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Abstract
Epigenome-wide association studies represent one means of applying genome-wide

assays to identify molecular events that could be associated with human phenotypes. The

epigenome is especially intriguing as a target for study, as epigenetic regulatory processes

are, by definition, heritable from parent to daughter cells and are found to have transcrip-

tional regulatory properties. As such, the epigenome is an attractive candidate for mediating

long-term responses to cellular stimuli, such as environmental effects modifying disease

risk. Such epigenomic studies represent a broader category of disease -omics, which suffer

from multiple problems in design and execution that severely limit their interpretability. Here

we define many of the problems with current epigenomic studies and propose solutions that

can be applied to allow this and other disease -omics studies to achieve their potential for

generating valuable insights.

The Epigenome-wide Association Study (EWAS)
“Epigenetic” processes have been defined in numerous ways: one example from Adrian Bird in
2007 uses the broad description “the structural adaptation of chromosomal regions so as to reg-
ister, signal, or perpetuate altered activity states” [1]. Such activity states, when read out as tran-
scription of genes, represent candidates for mediating between environmental, genetic, or
stochastic factors and downstream phenotypes of the organism [2]. In theory, any perturbation
of cellular homeostasis could be propagated through epigenetic mechanisms to cause a long-
lasting phenotypic effect, especially if the perturbed cells are self-renewing stem/progenitor
cells or long-lived, terminally differentiated cells. This logic has prompted an increasing num-
ber of studies [3] testing whether changes in patterns of epigenetic marks, almost always
focused on DNA methylation, characterize individuals with a phenotype compared with con-
trol subjects. DNA methylation (5-methylcytosine [4]) is a covalent modification to DNA that
can be faithfully propagated to daughter cells [5] and can exert transcriptional regulatory influ-
ences [6] and, therefore, has the necessary properties to mediate long-lasting perturbations of
cellular states. When a pattern of changes of DNAmethylation is found to occur repeatedly at
specific loci, discriminating the phenotypically affected cases from control individuals, this is
regarded as an indication that epigenetic perturbation has taken place that is associated, possi-
bly causally, with the phenotype. This approach is described as an epigenome-wide association
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study (EWAS) [7], and takes its cue from the association of genetic variability with phenotypes
in genome-wide association studies (GWAS).

The EWAS as an Exemplar of Study Designs Problems in Disease
-omics
The EWAS is representative of a number of high throughput molecular assays being used for
associations with phenotypes of the organism (disease -omics) and is illustrative of some com-
mon problems with these approaches, as has been previously noted [7–9]. Epigenetic patterns
may change during the lifetime of an individual [10,11]; therefore, epigenetic measurements
represent part of the phenotype of the individual, akin to height or blood pressure.

In contrast, genetic measurements have two key properties. The first is that the vast majority
of genetic loci stay constant over an individual’s lifetime (unless somatic mutations occur, as in
cancer cells). This means that any observed association of genotype with phenotype cannot be
attributed to phenotype-associated events changing the genotype. The second feature is that
genetic variants can be assumed to be appropriately randomly assigned with respect to the
characteristics of individuals [12]. When they are not randomly assigned, the strong signal of
non-randomness across the entire genome is often identified as population stratification, ame-
nable to correction using robust statistical techniques.

Any two measurements (physical or molecular characteristics) may be correlated within a
population of people; the role of the epidemiologist is to ascertain why a particular correlation
exists between two measurements. The first need is to get rid of spurious associations, includ-
ing biased ascertainment when collecting the case and control individuals studied, the hidden
presence of common factors underlying a supposed exposure, and the disease (a confounding
effect) and reverse causation (in which the disease process influences the supposedly causal
process, not the other way around [13–15]), see Box 1. The constancy and random assignment
of genetic characteristics allow the case/control study design to succeed, permitting results to
be interpreted as causal. In contrast, epigenetic measurements have all the same dangers as any
other phenotypic measurement in a case/control design, including ascertainment issues and
reverse causation effects.

Problems Interpreting EWAS Results
In parallel to these epidemiological issues, there is a further layer of complexity in the interpre-
tation of the results of the epigenomic assays. We now appreciate that reported DNA methyla-
tion differences between individuals may reflect something other than epigenetic changes in a
specific cell type. One major focus has been on the potential for cell subtype proportional het-
erogeneity to influence the DNAmethylation patterns observed in pools of cells. This was
highlighted by Houseman and colleagues in a study showing that altering the proportions of
purified cells in a mixture generates different DNAmethylation profiles, reflecting the distinc-
tive DNA methylation patterns of each cell type present [16]. It was subsequently shown that
cell subtype effects accounted for a major proportion of the epigenetic changes associated with
ageing in a re-analysis of five studies of peripheral blood leukocytes [17]. These findings of the
influence of cell subtype heterogeneity prompted the development of new analytical
approaches to account for this effect [16,18]. Even when cells are “purified” using cell surface
markers, we find evidence for further cell subtypes with distinctive DNAmethylation patterns
[19]. It is, therefore, likely that even when using purification techniques, a pool of cells is com-
posed of multiple epigenomes, generating what we refer to as a “meta-epigenome” [19].

Even after the most careful attempts to address the influence of cell subcomposition [20] or
when histologically homogeneous cells are studied [21], the outcome of the EWAS generally
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identifies only modest changes in DNA methylation. As DNA methylation genome-wide is
very bimodal, with the majority of loci in a diploid organism methylated on neither (0%) or
both (100%) of the alleles present, a change of DNA methylation of, for example, 20% has to
represent a changed proportion of alleles with the DNAmethylation mark, in turn indicating a
cellular mosaicism for the epigenetic changes associated with the phenotype. With the

Box 1. Chance, Bias, and Confounding in Observational Studies

Observational studies can suffer from a wide range of problems that lead to their findings
being potentially misleading. We focus on biases that generate apparent associations that
do not, in fact, exist in the population studied (“spurious associations”) and associations
that are misleading indicators of underlying causal relationships.

Spurious associations

Chance false positives and publication bias: When a large number of associations can be
examined within a dataset, it is inevitable that, by chance, some will appear to have rea-
sonable statistical evidence attached to them. This leads to the phenomenon of multiple
testing linked to publication bias, the tendency of “statistically significant” findings being
preferentially published, increasing the chances of false positive results ending up in the
literature. This sequence of events is a contributory factor for the very poor replication
record for published candidate gene studies, whereas in the GWAS era, robust methods
were applied to correct for multiple testing.

Ascertainment and other selection biases: The ascertainment of cases of disease in
case-control studies can lead to a non-random proportion of all possible cases being
included in a study, with factors related to ascertainment appearing to be risk factors for
the disease, even though they are not associated with the disease within the source popu-
lation. Other forms of selection bias can lead to the same situation.

Reliable but non-causal associations

Confounding: An underlying factor can influence both the studied exposure and the
apparent outcome, generating a non-causal but reliably observed association. For exam-
ple, the oft-used example of the confounded association between yellow fingers and lung
cancer—both caused by cigarette smoking—would lead to a real, but non-causal associa-
tion between the two. Due to inevitable measurement error in characterizing the con-
founding factor, and the likelihood that there are unmeasured confounders,
conventional statistical adjustment approaches have a well-documented limited ability to
remove confounding adequately in observational studies.

Reverse causation: A special case of confounding is when the disease process influ-
ences the exposure, rather than vice versa. This can occur well before the disease becomes
evident, thus prospective studies with assessment of risk factors before the observed
development of disease are not immune to this problem.

While spurious associations always need to be avoided, reliable but non-causal associ-
ations can still be useful as predictive, prognostic, or diagnostic indicators. For example,
if cellular heterogeneity in the tissue studied contributes to the age-prediction utility of
DNA methylation data [17], removing the cell subtype influences analytically would be
counterproductive for the use of DNAmethylation as a biomarker in this case.
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development of single-cell techniques to study DNA methylation [22,23], these mosaic events
will be able to be confirmed experimentally. The small degree of change represents the stron-
gest current justification for DNA methylation to be used as the primary molecular assay in
EWAS, as other assays (such as those based on chromatin immunoprecipitation) have only
rarely been demonstrated to have the quantitative capacity required to detect events occurring
in only a subset of alleles tested [24]. From a practical perspective, it is also more challenging to
collect samples for chromatin-based assays from human subjects, another reason for gravitat-
ing to the study of DNAmethylation.

Similar limited degrees of change of DNA methylation are also appreciated to result from
transcription through a genomic region [25,26]. A change in DNAmethylation in a region that
is polymorphically transcribed between individuals may, therefore, generate DNA methylation
changes that are due to (and not causative of) the transcriptional changes. Of even greater con-
cern is the influence of DNA sequence polymorphism. This influence appears to be very pow-
erful, estimated to account for 22% to 80% of the variability (degree of change or proportion of
loci) in DNAmethylation between individuals [27–29]. In germline genetic studies, the com-
plications due to variability of ancestry can be addressed through population stratification
approaches and knowledge of linkage disequilibrium patterns, but no comparable strategies
exist for epigenomic studies. The degree of change of DNA methylation associated with
sequence polymorphism is limited, again indicating a mosaic cellular response to this
influence.

As EWAS have generally been only rarely performed with concurrent genotyping of the
same individuals [21,30] or transcriptional studies of the same cells [29], we have no way of
knowing whether the positive results of EWAS to date are testing the starting hypothesis that
genuine epigenetic changes occur within a subset of cells in the population. Instead, the results
may be due to residual meta-epigenomic effects of cell subtypes or attributable to untested
influences of genomic or transcriptomic variability. This being the case, and with similar cave-
ats affecting transcriptomic studies, no EWAS to date can be said to be fully interpretable.

How to Strengthen EWAS and Other Disease -omics Study Designs
The key to improving the interpretability of epigenetic studies is their optimal planning at the
outset. We illustrate some of the issues involved in designing and executing these studies in Fig
1, such as the cellular hypothesis being tested and the cohorts that could be compared. While
different study designs will suit different questions, it is unfortunate that the easiest study
design to execute, the cross-sectional case/control approach, is generally a suboptimal choice.
This is due in part to the ascertainment issues referred to earlier and in part the possibility of
reverse causation, in which the epigenomes of cells tested are influenced by (rather than part of
the causal process leading to) the disease, as shown recently in a study of body mass index [31].
It is important to stress that this lack of interpretability cannot be fixed with increased sample
size or choice of cell type; it is inherent to the design of the study.

A longitudinal design is advantageous for both biomarker and mechanistic insights. Longi-
tudinal sampling of cells from an individual allowing studies prior and subsequent to disease
onset allows the identification of the epigenetic changes that precede the development of the
overt phenotype. This design overcomes some of the concerns raised earlier but, obviously,
requires the foresight to capture informative samples from individuals who go on to develop
diseases. While this seems like a major challenge, it should be recognized that epidemiologists
have been developing and managing cohorts with this in mind for many decades. Banked bio-
logical material is most likely to be blood, allowing opportunities for studying the wide range of
phenotypes mediated by leukocytes. In addition, one might be able to see changes in white
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Fig 1. An overview of considerations in designing and interpreting epigenome-wide association studies
(EWAS). In (a) we explicitly define the cellular hypothesis being tested in EWAS: that there are changes in
epigenetic mediators of transcriptional regulation (denoted by gains or losses of methyl groups) that
distinguishes a canonical cell type in individuals with a phenotype (green) from those without the phenotype
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blood cell epigenetic profiles as potential markers of exposures or predictors of disease risk or
prognosis. If the epigenetic measurement is robust as a biomarker, it does not matter whether
this is due to epigenetic modifications in the cells tested or reflective of cell subtype, transcrip-
tional, or DNA sequence effects on DNAmethylation. If the goal is to understand causal mech-
anisms, however, these confounding influences need to be taken into account.

To account for confounding biological influences, transcriptional studies of the same cells
need to be performed to understand the bidirectional interactions of transcriptional and epige-
netic processes. Genotyping has to be used to define the loci that are variable in response to
DNA sequence differences, which may be facilitated by extracting DNA sequence variant infor-
mation when bisulphite sequencing is performed to study DNAmethylation [32]. The use of
purified or histologically identical cells is not enough to eliminate cell subtype effects [19] but
is likely to diminish this influence. Any means of quantifying cell subtype composition using
cell biology approaches or analyses of molecular characteristics (such as CellMix [33]) should
be employed to measure the cell subtype proportions. All of these measures are in addition to

(blue). The EWAS is frequently performed to address the idea that the epigenetic dysregulation is occurring as a
response to a cellular exposure or stress. In a situation of reverse causation, the reason the epigenetic change is
observed in association with a phenotype is because the phenotype induces the epigenetic change, rather than
the other way around. In (b) we describe three study designs: the typical cross-sectional design comparing
individuals with and without the phenotype of interest, and two designs that reduce the effects of genetic
polymorphism, which are studies of monozygotic twins discordant for a phenotype, and longitudinal studies of
people before and after they develop the phenotype.

doi:10.1371/journal.pgen.1006105.g001

Box 2. How to Improve the Interpretability of EWAS Data

We provide here a checklist of ways to improve EWAS studies:
• Start with a clear hypothesis—do you seek to understand the mechanism of the disease
or phenotype, in which case a mediating cell type with high purity should be studied,
or do you want to identify a biomarker (of exposure or of predictive/prognostic value),
in which case a surrogate, accessible cell type may be used?

• Carefully consider whether your study design can answer this hypothesis. Note that
using a case/control study design will, by definition, have a complex ascertainment fol-
lowing disease onset and will not easily discover biomarkers or causal mechanisms.
This is not a property of sample size, rather a property of ascertainment.

• Purify the cell type as much as possible, and use whatever means available to under-
stand the cell subtype heterogeneity present in the tested samples.

• Perform transcriptomic studies on the same cells tested for epigenetic changes and
genotyping of the same individuals. This allows a number of causes and consequences
of changes of epigenetic regulators to be interpreted.

• Analytically, account for any epigenetic variability that is due to cell subtype, transcrip-
tional or sequence variability, as well as any identifiable technical factors occurring
during the experiments and captured as metadata.

• When attempting to understand the mechanistic role of epigenetic dysregulation in the
phenotype, interpret the degree of change of DNA methylation. If modest, and there-
fore involving a mosaic subset of cells, how does this contribute to mechanistic
understanding?
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those normally applied in projects involving complex molecular assays, which require the sys-
tematic collection of experimental metadata and quality information to test whether the experi-
ments themselves have contributed to the variability observed. We summarize these
recommendations in Box 2.

Analytically, insights into DNA sequence variants upon DNAmethylation (methylation
quantitative trait loci, mQTLs [34]) for the cell type studied will allow approaches to be devel-
oped to account for this major influence upon the epigenome. One particular approach, two-
step mendelian randomization, is being applied in prospective and case/control EWAS, build-
ing on the non-modifiable nature of germline genetic variation to provide causal anchors
within a causal inference setting [35,36]. This and other new methodological approaches to
integrate epigenetic, transcriptomic, and genotypic information will require the involvement of
analytical specialists to work with these rich but complex datasets.

Conclusions
We focus here on the EWAS, not only because of the general lessons it allows when designing
other disease -omics studies but also because we now have insights into biological influences
that can influence the epigenome. Furthermore, there is the exciting possibility that well-
designed studies of the epigenome can generate substantial new insights into disease mecha-
nisms and valuable biomarkers. To realize this potential for epigenomic studies and other dis-
ease -omics, many aspects of current approaches need to be reconsidered. We provide specific
recommendations for study design with the goal of prompting a discussion about how to
improve the interpretability of the results when these studies are completed.
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