
 Alheid, A. A. Y., Kaleshi, D., & Doufexi, A. (2014). An Analysis of the
Impact of Out-Of-Order Recovery Algorithms on MPTCP Throughput. In
2014 IEEE 28th International Conference on Advanced Information
Networking and Applications (AINA 2014): Proceedings of a meeting held
13-16 May 2014, Victoria, British Columbia, Canada. (pp. 156-163).
[6838660] (Proceedings of the IEEE International Conference on Advanced
Information Networking and Applications (AINA)). Institute of Electrical
and Electronics Engineers (IEEE). DOI: 10.1109/AINA.2014.50

Peer reviewed version

Link to published version (if available):
10.1109/AINA.2014.50

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/6838660/. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73984138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/AINA.2014.50
http://research-information.bristol.ac.uk/en/publications/an-analysis-of-the-impact-of-outoforder-recovery-algorithms-on-mptcp-throughput(77d1a9a5-3717-4b0a-8bc2-d64be1e42b6f).html
http://research-information.bristol.ac.uk/en/publications/an-analysis-of-the-impact-of-outoforder-recovery-algorithms-on-mptcp-throughput(77d1a9a5-3717-4b0a-8bc2-d64be1e42b6f).html

1

 An Analysis of the Impact of Out-Of-Order

Recovery Algorithms on MPTCP Throughput
Amani Alheid, Dritan Kaleshi, Angela Doufexi

Department of Electrical and Electronic Engineering,

University of Bristol,

Bristol, UK
{amani.alheid, dritan.kaleshi, a.doufexi}@bristol.ac.uk

Abstract—In this paper we evaluate and compare the end-to-

end performance of different multipath TCP (MPTCP)

congestion controllers when run in conjunction with different

TCP packet reordering recovery algorithms. The paper answers

the following questions: what is the impact of out-of-order events

on the end-to-end throughput when using MPTCP, how do out-

of-order recovery algorithms that have been proposed for single-

path TCP perform with multi-path TCP, and how sensitive this

performance is against the delay difference between the paths

used. The paper compares three different MPTCP congestion

control algorithms used in conjunction with four current TCP

packet reordering solutions: D-SACK, Eifel, TCP-DOOR, and F-

RTO. Simulation results show that whilst TCP-DOOR and,

second, D-SACK perform generally better across all congestion

control MPTCP implementations, the choice of packet

reordering algorithm is not always fixed and straightforward –

when MPTCP is used with some form of coupled congestion

control the performance degrades towards that of single-path

usage when the delay difference of the paths is over 200ms. The

paper identifies combinations of congestion control and packet

reordering algorithms that give better aggregate throughput

performance for different path delay differences.

I. INTRODUCTION

The success of the Internet comes from its capability to

provide a wide range of robust and reliable end-to-end data

transmission services for various applications, such as email,

file sharing and media streaming. On the other hand, demand

for network efficiency and performance, robustness and

reliability is becoming essential. In particular, using more than

one network path for data transmission simultaneously can

increase the reliability of the connection as well as the end-to-

end throughput.

Most of the portable devices today have more than one

interface, allowing the users to use different wired/wireless

access technologies (e.g. xDSL, Ethernet, WiFi,

Cellular/Cellular LTE). Using available access technology

links simultaneously with the ability to shift traffic from

congested paths to uncongested paths are the basic goals for

any new proposed protocol in this area. Many solutions have

been proposed for multipath transmission from a transport

layer perspective that based either on TCP or SCTP. Different

techniques are used with these protocols in order to improve

throughput compared to single-path transports. Some of them

depend on bandwidth aggregation techniques [1]-[3],

concurrent transmissions [4]-[6], and connection delay [7].

Multipath TCP (MPTCP) is a modification of the classical

TCP that allows end-to-end data traffic to be split across

multiple paths, whilst maintaining TCP connections at the end

points (applications) [1]. The design objectives of MPTCP are

to support unmodified applications that use TCP (MPTCP

operation at transport layer is hidden to other layers), work

over current networks and work whenever TCP would work.

Several studies have proposed and analysed the

performance of MPTCP congestion control (CC) algorithms

against its goals [8], [9]. They differ in terms of transmission

robustness, fairness and path selection stability (flapping), and

are discussed more extensively in Section II-B. They all report

improvements in throughput measurements compared to the

standard TCP. However, sending data through different paths

increases the possibility that the order of the packets received

at the destination is different from that of the sender (out-of-

order (OOO) events). There exist many causes for packet

reordering for a single connection; packet-level multipath

routing, route fluttering, inherent parallelism in modern high

speed routers, link layer retransmission, and router forwarding

lulls [10]. Consequently, when one end-to-end data

connection uses more than one path in its transmission then

the diversity of path characteristics (both loss and delay), will

create OOO events even when the single paths behave ideally.

In this paper we evaluate and compare the behaviour of

different MPTCP congestion controllers in combination with

different packet reordering (PR) recovery mechanisms. Four

of these have been used in this study: D-SACK [11], Eifel

[12], TCP-DOOR [13], and F-RTO [14]. We use delay as the

main network variable parameter, as our objective is to have a

representative topology that introduces OOO events.

Considering, in addition, lossy paths would only create more

OOO events due to loss-induced retransmissions without,

fundamentally, changing the behaviour of the PR techniques.

This paper is organized as follows: Section II presents the

MPTCP protocol and the different congestion control

algorithms specifically proposed for it. Section III discusses

the four packet reordering techniques proposed for single-path

TCP to make it more robust to OOO events and how they

have been adopted to MPTCP. In section IV, the experimental

results on the performance evaluation of all combinations of

CC and PR algorithms for MPTCP for the same network are

presented. Section V presents conclusions and future work.

2

II. MPTCP: MULTIPATH TCP

MPTCP is a modification of the regular TCP that allows

single data traffic to be split across multiple paths [1]. One of

the main design goals behind MPTCP was to be completely

transparent to both the application and the network. The

application opens a regular TCP socket which initially starts

one regular TCP subflow. More subflows can be added later

by any MPTCP end point using the same application socket.

Outgoing data is then scheduled according to some

implementation management policy and incoming data from

all TCP subflows is reordered to maintain the in-order byte-

stream abstraction of TCP, as seen by application. For this to

work, at least one end (preferably both ends) must have at

least two IP addresses, and both ends must implement the

multipath TCP extensions. Packets are sent down different

paths by addressing them to the different destination addresses

available for the remote system. The multi-addressed

multipath TCP has a second sequence number space carried in

TCP options, so that the regular sequence number and

acknowledgement fields can remain compatible with existing

middle-boxes such as NATs (network address translations). It

has been shown that MPTCP delivers improved network

resilience and increased throughput. It can also benefit load

balancing at multi-homed servers and data centres [8].

A. Sequence Space

MPTCP protocol uses two levels of sequence spacing: a

connection-level sequence number and another sequence

number called subflow-level sequence number for each path

or subflow (SF). The connection-level sequence is the data

sequence number seen by the application. When the MPTCP

sender starts transmitting data through different SFs,

connection-level data sequence number has to be mapped to

the subflow sequence number. Each SF has to send data as a

regular TCP connection independently from other SF(s) with

its own sequence numbers and cumulative acknowledgments

(ACKs). The MPTCP receiver uses the connection-level

sequence number to reassemble the data streams coming from

different SFs inorder to pass them to the application layer in-

sequence. Therefore, MPTCP uses a data sequencing mapping

(DSM) to convert between the two sequence spacing [1]. The

DSM can be depicted clearly in Fig.1 where packet (5-S2) for

example has a data-sequence-number equal to 5 and a

subflow-sequence number equal to 2.The arrival packet is said

to be in-sequence if and only if both the subflow-sequence and

data-sequence are as expected.

Fig.2 explains how the MPTCP receiver node examines the

newly arrived packet to decide whether to save it in the

receiver buffer (in-order packet) or in the OOO-buffer (OOO

packet). Otherwise it will be rejected (most likely a duplicate

packet). The receiver first checks the sequencing of the

subflow then the sequencing of the connection. When the

subflow sequence number of the received packet (SF_RecSeq)

is equal to the expected subflow sequence number,

(SF_ExpectSeq) and the connection (or Data) sequence

number (D_RecSeq) is equal to the expected Data sequence

number (D_ExpSeq) then the packet is considered in-

sequence. The received packet is considered to be OOO if

either of the sequence numbers is greater than the expected,

otherwise it is rejected.

B. Congestion Control

The congestion control (CC) algorithm is the most

important part of MPTCP protocol. In the regular (i.e. single-

path) TCP protocol, only one congestion window (CWND)

exists between the sender and receiver nodes. However

MPTCP has more than one congestion window depending on

the number of subflows between the two end points. The

MPTCP sender has a CWND for each subflow to control the

local traffic in each path, whilst the MPTCP receiver has a

single global receiving window shared between all subflows.

Three major goals for the congestion control have to be

satisfied by the MPTCP protocol [9]:

1) Improve throughput: A multipath flow should perform at

least as well as a single path flow would on the best of the

paths available to it.

2) Do not harm: A multipath flow should not take up more

capacity from any of the resources shared by its different

paths, than if it was a single flow using only one of these

paths.

3) Balance congestion: A multipath flow should move as

much traffic as possible off from its most congested paths.

As an improvement to the previous goals another goal was

added later by the same authors and it is about the path’s

fluctuation

4) Adapt quickly and do not oscillate: A multipath flow

should adapt quickly when congestion changes and

without flapping.

Different CC algorithms have been proposed [9];

Uncoupled (Un-CC), Fully Coupled (FC-CC), and Coupled

(Co-CC); and extensive simulation studies have been done for

them to test MPTCP goals [9]. These studies concluded that

Un-CC does not satisfy the fairness condition and the FC-CC

suffers from flappiness. On the other hand the Co-CC solves

these problems because it deals with different RTTs for

different paths [15]. Un-CC uses Additive-Increase/Multiple-

Decrease (AIMD) congestion control used with regular-TCP

in each path independently. The increase equation is given by

(1) and the decrease is given by (2). However, FC-CC takes

total CWND of all paths in consideration in order to couple

both the increase and decrease cases for each path using the

set of equations (3) and (4). The Co-CC couples only the

increase case for each path and keeps the decrease similar to

regular-TCP. Co-CC increases CWND of each path by (5) and

decreases by (2) where Wr is CWND of path r, W is the

summation of all CWNDs, and α is calculated using (6) [15].

Uncoupled-CC:

 Wr = Wr +

 (1)

Wr =

 (2)

Fully Coupled-CC:

Wr = Wr+

 (3)

Wr = max (

 , 1) (4)

3

Coupled-CC:

 Wr = Wr + Min (

 ,

) (5)

= W *

 ∑

 (6)

Although Co-CC adjusts CWND size for each path taking

in consideration RTT measurement, MPTCP cannot saturate

link with higher RTT, because OOO data arrival on the

receiver endpoint at the connection level causes a bottleneck

in data re-sequencing process. Section IV of this report shows

that sending data using the best path will be a suitable solution

however; it limits the aggregate throughput to be no more than

the throughput of the best path.

III. PACKET REORDERING SOLUTIONS

A sender generates a traffic stream with an in-order

sequence of data packets. For many reasons the ordering of

the packets received at the destination may be different from

the sender generated one. An out-of-order packet makes the

receiver responds with duplicated acknowledgements

(dupACK) inducing the sender to infer wrongly a packet loss

and then enter congestion control stage unnecessarily,

resulting in lower overall end-to-end performance.

It has been shown that packet reordering is not a rare event

[16], [17]. With persistent and substantial packet reordering,

TCP spuriously retransmits segments - the sender keeps its

congestion window unnecessarily small, loses its ACK-

clocking, and understates the estimated RTT and RTO

(Retransmission Timeout) [10]. This can result in significantly

lower application throughput and network performance.

Fig. 1. Out-Of-Order example in Multipath TCP

Fig. 2. Packet classification at MPTCP receiver node

In the multipath context, received packets are out of order

because different SFs may have different characteristics, such

as end-to-end delay. The OOO arrival of the data packets will

create a substantial problem for multipath TCP while

reassembling them at the connection level, and not at SF level

because the SFs are independent. When the receiver node

receives OOO packets it will store them into OOO buffer

waiting for the packets expected to precede them. However,

when the sender receives dupACKs it will trigger one of the

proposed methods for solving reordering in addition to the CC

selected for the corresponding SF. Referring to Fig.1. Let the

two end points be connected by two SFs, SF-1 and SF-2.

Under symmetric conditions of the SFs and without

considering loss events, the transmitted data packets mostly

arrive to the destination node in-sequence. However, when the

SF-2 has a large RTT compared to SF-1 then data will most

likely arrive out of sequence at connection level, although it

may be in-order at SF level. This is illustrated in Fig.1 where

packet 6 and 7 are considered OOO because they have been

transmitted through the faster path, SF1, and arrive before

packets 4 and 5. Since the sender cannot distinguish between

the losses or delays of packets, it will enter the congestion

control stage and reduce the CWND for SF-2. In the worst

case, the sender will continue halving the CWND unnecessary

and keeping SF-2 in slow start most of the time.

Many mechanisms have been proposed for TCP as a

solution for the packet reordering problem and four of them

named D-SACK, Eifel, TCP-DOOR and F-RTO will be

discussed in this section.

A. D-SACK

D-SACK is an extension of the selective acknowledgment

SACK option for TCP[11] that depends on duplicate selective

acknowledgement (D-SACK) to detect segment reordering

and retracts the associated spurious congestion response.

When congestion is detected, CWND is saved before

reduction and when a sender finds that it has made a spurious

congestion response based on the arrival of a D-SACK it

performs "slow start" to increase the current CWND to the

stored CWND before congestion avoidance.

B. Eifel

Ludwig and Katz proposed the Eifel algorithm to eliminate

the retransmission ambiguity and solve the performance

problems caused by spurious retransmissions [12]. The sender

uses the TCP timestamp option to inset the current timestamp

into the header of each outgoing segment to a destination. The

receiver then copies those timestamps in the corresponding

ACKs. When a packet loss is assumed, the sender retransmits

the lost segment and always uses the stored timestamp of the

first retransmission in addition to the Slow-Start thresh hold

(SSThreshold) and the CWND. Upon receiving the ACK of

the corresponding segment, the sender compares the

timestamp of the arrived ACK with the stored one. If the

ACK’s timestamp is smaller, then the retransmission was

spurious. Subsequently, the sender simply restores the

SSThreshold and the CWND to the stored values.

C. TCP-DOOR

TCP-DOOR has been proposed to improve TCP

performance over mobile Ad-hoc networks [13]. It is

commonly known that TCP protocol performs poorly in

wireless networks since it assumes all packet losses are due to

congestion. TCP-DOOR (Detection of Out-of-Order and

4

Response) is similar to Eifel in using packet timestamp. Once

the OOO is detected the TCP-DOOR responds by temporarily

disabling the congestion control and instant recovery during

congestion avoidance. The sender keeps its state variables

constant for a time period, such as RTO and CWND, and then

recovers immediately to the state before congestion avoidance

action was invoked.

D. F-RTO

The Forward RTO Recovery (F-RTO) algorithm is a TCP

sender method that does not require any TCP options to

operate [14]. After retransmitting the first unacknowledged

segment triggered by a timeout, the F-RTO algorithm at a

TCP sender monitors the incoming ACKs to determine

whether the timeout was spurious or not and also to decide

whether to send new segments or retransmit unacknowledged

segments. However, if packet reordering or packet duplication

occurs on the segment that triggered the timeout, the F-RTO

algorithm may not detect the spurious timeout due to

incoming dupACK.

Many comparisons have been made to classify and evaluate

several PR recovery methods for single TCP [10]. They

conclude that by performing slow start during state restoration,

D-SACK allows TCP to reacquire ACK-clocking and avoid

injecting traffic bursts into the network. On the other side, the

response of D-SACK is slower than the other algorithms such

as Eifel and TCP-DOOR. Also, it has been stated that Eifel

does not work when the original and retransmitted segments

are reordered. While TCP-DOOR can improve the TCP

throughput significantly (50% on average [13]), it may lead to

congestion collapse from undelivered packets by disabling the

congestion control for a time period every time an OOO event

is detected. Thus, TCP-DOOR does not perform well in a very

congested network.

In the following section, the PR solutions mentioned

previously will be simulated with MPTCPto evaluate their

influence on the link utilization and the application throughput.

The throughput will then be compared with MPTCP

throughput when no recovery method is in use (NoPR).

IV. PERFORMANCE EVALUATION

In this section, we present our simulation results and

discuss the path utilization using various packet reordering

recovery algorithms mentioned in the previous section.

MPTCP has been simulated using ns-3 [18], [19] and the

performance has been evaluated with four different solutions

for PR (DSACK, Eifel, TCP-DOOR, and F-RTO). The

simulated scenarios evaluate the impact of PR on the

aggregate throughput (gThroughput) of the protocol.

A. Simulation setup

The simulated system shown in Fig. 3 assumes an FTP

application to transfer a 50MB file running a Client/Server

architecture. Two nodes are implemented and connected by

two Point-to-Point links that represent two possible disjoint

paths for MPTCP. The data rates for both links are set to

0.5Mbps with 0 error rate (lossless paths). The delay of the

first subflow (SF-0) is set to 10ms while the delay of the other

subflow (SF-1) is set initially to 10ms, and varied in different

experiments. The delay of both paths varies during the

simulation runtime by ±5% of the initial value. The size of

OOO receiver buffer is set to be large enough for all OOO

packets so as not to limit our performance study by its size.

Fig. 3. The simulated scenario

B. Performance Metrics

In this paper, the following performance metrics are used

for the results comparisons and analysis.

1) Reorder Buffer-occupancy-Density

As MPTCP receiver requires an OOO-buffer to store the

OOO packets received from different paths and before

sending them to the shared receive buffer that save them in-

order. Reorder Buffer Occupancy Density (RBD) is used to

measure the amount of space each PR solution needs. It

reflects the ability of each PR solution in recognizing OOO

packets. RBD is defined as the buffer occupancy frequencies

normalized by the total number of non-duplicate packets [20]

where B is the number of packets presented in the OOO-

buffer.

2) Out-Of-Order Ratio

MPTCP maintains two sequence numbers for each packet.

Data sequence for MPTCP connection and subflow sequence

for each TCP subflow. In-order packets arrive from the same

subflow may wait in the OOO-receive-buffer before their data

sequence numbers become in-order, this due to the late

arrivals of packets from other SFs. Therefore, a key

performance metric of using PR solution with MPTCP is to

measure Out-Of-Order-Ratio (OOO-R) at the receiver side.

OOO-R is measured to be total number of received packets

being stored in OOO-buffer over the total number of non-

duplicate received packets (the size of the FTP file).

3) Link-Utilization

The link utilization (L-Utilization) can be obtained by

observing the SF-CWND. If MPTCP is able to increase the

value of CWND then more data can be sent through this SF.

The lack of competition in the link from other flows in our

scenario makes all bandwidth available to the MPTCP

connection. Link Utilization is defined by the throughput of

the Link (SF) over its data rate.

4) Aggregate Throughput

As our goal is to study the PR impact on the overall

performance of MPTCP, we focus on measuring the aggregate

throughput (gThroughput) of this protocol. The aggregate

throughput is defined by the summation of the throughputs of

5

all available paths for MPTCP connections (SFs). Optimal

throughout used in this paper presents the maximum possible

throughput that can be achieved by the protocol when

consuming all the available bandwidth of the links.

C. Results Analysis

The results are divided into two parts, the first part is the

evaluation of original MPTCP without any PR solutions

(NoPR), and the second is the behaviour of MPTCP with PR

solutions. The influence of PR solutions on MPTCP protocol

is studied by comparing their performance with MPTCP

behaviour in the first part.

1) MPTCP with NoPR

The benchmark simulation uses MPTCP with the three CC

algorithms (Uncoupled, Fully-Coupled, and Coupled) under

four network scenarios without any packet reordering. The

first scenario uses equal and constant delays (10ms) for both

SFs. The second uses equal delays but SF-0 suffers from delay

fluctuations during the simulation. The third evaluation uses

different delays between the SFs (10ms and 200ms) without

fluctuations, while the last one uses different delays with

small fluctuations in both SFs.

We observe that the gThroughput of MPTCP protocol

using all mentioned CC algorithms can reach the optimal

value if and only if the delays in both links are stable and

equal. However, when one or both links have a small variation

in the delay during the transmission then only one link will

dominate and the gThroughput will be equal to the throughput

of the dominant link. In Fig.4a both links have fixed (no

fluctuation) delays equal to 10ms and gThroughput is optimal

and equal to the sum of the available path throughputs

(1Mbps). Fig.4b shows the gThroughput obtained when the

SFs experience either unequal delays or fluctuations in their

delays - gThroughput in this case is equal to the throughput of

only one subflow (0.5Mbps SF-1 in this case). This can be

also understood from the RBD distribution for all MPTCP

CCs in Fig.5, which shows that the OOO memory occupancy

were very low because most of the packets arrive in-sequence

due to MPTCP using only one SF instead of two. The same

results we observed when the delay differences between SFs

were 50ms, 200ms, and 500ms.

Although the first goal of the MPTCP protocol design is

satisfied, the gThroughput is not optimal as the capacity of

SF-0 is not used. This is because when the transmission starts

just after establishing the connection one of the subflows

suffers from late packet arrival and cannot recover.

Fig. 4. The throughput of the MPTC and its SFs

Fig. 5. RBD [0-10] for MPTCP

2) Out-of-order performance for MPTCP with PR Solutions

In this part of our evaluations, the MPTCP is simulated

with four mechanisms proposed for single-TCP to recover

from PR using the same topology of Fig.3. Both SFs suffer

from small fluctuation in the delays (±5%). The delay of SF-0

has been set to 10ms while the delay of SF-1, the key study of

our evaluations, is increased from 10ms to 500ms in 100ms

steps. This section presents a complete analysis when the

delay of SF-1 is equal to 200ms, as a typical set of results.

Most of these PR solutions behave effectively when the delay

difference between SFs is less than 200ms. The performance

analysis of these PR solutions is compared with the baseline

evaluations presented previously.

From our observations, PR solutions increase OOO-R up to

eight-fold compared to original MPTCP shown in Table I.

OOO-R reaches 47.3% in maximum with TCP-DOOR and

40.6% on average with D-SACK. The increase of the OOO-R

indicates that the sender, with the help of a PR solution, is

able to realise the late arrival of packets and therefore rolls

back CWND to its state exactly before retransmission was

triggered and continue sending more data. The OOO-buffer

occupation increases as more packets are stored waiting for

their data-sequence to be in-order. Table II shows link

utilization for both SFs and gThroughput obtained in all

studied cases; L-Utilisation is the proportion of maximum

single-path capacity used by the respective MPTCP subflow.

The results indicate the ability of PR solutions to increase

gThroughput by also utilizing the path that suffers from large

end-to-end delay (SF-1) for all PR solutions except Eiffel. The

gThroughput improvement is less than the others and very

close to the original MPTCP specifically with FC-CC which

also requires double data transfer completion time.

TABLE I: OOO-R AND MAXIMUM OOO BUFFER SIZE OCCUPIED BY DIFFERENT

PR SOLUTIONS AND MPTCP CCS

OOO-R

(%)

OOO Buffer

(KB)

OOO-R

(%)

OOO Buffer

(KB)

OOO-R

(%)

OOO Buffer

(KB)

Packet

 Reorder

 Solution

Congestion Controller

Uncoupled Fully Coupled Coupled

5.1 1.1648

DSACK 44.2 2.296 34.5 2.128 43.1 2.128

NoPR 6.49
 1.1872 5.0 1.1648

2.128

TCP-DOOR 47.3 2.464 22.0 2.128 44.4 2.128

Eifel 27.9 1.68 9.3 1.176 37.0

0.1344F-RTO 27.1 0.3248 18.7 0.1456 21.4

6

TABLE II: MPTCP GTHROUGHPUT AND L-UTILIZATION COMPARISONS

BETWEEN DIFFERENT PR SOLUTIONS AND MPTCP CCS

We observe that DSACK is able to improve the

gThroughput of MPTCP by 60-70% against NoPR case with

all CC algorithms when the delay difference between the two

SFs is less than 200ms. Fig.6 illustrates the behaviour of

CWND using DSACK. It shows that the increasing rate of

CWND with un-CC is faster than Co-CC where the latter

forces the CWND to increase smoothly while balancing the

load between SFs.

Eifel performs worse than the other solutions, particularly

with FC-CC where the gThroughput is found to be less than

the benchmark measurements. The improvement in

gThroughput with Eifel can be achieved with un-CC but not

with the coupling methods. It can be clearly observed from

Fig.7 and Table II that the MPTCP with Eifel could not

saturate SF-1 with coupled CCs as compared to the other

solutions. On the other hand, Eifel with Co-CC can behave

better when the transmission is handled to the slower link and

its CWND get a chance to increase rapidly. In this case, the

CWND of the faster link can also send more data even with

many spurious retransmission detections. However, once the

latter link handles the transmission, its CWND will increase

quickly preventing the other link from sending more data.

Therefore, the performance of Eifel is not stable with MPTCP

protocol.

Fig. 6. CWND of MPTCP SFs with DSACK

As expected, TCP-DOOR has a significant impact on the

gThroughput and link utilization as it suspends the congestion

response for a certain time period upon detecting a spurious

retransmission. This can be clearly seen in Fig.8 that depicts

the behaviour of the CWND under TCP-DOOR. The

performance of TCP-DOOR approaches DSACK with 70%

improvement in gThroughput using both un-CC and Co-CC.

However, the DSACK outperforms others by at least 40%

with FC-CC. On the other hand, TCP-DOOR will not perform

well in a very congested network [10].

Fig.7 CWND of MPTCP SFs with Eifel

Fig. 8. CWND of MPTCP SFs with TCP-DOOR

The performance of F-RTO is worse than both DSACK and

TCP-DOOR under un-CC and Co-CC and approaches the

TCP-DOOR under FC-CC. MPTCP with F-RTO has a better

balance in data transmission split between SFs as long as no

critical congestion occurs to any of available paths. Fig.9

depicts this situation where the transmission uses both SFs,

until a critical RTO occurs and then one SF dominates. The

gThroughput
(Mbps)

gThroughput
(Mbps)

gThroughput
(Mbps)

Packet
Reorder
Solutions

58.6 0.60 90 60 0.64

68.8 0.61 96 67.7 0.87

F-RTO 100 65.6 0.72 89

50 0.50 84 84.2 0.82

TCP-DOOR 88.6 91.8 0.90 96.4

50 0.80 88 86 0.86

Eifel 40.4 94.6 0.68 94.6

3.6 0.50 96.0 3.4 0.50

DSACK 91.8 84.4 0.86 74.0

NoPR 97.0 4.2 0.50 97.0

Congestion Controller
Uncoupled Fully Coupled Coupled

L-Utilization

 (%)
SF-0 SF-1 SF-0 SF-1 SF-0 SF-1

L-Utilization
 (%)

L-Utilization
 (%)

(a) MPTCP with Un-CC

(b) MPTCP with Co-CC

(a) MPTCP with Un-CC

(b) MPTCP with FC-CC

(a) MPTCP with Un-CC

(b) MPTCP with Co-CC

7

gThroughput improvement with this solution can reach 43.1%

in maximum as presented in Table II. Fig10 summarises the

application throughput with all PRs being simulated with

MPTCP.

Fig. 9. CWND of MPTCP SFs with F-RTO

By examining the OOO-Buffer, F-RTO outperforms the

other combinations in terms of memory requirements (high

RBD for in-sequence received packets at the same time). We

notice Eifel approaches the NoPR under FC-CC where the

algorithm occupies less than 5 memory locations most of the

time with high RBD and low OOO-R, whilst both DSACK

and TCP-DOOR use more memory locations with small

densities. As F-RTO occupies less memory space (around

300KB) as compared to other PR solutions, this makes F-RTO

preferable to others in terms of memory utilization, as shown

in Fig.11 and Table II. All PR solutions under Un-CC occupy

more memory space because Un-CC method injects more data

into network without balancing loads between SFs. Due to

space limitation, RBD figures of FC-CC and un-CC are not

presented - only the RBD for all PR solutions under Co-CC

are shown as typical results. Table II presents each PR

solutions with its maximum memory space occupied by OOO

packets classified by CC of MPTCP.

Fig. 10. MPTCP gThroughput with and without PR solutions

In order to study the behaviour of MPTCP under different

networks, we fixed the end-to-end delay of one link and

change the delay of the other by increasing the difference

between them (0ms to 500s in steps of 50ms and 100ms).

Fig. 11. OOO-Buffer-RBD under Coupled-CC

The aggregate throughputs of MPTCP with all PR solutions

being simulated as a function of path delay difference are

shown in Fig.12, Fig.13, and Fig.14 under un-CC, FC-CC, and

Co-CC labels respectively. Two main observations can be

obtained from this experiment. First, all PR methods (except

Eifel) are able to substantially improve gThroughput of

MPTCP up to a value of 200ms difference for path delay

difference; Eifel has a small impact particularly with FC-CC.

Both DSACK and TCP-DOOR outperform others by

providing better application throughput as the delay variation

increases. However they need at least 2MB memory space for

OOO-buffer while the FRTO provides less application

throughput but with less memory space. Second, when the

delay difference becomes more than 200ms, all PR solutions

behave less effectively with coupling methods and the

gThroughput improvement is less than 20%.

Fig. 12. The gThroughput of MPTCP with uncoupled-CC and various packet
reorder solutions as delay variation between two subflows increases

Fig. 13. The gThroughput of MPTCP with Fully coupled-CC and various
packet reorder solutions as delay variation between two subflows increases

(a) MPTCP with FC-CC

(b) MPTCP with Co-CC

8

Fig. 14. The gThroughput of MPTCP with Coupled-CC and various packet

reorder solutions as delay variation between two subflows increases

V. CONCLUSIONS

Many different solutions have been proposed to solve the

packet reordering problem in single-path TCP. However, none

of them has been intensively evaluated in the context of

multipath protocols, neither have they been comprehensively

compared when run in conjunction with MPTCP. This paper

presents results of the performance of MPTCP with four TCP

packet reordering solutions, namely D-SACK, Eifel, TCP-

DOOR, and F-RTO, and benchmarks them against the

performance of MPTCP without any packet reordering

recovery methods. The results show that when the two

subflows have symmetrical attributes then the behavior is

much better than in the asymmetrical case.

Whilst the Coupled Congestion Control (Co-CC) algorithm

provides a robust data transmission and solves the fairness and

floppiness problems that exist with other congestion control

methods for MPTCP, the results show that the Co-CC sends

most of the data using the best path and is unable to

effectively use the others even under a small delay variation

scenario. At the same time, the results clearly show that the

packet reordering solutions bring a substantial performance

improvement for MPTCP by increasing the aggregate

throughput as well as the path utilization particularly when

delay difference between SFs is less than 200ms.

The analysis also shows that MPTCP using uncoupled

congestion control is less sensitive to path delay differences

up to 500ms, and that both TCP-DOOR and DSACK utilize

both paths effectively. MPTCP using DSACK is less sensitive

to path delay difference (up to 200ms) independently of which

CC algorithm is used. TCP-DOOR approaches the DSACK in

aggregate throughput under both Co-CC and un-CC

algorithms. MPTCP should use F-RTO as a PR solution if

memory is a constraint. MPTCP using Eifel PR solution gives

very little throughput gain even when path capacity is

available; whilst it still provides connectivity redundancy, it is

not the best choice for throughput maximization.

Whilst this study considered only lossless delay

asymmetrical links, the future work will consider how the

packet reordering will behave with MPTCP used over lossy

asymmetrical links.

ACKNOWLEDGMENT

This research is supported in part by the Public Authority

for Applied Educational and Training (PAAET), Kuwait.

REFERENCES

[1] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. “TCP Extensions

for Multipath Operation with Multiple Addresses”. RFC 6824, 2013

[2] A. Adu-Al, T. Saadawi, and M. Lee, “LS-SCTP: a bandwidth aggregation

technique for stream control transmission protocol,” Comput. Commun., vol.
27, no. 10, pp. 1012–1024, 2004.

[3] H. Hsieh.and R. Sivakumar, "pTCP: an end-to-end transport layer protocol

for striped connections," Network Protocols, 2002. Proceedings 10th IEEE
International Conference on , pp.24,33, 12-15 Nov. 2002 ”

[4] R. Stewart, Q. Xie, et al., Stream Control Transmission Protocol, RFC

2960, 2000.
[5] D. Sarkar, "A Concurrent Multipath TCP and Its Markov Model,"

Communications, 2006. ICC '06. IEEE International Conference on , vol.2,
pp.615,620, June 2006.

[6] Y. Dong, D. Wang, N. Pissinou, and J. Wang, "Multi-path load balancing

in transport layer." In Next Generation Internet Networks, 3rd EuroNGI
Conference on, pp. 135-142. IEEE, 2007.

[7] Y. Hasegawa, I. Yamaguchi, T. Hama, H. Shimonishi, and T.

Murase.“Improved ata distribution for multipath tcp communication”.Global

Telecommunications Conference, 2005.GLOBECOM'05. IEEE, vol.1,pp. 5-

pp.,IEEE, 2005
[8] D. Wischik,C. Raiciu, A. Greenhalgh, and M. Handley “Design,

implementation and evaluation of congestion control for multipath

TCP”,Proceedings of the 8th USENIX conference on Networked systems
design and implementation, pp.8-8, 2011
[9] C. Raiciu, D. Wischik, and M. Handley. "Practical congestion control for

multipath transport protocols.", University College of London, Technical

Report, 2009.
[10] K. Leung, V. Li. & D. Yang “An overview of packet reordering in

transmission control protocol (TCP): problems, solutions, and challenges”.

Parallel and Distributed Systems, IEEE Transactions on, IEEE, vol. 18, pp.
522-535,2007.

[11] S. Floyd, J. Mahdavi, M. Podolsky, and M. Mathis “An extension to the

selective acknowledgement (SACK) option for TCP”. RFC 2883, 2000.
[12] R. Ludwig, and H. Katz “The Eifel algorithm: making TCP robust

against spurious retransmissions”. ACM SIGCOMM Computer

Communication Review, ACM, vol. 30, pp.30-36, 2000.
[13] F. Wang and Y. Zhang “Improving TCP performance over mobile ad-

hoc networks with out-of-order detection and response”, Proceedings of the

3rd ACM international symposium on Mobile ad hoc networking &
computing, pp. 217-225, 2002.

[14] P. Sarolahti, M. Kojo, K. Yamamoto, and M. Hata

“Forward RTO-recovery (F-RTO): An algorithm for detecting spurious
retransmission timeouts with TCP”, RFC5682, 2009

[15] C. Raiciu, M. Handley, and D. Wischik “Coupled congestion control for
multipath transport protocols”, RFC 6356, Oct. 2011.

[16] J. Bennett, C. Partridge, and N. Shectman, “Packet reordering is not

pathological network behaviour.”, Networking, IEEE/ACM Transactions on,
IEEE,vol. 7, pp. 789-79, 1999.

[17] M. Laor & L. Gendel “The effect of packet reordering in a backbone link

on application throughput.”, Network, IEEE, vol. 16, pp. 28-36, 2002.
[18] (2012) ns-3website. [Online]. Available: http://www.nsnam.org/.

[19] B. Chihani and D. Collange, “A Multipath TCP Model for ns-3

simulator”, Workshop on ns-3 held in conjunction with SIMUTools 2011,
Spain, 2011

[20] A. Jayasumana, N. Piratla, T. Banka, A. Bare and R. Whitner, “Improved

Packet Reordering Metrics”. RFC 5236, 2008.

