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Abstract—In this paper we evaluate and compare the end-to-

end performance of different multipath TCP (MPTCP) 

congestion controllers when run in conjunction with different 

TCP packet reordering recovery algorithms.  The paper answers 

the following questions: what is the impact of out-of-order events 

on the end-to-end throughput when using MPTCP, how do out-

of-order recovery algorithms that have been proposed for single-

path TCP perform with multi-path TCP, and how sensitive this 

performance is against the delay difference between the paths 

used. The paper compares three different MPTCP congestion 

control algorithms used in conjunction with four current TCP 

packet reordering solutions: D-SACK, Eifel, TCP-DOOR, and F-

RTO. Simulation results show that whilst TCP-DOOR and, 

second, D-SACK perform generally better across all congestion 

control MPTCP implementations, the choice of packet 

reordering algorithm is not always fixed and straightforward – 

when MPTCP is used with some form of coupled congestion 

control the performance degrades towards that of single-path 

usage when the delay difference of the paths is over 200ms. The 

paper identifies combinations of congestion control and packet 

reordering algorithms that give better aggregate throughput 

performance for different path delay differences.  

I. INTRODUCTION 

The success of the Internet comes from its capability to 

provide a wide range of robust and reliable end-to-end data 

transmission services for various applications, such as email, 

file sharing and media streaming. On the other hand, demand 

for network efficiency and performance, robustness and 

reliability is becoming essential. In particular, using more than 

one network path for data transmission simultaneously can 

increase the reliability of the connection as well as the end-to-

end throughput. 

Most of the portable devices today have more than one 

interface, allowing the users to use different wired/wireless 

access technologies (e.g. xDSL, Ethernet, WiFi, 

Cellular/Cellular LTE). Using available access technology 

links simultaneously with the ability to shift traffic from 

congested paths to uncongested paths are the basic goals for 

any new proposed protocol in this area. Many solutions have 

been proposed for multipath transmission from a transport 

layer perspective that based either on TCP or SCTP. Different 

techniques are used with these protocols in order to improve 

throughput compared to single-path transports. Some of them 

depend on bandwidth aggregation techniques [1]-[3], 

concurrent transmissions [4]-[6], and connection delay [7].   

Multipath TCP (MPTCP) is a modification of the classical 

TCP that allows end-to-end data traffic to be split across 

multiple paths, whilst maintaining TCP connections at the end 

points (applications) [1]. The design objectives of MPTCP are 

to support unmodified applications that use TCP (MPTCP 

operation at transport layer is hidden to other layers), work 

over current networks and work whenever TCP would work.  

Several studies have proposed and analysed the 

performance of MPTCP congestion control (CC) algorithms 

against its goals [8], [9]. They differ in terms of transmission 

robustness, fairness and path selection stability (flapping), and 

are discussed more extensively in Section II-B. They all report 

improvements in throughput measurements compared to the 

standard TCP. However, sending data through different paths 

increases the possibility that the order of the packets received 

at the destination is different from that of the sender (out-of-

order (OOO) events). There exist many causes for packet 

reordering for a single connection; packet-level multipath 

routing, route fluttering, inherent parallelism in modern high 

speed routers, link layer retransmission, and router forwarding 

lulls [10]. Consequently, when one end-to-end data 

connection uses more than one path in its transmission then 

the diversity of path characteristics (both loss and delay), will 

create OOO events even when the single paths behave ideally. 

In this paper we evaluate and compare the behaviour of 

different MPTCP congestion controllers in combination with 

different packet reordering (PR) recovery mechanisms. Four 

of these have been used in this study: D-SACK [11], Eifel 

[12], TCP-DOOR [13], and F-RTO [14]. We use delay as the 

main network variable parameter, as our objective is to have a 

representative topology that introduces OOO events. 

Considering, in addition, lossy paths would only create more 

OOO events due to loss-induced retransmissions without, 

fundamentally, changing the behaviour of the PR techniques.  

This paper is organized as follows: Section II presents the 

MPTCP protocol and the different congestion control 

algorithms specifically proposed for it. Section III discusses 

the four packet reordering techniques proposed for single-path 

TCP to make it more robust to OOO events and how they 

have been adopted to MPTCP. In section IV, the experimental 

results on the performance evaluation of all combinations of 

CC and PR algorithms for MPTCP for the same network are 

presented. Section V presents conclusions and future work.  
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II. MPTCP: MULTIPATH TCP 

MPTCP is a modification of the regular TCP that allows 

single data traffic to be split across multiple paths [1]. One of 

the main design goals behind MPTCP was to be completely 

transparent to both the application and the network. The 

application opens a regular TCP socket which initially starts 

one regular TCP subflow. More subflows can be added later 

by any MPTCP end point using the same application socket. 

Outgoing data is then scheduled according to some 

implementation management policy and incoming data from 

all TCP subflows is reordered to maintain the in-order byte-

stream abstraction of TCP, as seen by application. For this to 

work, at least one end (preferably both ends) must have at 

least two IP addresses, and both ends must implement the 

multipath TCP extensions. Packets are sent down different 

paths by addressing them to the different destination addresses 

available for the remote system. The multi-addressed 

multipath TCP has a second sequence number space carried in 

TCP options, so that the regular sequence number and 

acknowledgement fields can remain compatible with existing 

middle-boxes such as NATs (network address translations). It 

has been shown that MPTCP delivers improved network 

resilience and increased throughput. It can also benefit load 

balancing at multi-homed servers and data centres [8]. 

A. Sequence Space 

MPTCP protocol uses two levels of sequence spacing: a 

connection-level sequence number and another sequence 

number called subflow-level sequence number for each path 

or subflow (SF). The connection-level sequence is the data 

sequence number seen by the application. When the MPTCP 

sender starts transmitting data through different SFs, 

connection-level data sequence number has to be mapped to 

the subflow sequence number. Each SF has to send data as a 

regular TCP connection independently from other SF(s) with 

its own sequence numbers and cumulative acknowledgments 

(ACKs). The MPTCP receiver uses the connection-level 

sequence number to reassemble the data streams coming from 

different SFs inorder to pass them to the application layer in-

sequence. Therefore, MPTCP uses a data sequencing mapping 

(DSM) to convert between the two sequence spacing [1]. The 

DSM can be depicted clearly in Fig.1 where packet (5-S2) for 

example has a data-sequence-number equal to 5 and a 

subflow-sequence number equal to 2.The arrival packet is said 

to be in-sequence if and only if both the subflow-sequence and 

data-sequence are as expected.  

Fig.2 explains how the MPTCP receiver node examines the 

newly arrived packet to decide whether to save it in the 

receiver buffer (in-order packet) or in the OOO-buffer (OOO 

packet). Otherwise it will be rejected (most likely a duplicate 

packet).  The receiver first checks the sequencing of the 

subflow then the sequencing of the connection.  When the 

subflow sequence number of the received packet (SF_RecSeq) 

is equal to the expected subflow sequence number, 

(SF_ExpectSeq) and the connection (or Data) sequence 

number (D_RecSeq) is equal to the expected Data sequence 

number (D_ExpSeq) then the packet is considered in-

sequence. The received packet is considered to be OOO if 

either of the sequence numbers is greater than the expected, 

otherwise it is rejected.  

B. Congestion Control 

The congestion control (CC) algorithm is the most 

important part of MPTCP protocol. In the regular (i.e. single-

path) TCP protocol, only one congestion window (CWND) 

exists between the sender and receiver nodes. However 

MPTCP has more than one congestion window depending on 

the number of subflows between the two end points. The 

MPTCP sender has a CWND for each subflow to control the 

local traffic in each path, whilst the MPTCP receiver has a 

single global receiving window shared between all subflows. 

Three major goals for the congestion control have to be 

satisfied by the MPTCP protocol [9]: 

1) Improve throughput: A multipath flow should perform at 

least as well as a single path flow would on the best of the 

paths available to it. 

2) Do not harm: A multipath flow should not take up more 

capacity from any of the resources shared by its different 

paths, than if it was a single flow using only one of these 

paths. 

3) Balance congestion: A multipath flow should move as 

much traffic as possible off from its most congested paths. 

As an improvement to the previous goals another goal was 

added later by the same authors and it is about the path’s 

fluctuation  

4) Adapt quickly and do not oscillate: A multipath flow 

should adapt quickly when congestion changes and 

without flapping. 

Different CC algorithms have been proposed [9]; 

Uncoupled (Un-CC), Fully Coupled (FC-CC), and Coupled 

(Co-CC); and extensive simulation studies have been done for 

them to test MPTCP goals [9]. These studies concluded that 

Un-CC does not satisfy the fairness condition and the FC-CC 

suffers from flappiness. On the other hand the Co-CC solves 

these problems because it deals with different RTTs for 

different paths [15]. Un-CC uses Additive-Increase/Multiple-

Decrease (AIMD) congestion control used with regular-TCP 

in each path independently. The increase equation is given by 

(1) and the decrease is given by (2).  However, FC-CC takes 

total CWND of all paths in consideration in order to couple 

both the increase and decrease cases for each path using the 

set of equations (3) and (4).  The Co-CC couples only the 

increase case for each path and keeps the decrease similar to 

regular-TCP. Co-CC increases CWND of each path by (5) and 

decreases by (2) where Wr is CWND of path r, W is the 

summation of all CWNDs, and α is calculated using (6) [15]. 

Uncoupled-CC: 

 Wr  = Wr + 
 

   
     (1) 

Wr =  
  

 
       (2)    

Fully Coupled-CC: 

Wr =  Wr+

 

  
    (3) 

Wr = max (    
 

 
  , 1)      (4)                         
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Coupled-CC: 

 Wr =  Wr + Min ( 
 

 
 ,  

 

   
 )       (5) 

= W  *
     

  

      

 ∑
  

      
    (6) 

 

Although Co-CC adjusts CWND size for each path taking 

in consideration RTT measurement, MPTCP cannot saturate 

link with higher RTT, because OOO data arrival on the 

receiver endpoint at the connection level causes a bottleneck 

in data re-sequencing process. Section IV of this report shows 

that sending data using the best path will be a suitable solution 

however; it limits the aggregate throughput to be no more than 

the throughput of the best path. 

III. PACKET REORDERING SOLUTIONS 

A sender generates a traffic stream with an in-order 

sequence of data packets. For many reasons the ordering of 

the packets received at the destination may be different from 

the sender generated one. An out-of-order packet makes the 

receiver responds with duplicated acknowledgements 

(dupACK) inducing the sender to infer wrongly a packet loss 

and then enter congestion control stage unnecessarily, 

resulting in lower overall end-to-end performance. 

It has been shown that packet reordering is not a rare event 

[16], [17]. With persistent and substantial packet reordering, 

TCP spuriously retransmits segments - the sender keeps its 

congestion window unnecessarily small, loses its ACK-

clocking, and understates the estimated RTT and RTO 

(Retransmission Timeout) [10]. This can result in significantly 

lower application throughput and network performance. 

 

Fig. 1. Out-Of-Order example in Multipath TCP 

 

Fig. 2. Packet classification at MPTCP receiver node 

In the multipath context, received packets are out of order 

because different SFs may have different characteristics, such 

as end-to-end delay. The OOO arrival of the data packets will 

create a substantial problem for multipath TCP while 

reassembling them at the connection level, and not at SF level 

because the SFs are independent. When the receiver node 

receives OOO packets it will store them into OOO buffer 

waiting for the packets expected to precede them. However, 

when the sender receives dupACKs it will trigger one of the 

proposed methods for solving reordering in addition to the CC 

selected for the corresponding SF. Referring to Fig.1. Let the 

two end points be connected by two SFs, SF-1 and SF-2. 

Under symmetric conditions of the SFs and without 

considering loss events, the transmitted data packets mostly 

arrive to the destination node in-sequence. However, when the 

SF-2 has a large RTT compared to SF-1 then data will most 

likely arrive out of sequence at connection level, although it 

may be in-order at SF level. This is illustrated in Fig.1 where 

packet 6 and 7 are considered OOO because they have been 

transmitted through the faster path, SF1, and arrive before 

packets 4 and 5.  Since the sender cannot distinguish between 

the losses or delays of packets, it will enter the congestion 

control stage and reduce the CWND for SF-2. In the worst 

case, the sender will continue halving the CWND unnecessary 

and keeping SF-2 in slow start most of the time. 

Many mechanisms have been proposed for TCP as a 

solution for the packet reordering problem and four of them 

named D-SACK, Eifel, TCP-DOOR and F-RTO will be 

discussed in this section. 

A. D-SACK 

D-SACK is an extension of the selective acknowledgment 

SACK option for TCP[11] that depends on duplicate selective 

acknowledgement (D-SACK) to detect segment reordering 

and retracts the associated spurious congestion response. 

When congestion is detected, CWND is saved before 

reduction and when a sender finds that it has made a spurious 

congestion response based on the arrival of a D-SACK it 

performs "slow start" to increase the current CWND to the 

stored CWND before congestion avoidance.  

B. Eifel 

Ludwig and Katz proposed the Eifel algorithm to eliminate 

the retransmission ambiguity and solve the performance 

problems caused by spurious retransmissions [12]. The sender 

uses the TCP timestamp option to inset the current timestamp 

into the header of each outgoing segment to a destination. The 

receiver then copies those timestamps in the corresponding 

ACKs. When a packet loss is assumed, the sender retransmits 

the lost segment and always uses the stored timestamp of the 

first retransmission in addition to the Slow-Start thresh hold 

(SSThreshold) and the CWND. Upon receiving the ACK of 

the corresponding segment, the sender compares the 

timestamp of the arrived ACK with the stored one. If the 

ACK’s timestamp is smaller, then the retransmission was 

spurious. Subsequently, the sender simply restores the 

SSThreshold and the CWND to the stored values. 

C. TCP-DOOR 

TCP-DOOR has been proposed to improve TCP 

performance over mobile Ad-hoc networks [13]. It is 

commonly known that TCP protocol performs poorly in 

wireless networks since it assumes all packet losses are due to 

congestion. TCP-DOOR (Detection of Out-of-Order and 
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Response) is similar to Eifel in using packet timestamp. Once 

the OOO is detected the TCP-DOOR responds by temporarily 

disabling the congestion control and instant recovery during 

congestion avoidance. The sender keeps its state variables 

constant for a time period, such as RTO and CWND, and then 

recovers immediately to the state before congestion avoidance 

action was invoked.  

D. F-RTO 

The Forward RTO Recovery (F-RTO) algorithm is a TCP 

sender method that does not require any TCP options to 

operate [14]. After retransmitting the first unacknowledged 

segment triggered by a timeout, the F-RTO algorithm at a 

TCP sender monitors the incoming ACKs to determine 

whether the timeout was spurious or not and also to decide 

whether to send new segments or retransmit unacknowledged 

segments. However, if packet reordering or packet duplication 

occurs on the segment that triggered the timeout, the F-RTO 

algorithm may not detect the spurious timeout due to 

incoming dupACK. 

Many comparisons have been made to classify and evaluate 

several PR recovery methods for single TCP [10]. They 

conclude that by performing slow start during state restoration, 

D-SACK allows TCP to reacquire ACK-clocking and avoid 

injecting traffic bursts into the network. On the other side, the 

response of D-SACK is slower than the other algorithms such 

as Eifel and TCP-DOOR. Also, it has been stated that Eifel 

does not work when the original and retransmitted segments 

are reordered. While TCP-DOOR can improve the TCP 

throughput significantly (50% on average [13]), it may lead to 

congestion collapse from undelivered packets by disabling the 

congestion control for a time period every time an OOO event 

is detected. Thus, TCP-DOOR does not perform well in a very 

congested network. 

In the following section, the PR solutions mentioned 

previously will be simulated with MPTCPto evaluate their 

influence on the link utilization and the application throughput. 

The throughput will then be compared with MPTCP 

throughput when no recovery method is in use (NoPR).  

IV. PERFORMANCE EVALUATION 

In this section, we present our simulation results and 

discuss the path utilization using various packet reordering 

recovery algorithms mentioned in the previous section. 

MPTCP has been simulated using ns-3 [18], [19] and the 

performance has been evaluated with four different solutions 

for PR (DSACK, Eifel, TCP-DOOR, and F-RTO). The 

simulated scenarios evaluate the impact of PR on the 

aggregate throughput (gThroughput) of the protocol.  

A. Simulation setup 

The simulated system shown in Fig. 3 assumes an FTP 

application to transfer a 50MB file running a Client/Server 

architecture. Two nodes are implemented and connected by 

two Point-to-Point links that represent two possible disjoint 

paths for MPTCP. The data rates for both links are set to 

0.5Mbps with 0 error rate (lossless paths). The delay of the 

first subflow (SF-0) is set to 10ms while the delay of the other 

subflow (SF-1) is set initially to 10ms, and varied in different 

experiments. The delay of both paths varies during the 

simulation runtime by ±5% of the initial value. The size of 

OOO receiver buffer is set to be large enough for all OOO 

packets so as not to limit our performance study by its size.  

 

Fig. 3. The simulated scenario 

B. Performance Metrics 

In this paper, the following performance metrics are used 

for the results comparisons and analysis. 

1)  Reorder Buffer-occupancy-Density 

As MPTCP receiver requires an OOO-buffer to store the 

OOO packets received from different paths and before 

sending them to the shared receive buffer that save them in-

order. Reorder Buffer Occupancy Density (RBD) is used to 

measure the amount of space each PR solution needs. It 

reflects the ability of each PR solution in recognizing OOO 

packets. RBD is defined as the buffer occupancy frequencies 

normalized by the total number of non-duplicate packets [20] 

where B is the number of packets presented in the OOO-

buffer. 

2)  Out-Of-Order Ratio 

MPTCP maintains two sequence numbers for each packet. 

Data sequence for MPTCP connection and subflow sequence 

for each TCP subflow. In-order packets arrive from the same 

subflow may wait in the OOO-receive-buffer before their data 

sequence numbers become in-order, this due to the late 

arrivals of packets from other SFs. Therefore, a key 

performance metric of using PR solution with MPTCP is to 

measure Out-Of-Order-Ratio (OOO-R) at the receiver side. 

OOO-R is measured to be total number of received packets 

being stored in OOO-buffer over the total number of non-

duplicate received packets (the size of the FTP file). 

3)  Link-Utilization 

The link utilization (L-Utilization) can be obtained by 

observing the SF-CWND. If MPTCP is able to increase the 

value of CWND then more data can be sent through this SF. 

The lack of competition in the link from other flows in our 

scenario makes all bandwidth available to the MPTCP 

connection.  Link Utilization is defined by the throughput of 

the Link (SF) over its data rate. 

4)  Aggregate Throughput 

As our goal is to study the PR impact on the overall 

performance of MPTCP, we focus on measuring the aggregate 

throughput (gThroughput) of this protocol.  The aggregate 

throughput is defined by the summation of the throughputs of 
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all available paths for MPTCP connections (SFs).  Optimal 

throughout used in this paper presents the maximum possible 

throughput that can be achieved by the protocol when 

consuming all the available bandwidth of the links.  

C. Results Analysis 

The results are divided into two parts, the first part is the 

evaluation of original MPTCP without any PR solutions 

(NoPR), and the second is the behaviour of MPTCP with PR 

solutions. The influence of PR solutions on MPTCP protocol 

is studied by comparing their performance with MPTCP 

behaviour in the first part. 

1)  MPTCP with NoPR 

The benchmark simulation uses MPTCP with the three CC 

algorithms (Uncoupled, Fully-Coupled, and Coupled) under 

four network scenarios without any packet reordering. The 

first scenario uses equal and constant delays (10ms) for both 

SFs. The second uses equal delays but SF-0 suffers from delay 

fluctuations during the simulation. The third evaluation uses 

different delays between the SFs (10ms and 200ms) without 

fluctuations, while the last one uses different delays with 

small fluctuations in both SFs. 

We observe that the gThroughput of MPTCP protocol 

using all mentioned CC algorithms can reach the optimal 

value if and only if the delays in both links are stable and 

equal. However, when one or both links have a small variation 

in the delay during the transmission then only one link will 

dominate and the gThroughput will be equal to the throughput 

of the dominant link.  In Fig.4a both links have fixed (no 

fluctuation) delays equal to 10ms and gThroughput is optimal 

and equal to the sum of the available path throughputs 

(1Mbps). Fig.4b shows the gThroughput obtained when the 

SFs experience either unequal delays or fluctuations in their 

delays - gThroughput in this case is equal to the throughput of 

only one subflow (0.5Mbps SF-1 in this case). This can be 

also understood from the RBD distribution for all MPTCP 

CCs in Fig.5, which shows that the OOO memory occupancy 

were very low because most of the packets arrive in-sequence 

due to MPTCP using only one SF instead of two.  The same 

results we observed when the delay differences between SFs 

were 50ms, 200ms, and 500ms.  

Although the first goal of the MPTCP protocol design is 

satisfied, the gThroughput is not optimal as the capacity of 

SF-0 is not used. This is because when the transmission starts 

just after establishing the connection one of the subflows 

suffers from late packet arrival and cannot recover.   

 

Fig. 4. The throughput of the MPTC and its SFs 

 

Fig. 5. RBD [0-10] for MPTCP 

2)  Out-of-order performance for MPTCP with PR Solutions 

In this part of our evaluations, the MPTCP is simulated 

with four mechanisms proposed for single-TCP to recover 

from PR using the same topology of Fig.3.  Both SFs suffer 

from small fluctuation in the delays (±5%). The delay of SF-0 

has been set to 10ms while the delay of SF-1, the key study of 

our evaluations, is increased from 10ms to 500ms in 100ms 

steps. This section presents a complete analysis when the 

delay of SF-1 is equal to 200ms, as a typical set of results. 

Most of these PR solutions behave effectively when the delay 

difference between SFs is less than 200ms. The performance 

analysis of these PR solutions is compared with the baseline 

evaluations presented previously.  

From our observations, PR solutions increase OOO-R up to 

eight-fold compared to original MPTCP shown in Table I. 

OOO-R reaches 47.3% in maximum with TCP-DOOR and 

40.6% on average with D-SACK. The increase of the OOO-R 

indicates that the sender, with the help of a PR solution, is 

able to realise the late arrival of packets and therefore rolls 

back CWND to its state exactly before retransmission was 

triggered and continue sending more data. The OOO-buffer 

occupation increases as more packets are stored waiting for 

their data-sequence to be in-order.  Table II shows link 

utilization for both SFs and gThroughput obtained in all 

studied cases; L-Utilisation is the proportion of maximum 

single-path capacity used by the respective MPTCP subflow. 

The results indicate the ability of PR solutions to increase 

gThroughput by also utilizing the path that suffers from large 

end-to-end delay (SF-1) for all PR solutions except Eiffel. The 

gThroughput improvement is less than the others and very 

close to the original MPTCP specifically with FC-CC which 

also requires double data transfer completion time.  

 

TABLE I: OOO-R AND MAXIMUM OOO BUFFER SIZE OCCUPIED BY DIFFERENT 

PR SOLUTIONS AND MPTCP CCS 

 

OOO-R

(%)

OOO Buffer 

(KB)

OOO-R

(%)

OOO Buffer 

(KB)

OOO-R

(%)

OOO Buffer 

(KB)

Packet

 Reorder

 Solution

Congestion Controller

Uncoupled Fully Coupled Coupled

5.1 1.1648

DSACK 44.2 2.296 34.5 2.128 43.1 2.128

NoPR 6.49
 1.1872 5.0 1.1648

2.128

TCP-DOOR 47.3 2.464 22.0 2.128 44.4 2.128

Eifel 27.9 1.68 9.3 1.176 37.0

0.1344F-RTO 27.1 0.3248 18.7 0.1456 21.4
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TABLE II: MPTCP GTHROUGHPUT AND L-UTILIZATION COMPARISONS 

BETWEEN DIFFERENT PR SOLUTIONS AND MPTCP CCS 

 
We observe that DSACK is able to improve the 

gThroughput of MPTCP by 60-70% against NoPR case with 

all CC algorithms when the delay difference between the two 

SFs is less than 200ms. Fig.6 illustrates the behaviour of 

CWND using DSACK. It shows that the increasing rate of 

CWND with un-CC is faster than Co-CC where the latter 

forces the CWND to increase smoothly while balancing the 

load between SFs. 

Eifel performs worse than the other solutions, particularly 

with FC-CC where the gThroughput is found to be less than 

the benchmark measurements. The improvement in 

gThroughput with Eifel can be achieved with un-CC but not 

with the coupling methods.  It can be clearly observed from 

Fig.7 and Table II that the MPTCP with Eifel could not 

saturate SF-1 with coupled CCs as compared to the other 

solutions. On the other hand, Eifel with Co-CC can behave 

better when the transmission is handled to the slower link and 

its CWND get a chance to increase rapidly. In this case, the 

CWND of the faster link can also send more data even with 

many spurious retransmission detections. However, once the 

latter link handles the transmission, its CWND will increase 

quickly preventing the other link from sending more data. 

Therefore, the performance of Eifel is not stable with MPTCP 

protocol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. CWND of MPTCP SFs with DSACK 

As expected, TCP-DOOR has a significant impact on the 

gThroughput and link utilization as it suspends the congestion 

response for a certain time period upon detecting a spurious 

retransmission. This can be clearly seen in Fig.8 that depicts 

the behaviour of the CWND under TCP-DOOR. The 

performance of TCP-DOOR approaches DSACK with 70% 

improvement in gThroughput using both un-CC and Co-CC. 

However, the DSACK outperforms others by at least 40% 

with FC-CC. On the other hand, TCP-DOOR will not perform 

well in a very congested network [10].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 CWND of MPTCP SFs with Eifel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 8. CWND of MPTCP SFs with TCP-DOOR 

The performance of F-RTO is worse than both DSACK and 

TCP-DOOR under un-CC and Co-CC and approaches the 

TCP-DOOR under FC-CC. MPTCP with F-RTO has a better 

balance in data transmission split between SFs as long as no 

critical congestion occurs to any of available paths. Fig.9 

depicts this situation where the transmission uses both SFs, 

until a critical RTO occurs and then one SF dominates. The 

gThroughput 
(Mbps) 

gThroughput 
(Mbps) 

gThroughput 
(Mbps) 

Packet 
Reorder 
Solutions 

58.6 0.60 90 60 0.64 

68.8 0.61 96 67.7 0.87 

F-RTO 100 65.6 0.72 89 

50 0.50 84 84.2 0.82 

TCP-DOOR 88.6 91.8 0.90 96.4 

50 0.80 88 86 0.86 

Eifel 40.4 94.6 0.68 94.6 

3.6 0.50 96.0 3.4 0.50 

DSACK 91.8 84.4 0.86 74.0 

NoPR 97.0 4.2 0.50 97.0 

Congestion Controller 
Uncoupled Fully Coupled Coupled 

L-Utilization 

      (%) 
SF-0             SF-1 SF-0             SF-1 SF-0             SF-1 

L-Utilization 
         (%) 

L-Utilization  
        (%) 

 
(a) MPTCP with Un-CC 

 
(b) MPTCP with Co-CC 

 
(a) MPTCP with Un-CC 

 
(b) MPTCP with FC-CC 

 

 

 

 
(a) MPTCP with Un-CC 

 
 

(b) MPTCP with Co-CC 
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gThroughput improvement with this solution can reach 43.1% 

in maximum as presented in Table II. Fig10 summarises the 

application throughput with all PRs being simulated with 

MPTCP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 9. CWND of MPTCP SFs with F-RTO 

By examining the OOO-Buffer, F-RTO outperforms the 

other combinations in terms of memory requirements (high 

RBD for in-sequence received packets at the same time). We 

notice Eifel approaches the NoPR under FC-CC where the 

algorithm occupies less than 5 memory locations most of the 

time with high RBD and low OOO-R, whilst both DSACK 

and TCP-DOOR use more memory locations with small 

densities. As F-RTO occupies less memory space (around 

300KB) as compared to other PR solutions, this makes F-RTO 

preferable to others in terms of memory utilization, as shown 

in Fig.11 and Table II. All PR solutions under Un-CC occupy 

more memory space because Un-CC method injects more data 

into network without balancing loads between SFs.  Due to 

space limitation, RBD figures of FC-CC and un-CC are not 

presented - only the RBD for all PR solutions under Co-CC 

are shown as typical results. Table II presents each PR 

solutions with its maximum memory space occupied by OOO 

packets classified by CC of MPTCP. 

 

 
Fig. 10.  MPTCP gThroughput with and without PR solutions 

In order to study the behaviour of MPTCP under different 

networks, we fixed the end-to-end delay of one link and 

change the delay of the other by increasing the difference 

between them (0ms to 500s in steps of 50ms and 100ms).  

 
Fig. 11. OOO-Buffer-RBD under Coupled-CC 

The aggregate throughputs of MPTCP with all PR solutions 

being simulated as a function of path delay difference are 

shown in Fig.12, Fig.13, and Fig.14 under un-CC, FC-CC, and 

Co-CC labels respectively. Two main observations can be 

obtained from this experiment.  First, all PR methods (except 

Eifel) are able to substantially improve gThroughput of 

MPTCP up to a value of 200ms difference for path delay 

difference; Eifel has a small impact particularly with FC-CC. 

Both DSACK and TCP-DOOR outperform others by 

providing better application throughput as the delay variation 

increases. However they need at least 2MB memory space for 

OOO-buffer while the FRTO provides less application 

throughput but with less memory space. Second, when the 

delay difference becomes more than 200ms, all PR solutions 

behave less effectively with coupling methods and the 

gThroughput improvement is less than 20%. 

 

 
Fig. 12. The gThroughput of MPTCP with uncoupled-CC and various packet 
reorder solutions as delay variation between two subflows increases 

 
Fig. 13. The gThroughput of MPTCP with Fully coupled-CC and various 
packet reorder solutions as delay variation between two subflows increases 

 
(a)    MPTCP with FC-CC 

 
(b) MPTCP with Co-CC 



8 

 

 
Fig. 14. The gThroughput of MPTCP with Coupled-CC and various packet 

reorder solutions as delay variation between two subflows increases 

V. CONCLUSIONS 

Many different solutions have been proposed to solve the 

packet reordering problem in single-path TCP. However, none 

of them has been intensively evaluated in the context of 

multipath protocols, neither have they been comprehensively 

compared when run in conjunction with MPTCP. This paper 

presents results of the performance of MPTCP with four TCP 

packet reordering solutions, namely D-SACK, Eifel, TCP-

DOOR, and F-RTO, and benchmarks them against the 

performance of MPTCP without any packet reordering 

recovery methods. The results show that when the two 

subflows have symmetrical attributes then the behavior is 

much better than in the asymmetrical case. 

Whilst the Coupled Congestion Control (Co-CC) algorithm 

provides a robust data transmission and solves the fairness and 

floppiness problems that exist with other congestion control 

methods for MPTCP, the results show that the Co-CC sends 

most of the data using the best path and is unable to 

effectively use the others even under a small delay variation 

scenario.  At the same time, the results clearly show that the 

packet reordering solutions bring a substantial performance 

improvement for MPTCP by increasing the aggregate 

throughput as well as the path utilization particularly when 

delay difference between SFs is less than 200ms.  

The analysis also shows that MPTCP using uncoupled 

congestion control is less sensitive to path delay differences 

up to 500ms, and that both TCP-DOOR and DSACK utilize 

both paths effectively. MPTCP using DSACK is less sensitive 

to path delay difference (up to 200ms) independently of which 

CC algorithm is used. TCP-DOOR approaches the DSACK in 

aggregate throughput under both Co-CC and un-CC 

algorithms. MPTCP should use F-RTO as a PR solution if 

memory is a constraint. MPTCP using Eifel PR solution gives 

very little throughput gain even when path capacity is 

available; whilst it still provides connectivity redundancy, it is 

not the best choice for throughput maximization.  

Whilst this study considered only lossless delay 

asymmetrical links, the future work will consider how the 

packet reordering will behave with MPTCP used over lossy 

asymmetrical links. 
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