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Combining Simulated and Experimental Data to
Simulate Ultrasonic Array Data From Defects

in Materials With High Structural Noise
Harry A. Bloxham, Alexander Velichko, and Paul David Wilcox

Abstract— Ultrasonic nondestructive testing inspections using
phased arrays are performed on a wide range of components and
materials. All real inspections suffer, to varying extents, from
coherent noise, including image artifacts and speckle caused by
complex geometries and grain scatter, respectively. By its nature,
this noise is not reduced by averaging; however, it degrades
the signal-to-noise ratio of defects and ultimately limits their
detectability. When evaluating the effectiveness of an inspection,
a large pool of data from samples containing a range of different
defects are important to estimate the probability of detection of
defects and to help characterize them. For a given inspection,
coherent noise is easy to measure experimentally but hard to
model realistically. Conversely, the ultrasonic response of defects
can be simulated relatively easily. This paper proposes a novel
method of simulating realistic array data by combining noise-free
simulations of defect responses with coherent noise taken from
experimental data. This removes the need for costly physical
samples with known defects to be made and allows for large
data sets to be created easily.

Index Terms— Array signal processing, copper, image fusion,
modelling, noise measurement, phased arrays, ultrasonic imag-
ing, ultrasonic transducer arrays.

I. INTRODUCTION

THE availability of ultrasonic data with accurate signal-to-
noise ratios for known defects in industrial inspections

is vital to characterize the effectiveness of the inspection.
Physical specimens in which an artificial defect has been
introduced can be made but such samples are expensive,
limiting the pool size. Furthermore, determining the true defect
size requires independent nondestructive or destructive mea-
surements, which can be both challenging and expensive. The
ability to simulate this data would allow results to be collected
for any position and size of defect only at a computational
cost. A large data pool created using this method would
allow a statistical analysis to be performed and probabilities
of detection and false call ratios for given defects to be
calculated [1].

All inspections suffer from coherent noise to varying
extents. Coherent noise is caused by both the macrogeometry
and the microgeometry of the sample. In the context of
ultrasonic array imaging, there are two main contributors to

Manuscript received September 13, 2016; accepted September 23, 2016.
Date of publication September 29, 2016; date of current version December 1,
2016. This work was supported by the U.K. Engineering and Physical Sciences
Research Council Industrial CASE Award by BAE Systems Marine Ltd., under
Grant 14220026.

The authors are with the Department of Mechanical Engineering, University
of Bristol, Bristol, BS8 1TR, U.K. (e-mail: h.bloxham.@.bristol.ac.uk).

Digital Object Identifier 10.1109/TUFFC.2016.2614492

this structural coherent noise: image artifacts and speckle.
Image artifacts can have many causes, such as mode conver-
sions at interfaces and resonances and reflections in the array
transducer itself. These cause additional signals to be received
by the array, which are represented by the areas of higher
intensity in the final image at locations where no physical
feature is present in the specimen. These artifacts are a result
of the geometry of the sample and array transducer and will,
therefore, appear the same in all samples of the same geometry
imaged with the same array.

Metals are formed of a crystalline structure made up of
many anisotropic grains with random orientations. Speckle
is caused by scattering at these grain boundaries [2]–[4] and
becomes significant when the grain size is of the order of the
wavelength being used or larger [5]. The observed speckle in
the image is a result of the superposition of the array responses
from many of these grains with spatial variations dependent on
the frequency of the ultrasonic waves. This speckle will vary
with the array position but providing the same materials and
manufacturing processes are used, the statistical distributions
of this speckle in the image will be the same [6] for all
samples. For a fixed array position, as with image artifacts,
speckle cannot be reduced by averaging.

Modeling the image artifacts accurately requires a
3-D model that accurately captures all relevant physical
processes. This is computationally challenging and practically
difficult due to the number of adjustable parameters. After
multiple reflections, any small error in geometry can lead to a
large error in the path taken by the sound wave. In addition,
any incident waves will cause mode conversions between
longitudinal and shear waves creating many more ray paths,
which need to be accounted for adding further complexity to
the simulation. Previous work has been done on the modeling
of grain scatter using both statistical [7]–[9] and finite element
techniques [10], [11], but this too requires complex models.
Measuring the coherent noise experimentally from defect-free
samples can be done with ease and such samples are relatively
cheap and usually abundant in an industrial setting. If such
experimental data can be exploited directly in simulations, it
would remove the need for complex models of coherent noise
and their inherent uncertainties. In contrast to coherent noise
simulations, the response of the defect in a noise-free sample
of the same geometry can be simulated accurately and at a
low computational cost using well-established methods [12].

This paper describes a technique based on superposition that
enables a simulated defect response to be accurately merged
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with experimentally measured noise. This is applied to full
matrix capture (FMC) data sets of phased arrays from which
any linear array imaging process can be synthesized. Here, the
total focusing method (TFM) [13], postprocessing technique,
is used. This method artificially focuses the array aperture at
every point in the imaging plane, in both transmission and
reception, to produce an image of the interior of the component
under inspection.

II. METHOD

A. Ray-Based Modeling

The technique proposed by this paper is valid for combining
the response from an experimentally measured defect-free
sample with the simulated noise-free response from a defect.
The proposed technique is independent of the method used to
simulate the defect response. In this paper, a 2-D ray-tracing
model is used for the simulation of noise-free ultrasonic data.
This 2-D model assumes array elements that are infinitely
long in the direction perpendicular to the modeling plane.
In reality, array elements have finite length and these cause
near-field effects [14], relative to the element length, that are
not accounted for in this model.

Although ray-based models are widely used [13], [15],
certain aspects require special consideration in the current
application, hence a detailed description is provided. This
method considers the propagation of ultrasound along ray
paths connecting the transmitting and receiving elements of
the array. The response for a given transmit–receive pair of
elements is the summation of the responses over all possible
ray paths connecting the two elements. Although there are
an infinite number of such ray paths, it is only necessary to
consider the paths that lead to signal arrivals within the time
frame of interest.

To determine the path each ray takes, it is first necessary
to determine if each feature of the specimen, which has
the ability to redirect a wave is spatially large or small
relative to the ultrasonic wavelength. Large uniform features,
referred to as reflectors, such as the back wall of a sample,
appear infinitely large to the incoming wave packet and the
angles of incidence and reflection must satisfy Snell’s law.
At smaller features, referred to as scatterers, diffraction
becomes significant and rays must be considered to scatter at
any angle. For the purposes of determining the ray paths, each
element of the array is considered a point source or receiver
and with sensitivity in all the directions. Materials are assumed
to be homogeneous on a macroscale and, therefore, each ray
path is constructed solely of straight lines. In reality, many
materials, which exhibit high structural noise, show some
inhomogeneity at a microscale, this causes phase aberrations
for any propagating wave front. However, when averaged over
many grains, the results were found to be consistent with those
calculated assuming a homogeneous material (less than 1-dB
error in image). The ray paths considered in this paper are
shown in Fig. 1. Mode conversions between longitudinal and
shear waves are not considered, because these generally arrive
later than the longitudinal wave signals used to form the image,
although these can be included if desired.

Fig. 1. Direct ray paths, a and b, and secondary ray paths, c, d, and e, in
a sample with a scatterer located at P where element T x is transmitting and
element Rx receiving.

The response from the scatterer and the back wall is
obtained using rays a and b while rays c, d , and e are used
to calculate any shadowing effects the scatterer has on the
back wall. Shadowing occurs due to interference between the
scattered signals on paths c, d , and e with the directly reflected
signal from the back wall on path a. In an image, this results in
an area of relatively low intensity along the back wall, typically
directly behind the scatterer.

B. Calculating the Ultrasonic Response

The propagation of ultrasound can be modeled in both the
time and frequency domains. However, as many interactions
are frequency-dependent, calculations are more easily per-
formed in the frequency domain, hence that is the domain used
in this model. Once the path of each ray is known, its contribu-
tion to the total response can be calculated using the following
parameters: the frequency spectrum of the input signal, F0(ω);
the scattering matrix [16] of the reflector, S(φt , φr , ω), which
is dependent on the angles of the incident and scattered
rays, φt and φr , respectively; the angular frequency of the
signal, ω; and the reflection coefficient of the back wall. For
simple defects (e.g., holes and straight cracks), analytical or
semianalytical solutions for the scattering matrix exist [12],
[17], [18], however, for more complex defects, it must be
calculated using numerical methods [19], [20]. For the back
wall and other planar reflectors, the amplitude is described by
an angle-dependent reflection coefficient, where the angles are
defined by Snell’s law.

The response from each ray path shown in Fig. 1 must
be considered separately, the general technique is given for
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ray path a and any modifications required are given for the
remaining paths.

1) Ray Path a: The ray-tracing method assumes each ele-
ment is a point source, and a directivity function, D(φ, ω),
is used to account for the variation of the ability of each
element to transmit and receive at different angles relative to
its normal. The exact solution for the directivity of longitudinal
and shear waves due to a line source is given by Miller and
Pursey [21]. However, for longitudinal waves, cos φ provides
a reasonable approximation. A sinc term is included as the
result of integration over the width of a finite-sized element.
The resulting function is

D(φ, ω) ≈ sinc
πa sin φ

λ
cos φ (1)

where a is the element width, φ is the angle between the ray
and the normal of the element, and λ is the wavelength.

Both the geometric attenuation caused by the beam spread-
ing as the wave propagates and attenuation caused by grain
scatter and other losses in the material must also be accounted
for. The geometric attenuation Aa

g for a planar interface is
calculated using

Aa
g =

√
1

Rt + Rr
(2)

where Rt and Rr are the distances from the transmission and
reception elements to the back wall, respectively. If the array
and back wall are parallel, these two distances will be equal.
The attenuation due to grain scatter and any other dissipation
mechanisms As(ω) is calculated using

As(ω) = e−αR (3)

where α is the frequency-dependent attenuation coefficient and
R is the total propagation distance.

The phase change due to wave propagation T (ω) is
accounted for by the following factor:

T (ω) = e−ik R (4)

where k is the wavenumber.
The loss in amplitude due to a reflection (reflection

coefficient) from a planar surface (e.g., back wall) for a
solid-vacuum interface is given by [22]

Cr (φi ) =
cos2(2φs) − c2

s

c2
l

sin(2φs) sin(2φi )

cos2(2φs) + c2
s

c2
l

sin(2φs) sin(2φi )
(5)

where φi is the angle of incidence at the back wall relative
to its normal, φs is the angle of the reflected shear wave
calculated using Snell’s law, and cs and cl are the shear and
longitudinal speeds of sound, respectively.

Using the above parameters, the response, in the frequency
domain, due to the input signal propagating along ray path a,
can be calculated. There are a number of factors common for
all of the ray paths, these are

Fcom(ω) = F0(ω)D(φt , ω)D(φr , ω)As(ω)T (ω) (6)

and the response from ray path a is calculated using

Fa(ω) = Fcom(ω)Cr (φt , φr , ω)Aa
g. (7)

2) Ray Path b: Ray path b is the direct reflection of the
defect, and this is calculated in a similar manner to ray path a.
However, the scattering matrix for the defect S(φt , φr , ω),
where φt is the angle of the ray leaving the transmitter and φr

is the angle of the ray received by the reception element, is
used instead of the reflection coefficient.

The geometric attenuation is also calculated differently for
a scatterer. It is given by

Ab
g =

√
1

Rt Rr
. (8)

The response due to this ray path is then given by

Fb(ω) = Fcom(ω)S(φt , φr , ω)Ab
g. (9)

3) Ray Paths c and d: Ray paths c and d contain reflections
from both a planar interface and a scatterer, therefore, both a
reflection coefficient and a scattering matrix are required. The
geometric attenuation is defined as in (8) but where Rt is equal
to the total ray path length before the scatterer and Rr is the
total length after the scatterer.

The response of these ray paths is given by

Fc(ω) = Fcom(ω)Cr (φ)S(φrs, φr , ω)Ab
g (10)

Fd (ω) = Fcom(ω)Cr (φ)S(φt , φts, ω)Ab
g (11)

where φrs is the angle of incident at the scatterer and φts is
the angle of reflection at the scatterer.

4) Ray Path e: Ray path e interacts with the scat-
terer twice, therefore, two pairs of incident and reflected
angles are required. S1(φt , φbw, ω) is the first interaction and
S2(φbw, φr , ω) the second. The angle of incidence at the back
wall will always be equal to the back wall normal for this path
and defined as φbw, for this case, the reflection coefficient can
be approximated as −1, when the back wall is coupled to air.
Ag also requires special attention for this path and is defined
as follows:

Ae
g =

√
1

Rt Rs Rr
(12)

where Rt is the ray path length between the transmitter and the
scatterer, Rs is the ray path length between the first and second
interactions with the scatterer (equal to twice the distance
between the scattered and the back wall), and Rr is the path
length between the scatterer and receiving element.

The response due to the wave propagating along this path
is calculated using

Fe(ω) = −Fcom(ω)S1(φt , φbw, ω)S2(φbw, φr , ω)Ae
g. (13)

The total response for a given transmit–receive pair of
elements is then calculated as the sum of the above ray paths

F(ω) = Fa(ω) + Fb(ω) + Fc(ω) + Fd (ω) + Fe(ω). (14)

This process can then be repeated for all pairs of elements
to create an FMC data set. An inverse Fourier transform is
then applied to return the data to the time domain

f (t) = 1

2π

∫ ∞

−∞
F(ω)eiωt dω (15)

where f (t) is the FMC data in the time domain.
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Fig. 2. Schematic of the experimental setup used to calculate F0 and α. The
shaded area represents material 1 (water) and the specimen, material 2.

5) Experimental Measurements: It is assumed that the geo-
metric parameters of the array, test sample, and nominal defect
are known accurately. This then allows S, D, Ag , T , and
φ to be calculated, however, F0 and α must be determined
experimentally. It is possible to measure both of these from
a single inspection: an immersion scan of a defect-free plate
of known thickness and of the relevant material, as shown
in Fig. 2.

Averaging the response of all transmit–receive element pairs
is equivalent to using the array as a large unfocused monolithic
transducer, whose beam can be assumed to be collimated over
the time range of interest. This means that any effects due to
beam spreading are negligible. This mean ū is calculated as
follows:

ū(t) = 1

n2

n∑
p=1

n∑
q=1

upq(t) (16)

where upq is the signal received, when the pth element is used
in transmission and the qth is used in reception and n is the
number of elements. By multiplying this by an appropriate
Tukey windowing function [23], the front wall and back wall
reflections from the test piece can be extracted. The general
form of the Tukey function is given by

wt (t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t < ts
1 + cos

( 2π
r

[
t − ts − tp

r
2

])
2

, ts ≤ t < ts + tp
r

2
1, ts + tp

r

2
≤ t < te − tp

r

2
1 + cos

( 2π
r

[
t − te + tp

r
2

])
2

, te − tp
r

2
≤ t ≤ te

0, t > te
(17)

where ts and te are the start and end times of the signal
of interest, respectively. The windowing function used to
extract the front wall signal w f w(ω) is calculated by setting

ts = t1 = (a1/c1), where a1 is the depth of water between the
array and the test specimen, c1 is the speed of sound in water,
and te = t1 + tp , where tp is the length of time of the input
pulse plus a nominal amount discussed later.

This Tukey window, with parameter r , is equal to unity
during the signal of interest and is tapered by a cosine wave at
the extremes of this region. The length of each taper is defined
as (r/2) multiplied by the length of the region of interest.
For this paper, a value of 0.25 was used for r . Due to there
being a time delay between time t = 0 and the input pulse
being emitted, the start of the input signal will occur sometime
after ts . It is important to choose a value of r , such that the
true start of the input signal begins after time ts + tp(r/2)
so that the shape of the input signal is not affected by the
windowing function. Because of this delay introduced by the
array controller, tp must be increased by a minimum of an
amount equal to this delay plus the length of one taper in the
windowing function. This is to ensure that the Tukey window
is equal to one over the whole length of the input signal and
the tapers are only applied to noise to ensure a zero amplitude
start and end to the signal. Similarly, the back wall windowing
function, wbw(t), is calculated by setting ts = t1 + t2 and
te = t1 + t2 + tp , where t2 = (a2/c2), and a2 is the thickness
of the specimen and c2 is the speed of sound in the specimen.

Using a Fourier transform, the relevant windowed signal can
be converted into the frequency domain. These are defined as
F1(ω) for the front wall and F2(ω) for the back wall and are
calculated using

F1(ω) =
∫ ∞

−∞
ū(t)w f w(t)eiωt dt

= F0(ω)e−2a1α1(ω) R12 (18)

F2(ω) =
∫ ∞

−∞
ū(t)wbw(t)eiωt dt

= F0(ω)e−2a1α1(ω)T12e−2a2α2(ω) R23T21 (19)

where α1(ω) is the attenuation coefficient in water and α2(ω)
is the attenuation coefficient in the specimen. R12 and T12
are the reflection and transmission coefficients [22] traveling
from material 1 to material 2, respectively, where material 1 is
on the array side of the sample, material 2 is the sample, and
material 3 is on the far side of the sample. For most immersion
tests, materials 1 and 3 will be identical, however, for cases,
such as in situ pipes they may differ.

By comparing the frequency spectra of these two signals,
it is possible to calculate the attenuation coefficient α(ω)

α(ω) = − ln

∣∣∣∣ F2(ω)

F1(ω)

R12

T12 R23T21

∣∣∣∣ 1

2a2
. (20)

In practice, noise in F1(ω) and F2(ω) prevents accurate
calculations of α(ω) at the extremes of the bandwidth of
the input signal. For this reason, (20) is applied over the
−6-dB bandwidth of the transducer and cubic extrapolation
is used to obtain attenuation values for the full bandwidth of
the transducer.

Once α(ω) is known, it is then possible to calculate the input
signal, F0(ω). To remove any effect coupling has on the input
signal, it is best to extract the input signal directly from the
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Fig. 3. (c) Superposition of (a) noise-free simulated defect and shadowing
effects with (b) experimentally measured back wall.

experimental defect-free data set to which the defect response
will be combined, as described in Section II-C. However, this
requires the data to contain a strong signal from a flat back
wall. If this data set is not suitable, it is possible to extract
it from an alternative defect-free inspection of the same type
(i.e., contact, immersion, and so on) and material.

Described below is the technique to calculate the input
signal from a contact inspection of a sample with a large
back wall parallel to the array. First, the mean of the pulse-
echo signals ūpe(t) is calculated and a windowing function is
applied

ūpe(t) = wbw(t)
1

n

n∑
j=1

u j j (t) (21)

where wbw(t) is calculated using (17), as it is a contact
inspection, t0 = 0, therefore, ts and te are equal to t1 and
t1 + tp , respectively. This signal is then shifted on the time
axis so that the first nonzero value of the windowing function
occurs at t = 0. The input signal is then calculated by
correcting for attenuation using the following equation:

F0(ω) = Ūpe(ω)

As(ω)Ag
(22)

where Ūpe(ω) is the frequency spectrum of ūpe(t) and As(ω)
and Ag are calculated using (3) and (2), respectively. This
procedure of back propagating a measured back wall signal
using the inverse of the process used in the forward model
guarantees agreement between simulated and measured back
wall signals. This agreement is crucial for the success of the
technique described by this paper.

C. Combining Simulated and Experimental Data

This paper proposes a novel method of simulating data of
defects in high structural noise samples. The superposition
of a defect-free experimental data set and a simulated defect
including any relevant shadowing effects (ray paths b, c, d ,
and e) will result in a data set, which is equivalent to the defect
being present in the sample. This is shown schematically
in Fig. 3.

Assuming there are negligible errors in phase and amplitude
between the experimental back wall and simulated defect data,
a simple summation of these two sets of signals will provide a
superposition that is equivalent to the defect being present in
the noisy experimental data. The back wall shadowing effects
occur due to the signal produced by the model interfering
destructively with the back wall signal. The nature of this
interference means that this superposition is very sensitive to
any relative error in phase between the simulated signals and

the experimental data. The data used in this paper are sampled
at 50 MHz, at this frequency, a relative time error of 1 time
step between the simulated and experimental data is equal
to approximately a 24° phase error. For the defect, an error
of this size would result in a position error in the image of
approximately 0.1 mm, smaller than one pixel in the images
seen in Fig. 5 and can be considered negligible. However, for
the back wall, this same error results in an amplitude change
of the order of 6 dB, for the defect shown in Fig. 5(a), at the
area of the back wall most affected by shadowing. To achieve
this negligible error in phase, it is important that the speed
of sound and specimen thickness used to calculate wbw(t)
in (21) is known precisely for the conditions in which the
experimental results were obtained. This is so that the back
wall signal can be back propagated accurately to time t = 0
to be used as the input signal. The most significant source of
amplitude errors in the simulation is due to errors in α(ω),
the accurate measurement of which is notoriously difficult.
However, as the experimental signal is back propagated to get
the input signal, then forward propagated using the same α(ω),
the errors associated with α(ω) will be proportional to the
difference in length between the ray path in question and the
pulse-echo back wall ray path. This means that the closer
to the back wall the defect is, the more accurate the model
will be. Defects in close proximity to the back wall generally
cause the largest levels of shadowing and due to this will
require a more precise model to simulate accurately. This
method ensures that the errors are minimized for the defect
and shadowing effects that are hardest to reproduce.

III. RESULTS

A. Validation of the Model

To validate this method, a comparison was made between
simulated and experimental results for the case of side-drilled
holes and back walls in a copper sample. The scattering
matrix for the side-drilled hole was calculated using the exact,
analytical solution given by [17]. Ultrasonic attenuation in
copper has been studied extensively [24] and it was chosen
as a suitable material for this research. By varying the array
center frequency between 2.5 and 8 MHz, the attenuation and
speckle vary from relatively little (14-dB drop in 6-cm-thick
sample) to almost complete attenuation (220-dB drop in same
sample) in the sample used, this allows for the level of image
speckle to be chosen using a single sample by changing the
array or filter frequency.

A stepped sample was made with back walls located at
depths of 20, 40, 60, and 65 mm and 1.5-mm-diameter side-
drilled holes at depths of 5, 20, 40, and 60 mm over back walls
65 mm deep. Using a 64 element, 2.5-MHz array, an immer-
sion test of the 20-mm back wall was used to calculate α(ω),
and F0(ω) was calculated from a contact inspection of the
65-mm-deep back wall. This array was then used to image
the back walls and defects, and the amplitudes of these were
compared with the equivalent simulated results. The amplitude
values quoted below were calculated by taking the maximum
amplitude of a TFM image at the back wall or defect.
The values for the defects are normalized to a 65-mm-deep
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Fig. 4. Amplitude drop for experimental and simulated back walls and holes.

back wall, which is present in all of the images. As there
is no constant feature in the back wall images to normalize
from, the absolute amplitudes are normalized to the 60-mm-
deep back wall. As the model back propagates the input signal
from an experimentally measured 65-mm-deep back wall, the
specific reflector can be assumed to be correct in the model
regardless of any inaccuracies present in the simulation so is,
therefore, an ideal reflector to use as a reference to normalize
from.

Fig. 4 shows how the predicted image amplitude of a
scatterer (side-drilled hole) and planar reflector (back wall)
vary with respect to their depths in a simulated test sample.
In addition, shown on the figure are experimentally measured
scatterer amplitudes (obtained from samples containing actual
side-drilled holes at various depths) and planar reflector ampli-
tudes (obtained from the back walls of the samples of different
thicknesses). It can be seen that the model, using α(ω)
calculated, as described in Section II-B5, accurately predicts
the image amplitudes of both planar reflectors (modeled using
only ray path a) and scatterers (modeled using only ray path b)
at depths greater than 40 mm. At depths of 20 mm and
below, the limitations of this 2-D model can be seen as the
experimental results diverge from the simulated amplitudes.
These results show that the 2-D model used is sufficiently
accurate at propagation distances equivalent to a depth of
40 mm and greater in copper. Therefore, these depths were
used for further analysis of the model.

The effectiveness of this technique at simulating realistic
images of defects using the method described in Section II-C
was also investigated. Fig. 5 shows a comparison between
experimental and simulated images of a defect. The simulated
image was created by combining an experimental back wall
data set with simulated defect data. This was done for two
different depths of the defect and a very good visual agreement
can be seen between the purely experimental data and the
combined data sets both in terms of the amplitude and size of
the defect in the image and back wall shadowing effects.

Figs. 6 and 7 show the image amplitudes for horizontal cross
sections taken at the center of the defect [Figs. 6(a) and 7(a)]
and at the center of the back wall [Figs. 6(b) and 7(b)] for
the inspections, as shown in Fig. 5. A single experimental

Fig. 5. TFM images for a 1.5-mm (1.06λ) diameter hole located (a) and
(b) 5 mm from the back wall and (c) and (d) 25 mm from the back wall.
(a) and (c) use combined data sets, while (b) and (d) are the experimental
results. The array used has a nominal center frequency of 2.5 MHz and has
been filtered at a frequency of 3.25 with a half bandwidth of 1.75 MHz.
The imaging plane is 50 mm × 75 mm.

result is shown and compared with a range of results from
the model, each with a different realization of coherent noise.
These results quantify the visual similarities seen in Fig. 5
and it can be seen that the defect shape and amplitude are
accurately modeled.

Each image is normalized to the point of maximum ampli-
tude in that image. The absolute amplitude of this point is
subject to variations due to noise, as this point is always
equal to 0 dB in the image, these variations have the effect
of changing the amplitude at every other point in the image
by an equal amount, on a linear scale. This effect is best
seen in Fig. 7(a). This shows a very good agreement for
the defect shape between approximately x-positions −2 and
2 mm (outside of this range the response is dominated by
noise, so large variations are expected) and identical maxi-
mum amplitudes of 0 dB as, for this case, the rest of the
image is normalized to the center of this defect. The model
results for the back wall amplitudes shown in Fig. 7(b) show
significant variation, this is due to the compounded effects of
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Fig. 6. Image amplitude cross sections of a 1.5-mm (1.06λ) diameter hole
located 5 mm from the back wall and 60 mm from the array. (a) At the depth
of the hole. (b) At the depth of the back wall. Experimental measurements
from a sample containing a physical hole are shown in black and results from
multiple defect-free experimental measurements combined with modeled data
from a hole are shown in gray.

Fig. 7. Image amplitude cross sections of a 1.5-mm (1.06λ) diameter hole
located 25 mm from the back wall and 40 mm from the array. (a) At the depth
of the hole. (b) At the depth of the back wall. Experimental measurements
from a sample containing a physical hole are shown in black and results from
multiple defect-free experimental measurements combined with modeled data
from a hole are shown in gray.

the noise associated with the point of maximum amplitude
(uniform linear shift for whole back wall) and noise local to
the back wall (different for each point in the image). The
experimental result shown in the same figure has a similar
shape and amplitude within the range of those predicted by
the model, suggesting that the model provides realistic results.

The images used for the data shown in Fig. 6 are normalized
to a point on the back wall. This causes a shift in amplitude

at the defect in addition to its localized noise, which is
seen in Fig. 6(a). There are large variations seen in the
back wall amplitude at the center of the image where the
shadowing effects occur. This is likely due to the sensitivity of
interference between the back wall and its shadowing effects,
on which noise may have an effect more significant than would
be expected at any other point in the image.

B. Statistical Studies

The potential of this technique applied to the statistical
analysis of an inspection is demonstrated here. The example
used is a study to determine which orientations of a fixed size
crack at a fixed location are detectable for the given inspection.
A similar process can be applied for any study requiring a large
pool of defect data.

The ultrasonic response from a 1-mm crack with its center
located 5 mm from the back wall in a copper specimen 65 mm
deep was simulated with the crack inclined at various angles
from horizontal from 0° to 90°. The scattering matrix for
the crack was calculated using the semianalytical method,
developed in [25], which is based on the boundary integral
equation method. These results were then combined with
20 independent defect-free experimental data sets to provide
the data on which this statistical study is based. As the crack
rotates from horizontal, its amplitude in the image decreases.
At a certain angle, the amplitude drops below the level of the
image noise and becomes indistinguishable from the speckle,
this can be seen to occur between Fig. 8(c) and (d).

A threshold amplitude of the rms noise +12 dB was chosen
to determine if any point in the image is a defect. The choice
of this threshold is arbitrary and depends on external factors
for a particular inspection, which typically involve balancing
the costs of false positives (false calls) with detection sen-
sitivity. The effect of the threshold on false call rate can
be estimated, if the image grain noise is assumed to have
a Rayleigh distribution (the expected amplitude distribution
for fully developed speckle) and to have a spatial correlation
length of one wavelength (1.4 mm) then a threshold 12 dB
above the rms level is expected to result in a 0.46% false call
rate per image of the size, as shown in Fig. 5. Fig. 9 shows how
this threshold level compares with the image amplitude for the
crack at a range of angles. The minimum defect amplitude was
calculated at a 97.5% confidence level, using this, it can be
seen that this defect falls under the threshold value at a crack
angle of greater than 40°.

A maximum detectable crack angle of 40° covers only
44.4% of possible orientations. Assuming real life cracks are
randomly oriented, this paper shows that using only the image
amplitude to identify the defect will result in the majority
of 1-mm cracks not being detected at the 97.5% confidence
level. However, by analyzing the back wall amplitude, it can
be seen that shadowing effects cause a statistically significant
amplitude drop for the full range of crack angles, these
results can be seen in Fig. 10. Studies such as these could
be used to better understand the detectability of a variety of
defects for any given inspection and requires only defect-free
experimental results.
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Fig. 8. TFM images for a 1-mm (0.71λ) crack located 5 mm from the back
wall of a 65-mm-deep specimen inclined at (a) 0°, (b) 18°, (c) 36°, (d) 54°,
(e) 72°, and (f) 90° anticlockwise from horizontal with a crack angle schematic
inset. The same array and filter as Fig. 5 has been used.

Fig. 9. Defect image amplitude versus crack angle for a 1-mm crack located
5 mm from the back wall of a 65-mm-deep copper sample.

IV. CONCLUSION

It had been shown that the proposed technique for combin-
ing a simulated defect response with experimentally measured
structural noise is capable of producing realistic images of

Fig. 10. Back wall image amplitude versus crack angle for a 1-mm crack
located 5 mm from the back wall of a 65-mm-deep copper sample. The
minimum defect-free back wall amplitude is calculated at a 99.9% confidence
level and the maximum back wall amplitude is calculated at the 97.5%
confidence level.

an inspection, as seen in Fig. 5. Figs. 6 and 7 show that
these images have accurate amplitudes for both defects and
back walls, including shadowing effects. Some accuracy is
lost at the point of maximum shadowing when the total
shadowing effects are large. However, these shadowing effects
are primarily useful to study when the defect is on, or past, the
limit of detectability. In such cases, the shadowing effects will
generally be lower and the model will provide more accurate
results. Inspections with large shadowing effects have been
included in this paper to show that all of the dominant physical
processes are accounted for in the model.

This technique has only been validated for a single defect
type and only at two depths; however, Fig. 4 shows that the
model is capable of accurately predicting amplitudes for both
back walls and holes at a range of depths. In addition, as
this method calculates the defect response using a scattering
matrix, it can be assumed to be valid for any defect if the
scattering matrix being used has been independently validated.

Section III-B describes an example of how this technique
may be used to find the limits of defect detectability of
an inspection. Similar methods could be utilized to study
the effectiveness of any inspection, which would traditionally
require a large pool of experimentally obtained defect data.
Such a pool would be costly to create due to the difficulty
of introducing defects to the samples in a controlled manner.
The methods discussed in this paper allow for extremely large
pools of defect data in noisy samples to be created using only
defect-free experimental data, which can be obtained cheaply.
In addition, one set of defect-free data can be combined with
an unlimited number of simulated defect types and positions
rather than a new set of samples and experimental results be
collected for each new defect analyzed.
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