for the high and low shear

regions, thus allowing us to partition the simulation box into segments according to their

local shearing behavior. Mesoclusters inside each of these segments were identified, and the

size distributions were calculated for each high and low shear segment across all banded

systems. In all cases, the low shear regions had significantly lower effective temperatures

than the high shear regions.

Using a linear combination of the effective temperatures of the high and low shear seg-
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ments, we could estimate the global effective temperature with reasonable accuracy (Eq.

9). This result means that, given we know the global effective temperature (which can be

predicted from the linear relationship between shear rate and effective temperature Eq. 3)

and the approximate size of the shear bands, we can estimate the effective temperatures of

the shear bands, and vice versa.

Our work opens a perspective of using a shear to probe deep in the energy landscape,

beyond the regime accessible to conventional simulation. This is made under the assump-

tion that the properties of the mesocluster model (icosahedra population and mesocluster

properties) accurately represent the system at low temperature25. In the future, this method

can be generalised to system with other LFS such as the Kob-Andersen model14,74 and hard

spheres75 and indeed to practical materials with well-defined LFS such as metallic glasses76.
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