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Construction of simplified design p–y curves for liquefied soils

D. LOMBARDI�, S. R. DASH†, S. BHATTACHARYA‡, E. IBRAIM§, D. MUIRWOOD§ and C. A. TAYLOR§

In practice, laterally loaded piles are most often analysed using a ‘beam-on-non-linear-Winkler-
foundation’ approach, whereby the soil–structure interaction is modelled by means of p–y curves.
Although well-calibrated p–y curves exist for non-liquefied soils (e.g. soft clay and sand), the profession
still lacks reliable p–y curves for liquefied soils. In fact, the latter should be consistent with the observed
strain-stiffening behaviour exhibited by liquefied samples in both element and physical model tests.
It is recognised that this behaviour is induced by the tendency of the liquefied soil to dilate upon
undrained shearing, which ultimately results in a gradual decrease in excess pore pressure, and
consequent increase in stiffness and strength. The aim of this paper is twofold. First, it proposes
an easy-to-use empirical model for constructing stress–strain relationships for liquefied soils. This only
requires three soil parameters which can conveniently be determined by means of laboratory tests.
Second, it introduces a method for the construction of p–y curves for liquefiable soils from the proposed
stress–strain model, based on the scaling of stress and strain into compatible soil reaction p and
pile deflection y, respectively. The scaling factors for stress and strain are computed following
an energy-based approach that is analogous to the upper-bound method used in classical plasticity
theory. To validate the proposed p–y curves, results from a series of centrifuge tests are employed to
back-calculate p–y curves for liquefied soils. The latter are compared with those obtained from the
proposed method and the conventional p-multiplier approach.

KEYWORDS: centrifuge modelling; dynamics; laboratory tests; liquefaction; piles & piling; soil/structure
interaction

INTRODUCTION
Poor performance of pile foundations, ranging from cracks
to formation of plastic hinges, is still observed in liquefiable
soils after most major earthquakes. As a result, the beha-
viour of piled foundations during liquefaction remains an
area of active research (Haigh, 2002; Bhattacharya, 2003;
Bhattacharya et al., 2004, 2005a, 2005b; Cubrinovski et al.,
2006; Knappett & Madabhushi, 2009; Dash et al., 2010;
Madabhushi et al., 2010; Stringer & Madabhushi, 2012;
Lombardi, 2013; Lombardi & Bhattacharya, 2014a, 2016).
To model laterally loaded piles, practising engineers often

use a simplified method normally referred to as ‘beam-
on-non-linear-Winkler-foundation’ (BNWF) (Winkler, 1867;
Hetényi, 1946). This method stands on the hypothesis that
the soil reaction exerted by the soil at a given depth on the
pile shaft is proportional to the relative pile–soil lateral
deflection. According to the BNWF method, the pile is
modelled by means of consecutive beam–column elements,
whereas the lateral pile–soil interaction is analysed through
non-linear springs that are attached to nodal points between
two consecutive elements. Each spring can be defined by
means of a non-linear relationship between the soil reaction
(per unit length of the pile), p, and the corresponding relative
soil–pile horizontal displacement, y. The coefficient of pro-
portionality between p and y is referred to as modulus of

subgrade reaction k, with dimension of pressure divided by
length. This relationship is normally known as a p–y curve,
or reaction curve. Despite the limitation inherent to the
discrete nature of the method, BNWF is extensively used
in practice owing to its mathematical convenience and
ability to incorporate non-linearity of the soil and ground
stratification. The validity of the BNWF approach is based
on the assumed similarity between two mechanical system
responses: (a) the load–deformation response of the pile,
which takes into account the overall macro behaviour of the
soil–pile system; (b) the stress–strain response of the adjacent
soil being sheared as the pile moves laterally. The latter is
related to the micro behaviour of the deforming material.
In theory, the transformation from micro to macro can be
made by applying appropriate scaling factors, whereby stress
is converted into equivalent soil reaction, p; and strain is
converted into equivalent relative pile–soil displacement, y.
Bouzid et al. (2013) concluded that these scaling factors
can be derived from the so-called ‘mobilisable strength
design’ (MSD) method (Bolton & Powrie, 1988; Osman &
Bolton, 2004; Vardanega & Bolton, 2011). In routine prac-
tice, however, p–y curves are constructed by means of
empirical relationships, which were developed in the 1970s
to 1980s based on a relatively limited number of full-scale
tests carried out on small-diameter steel piles (Matlock,
1970; Reese et al., 1974, 1975; O’Neill & Murchison, 1983).
One of the first methods to construct p–y curves for

liquefiable soils was given by Dobry et al. (1995). The
method, qualitatively illustrated in Fig. 1, consists of apply-
ing to the conventional p–y curve for non-liquefied sand a
reduction factor mp. The latter can be conveniently deter-
mined from the equivalent clean sand blow count, (N1)60,
using empirical charts, such as the one depicted in Fig. 1(b).
An alternative method is to use p–y curves for soft clays, for
example the ones recommended by API (2000), but replacing
the undrained shear strength of the clay by the residual
strength of the liquefied soil, Sr (Goh & O’Rourke, 1999).
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This approach is normally referred to as residual strength
approach and is schematically illustrated in Fig. 2. The
residual strength of the liquefied soil can be estimated
from empirical charts (see Fig. 2(b)) proposed by several
researchers (Seed & Harder, 1990; Pillai & Salgado, 1994;
Olson & Stark, 2002; Brandenberg, 2005).

It can be concluded that, in routine practice, p–y curves
for liquefied soils exhibit a strain-softening behaviour,
characterised by a relatively high stiffness at small displace-
ments that gradually reduces upon shearing. This response,
however, is substantially different from the strain-stiffening
behaviour observed in both element and physical model tests.
In fact, a number of studies (Wilson et al., 2000; Tokimatsu
et al., 2001; Ashford & Rollins, 2002; Boulanger et al., 2003)
have shown that back-calculated p–y curves of liquefied soils
have a concave upward shape (see Fig. 3(b)), characterised by
practically zero stiffness at small displacements, but increas-
ing stiffness and strength upon shearing. It is worth noting
that this strain-stiffening response – hereafter referred to
as strain-hardening – is consistent with the post-liquefaction
behaviour of sands observed in element tests by several
researchers (Yasuda et al., 1994; Vaid & Thomas, 1995;
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Sivathayalan & Vaid, 2004; Sitharam et al., 2009; Dash,
2010; Lombardi et al., 2014).
Figure 3 illustrates the effect of different shapes of

p–y curves on the seismic response of piled foundations.
Starting from the concave-downward p–y curve illustrated in
Fig. 3(a), it can be noted that when the lateral displacement is
relatively small, the soil–pile interaction depends on the
initial stiffness of the reaction curve. For large displacement,
however, the response is influenced by the ultimate value of
the soil reaction rather than foundation stiffness. On the
other hand, if the shape of the p–y curve is concave-upward,
as in Fig. 3(b), the response of the pile is highly non-linear
and exhibits practically zero stiffness at small displacements.
Moreover, as a result of the limited resistance offered by the
liquefied soil, the pile behaves as an unsupported column,
which may be prone to buckling instability under large axial
loads and the presence of geometrical imperfections.
The motivation behind this research is to formulate a sim-

plified p–y curve for the analysis of soil–structure interaction
problems in liquefied soils. The proposed curves can be con-
structed from a simplified stress–strain model that requires
only three parameters. These are hereafter referred to as:
take-off strain γto, initial shear modulus, G1 and shear
modulus at large strains, G2. The advantage of this model
is twofold. First, the proposed stress–strain model requires
parameters that can be conveniently determined by means of
conventional element tests, such as triaxial and simple shear
tests. Second, the stress–strain relationship is consistent with
the strain-hardening behaviour of liquefied soils as observed
in both element and physical model tests. The proposed
stress–strain relationships are subsequently used to construct
a novel family of p–y curves for liquefiable soils. This involves
scaling of stress and strain into compatible soil reaction p and
pile deflection y, respectively. The proposed p–y curves are
finally compared with those back-calculated from centrifuge
model tests.

POST-LIQUEFACTION STRESS–STRAIN RESPONSE
Only a limited number of studies have focused on the

post-liquefaction behaviour of liquefied soils. A pioneering
work by Seed (1979) focused on the post-earthquake stability
of dams in liquefiable deposits and concluded that liquefied
soils gradually mobilised increasing strength and stiffness
upon shearing. This strain-hardening behaviour was con-
firmed in subsequent studies by Yoshida et al. (1994) and
Kiku & Tsujino (1996). Thomas (1992) and Vaid & Thomas
(1995) showed that the post-liquefaction behaviour of sands
subjected to undrained monotonic loading was dilative, even
if the sand showed contractive and strain-softening behaviour
before the onset of liquefaction. This observation was later
confirmed by Sivathayalan & Vaid (2004), who carried out
tests on in situ frozen samples of alluvial sands. It was found
that the post-liquefaction behaviour exhibited a strain-
hardening response owing to the tendency of the liquefied
soil to dilate upon shearing. Yasuda et al. (1994) observed
that the initiation of dilative behaviour occurred beyond a
threshold strain. This was found to be strongly dependent on
the initial relative density of the sand, whereby denser sands
mobilised higher strength at smaller strains. Kokusho et al.
(2004) investigated the effect of different particle gradations
on the post-liquefaction undrained behaviour of sands. It was
found that in well-graded soils the tendency to dilate was
more pronounced than that exhibited by poorly graded soils.
A recent study by Sitharam et al. (2009) showed that the
monotonic behaviourof liquefied soil was affected by the am-
plitude of the cyclic axial strain applied to cause liquefaction.
On the other hand the post-liquefaction behaviour was found
to be independent of the confining stress. Dash (2010)

compared the undrained monotonic behaviour of liquefied
and non-liquefied samples whose responses are shown in
Fig. 4. More specifically, the figure shows results for
two samples of Toyoura sand with the same initial relative
density (Dr = 50%), consolidated at the same effective stress
(σ′c = 50 kPa), but subjected to different loading paths,
namely monotonic load and multi-stage load. It is noted
that the multi-stage test consisted of two undrained loading
stages, whereby the sample was initially liquefied by means
of cyclic load and subsequently sheared monotonically, with
no drainage permitted between the two stages. In Fig. 4(a),
it can be seen that the effective stress path initially moved
towards the origin of axes, owing to the gradual increase
in excess pore pressure, and consequent reduction in p′,
until it generated the characteristic ‘butterfly’ shape shown
in Fig. 4(a). After the onset of liquefaction, the stress path
moved towards the direction of increasing p′ owing to the
progressive reduction in excess pore pressure due to the
tendency of the liquefied soil to dilate upon shearing. It is
worth noting that, at large strains, the slopes of the effective
stress paths obtained from the two samples were practically
identical. Figure 4(b) compares the stress–strain response
obtained from the two tests. It can be seen that the sample
subjected to the multi-stage test initially displayed a stress–
strain loop that gradually enlarged with the application of
cycles of loading. In the post-cyclic monotonic stage, the
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liquefied sample exhibited avery low stiffness at small strains,
which gradually increased upon shearing. It was found that
the liquefied and non-liquefied samples mobilised a com-
parable stiffness at large strains.

PROPOSED MONOTONIC POST-LIQUEFACTION
STRESS–STRAIN CURVE

With the current understanding of the behaviour of
liquefied samples, and its influencing factors, a simplified
monotonic post-liquefaction stress–strain model is herein
proposed. The aim is to provide practitioners with a stress–
strain curve for liquefied soil. As illustrated in Fig. 5, the
proposed model requires the following parameters.

(a) Take-off shear strain γto: engineering shear strain upon
which the shear strength of the liquefied soil exceeds
1 kPa upon monotonic undrained shearing. The
observed stress–strain response (see Fig. 4), shows that
the transition between G1 and G2 is quite smooth and
may occur over 1–2% of shear strain. In order to make
some allowance for this transition, the proposed value
of γto is increased by 25%. As a result, the second linear
segment of the stress–strain model starts from 1·25γto.

(b) Initial shear modulus G1: shear modulus exhibited by
the liquefied soil at strains γ, γto.

(c) Shear modulus at large strains G2: tangent shear
modulus exhibited by the liquefied soil sheared at
strains γ. γto.

(d ) Maximum shear stress τmax: maximum shear stress
mobilised by the liquefied soil at very large strains
γ.. γto.

It should be pointed out that only the first three para-
meters, namely, γto, G1 and G2, can be obtained from lab-
oratory tests. However, the maximum shear stress, τmax, is
only required because the test conditions are not fully rep-
resentative of those established in the field. In fact, triaxial
tests are typically performed with the application of a back
pressure in order to improve sample saturation. Samples that

exhibit a tendency to dilate – as they are sheared under un-
drained condition – tend to generate negative pore pressures.
While the pore pressure is becoming increasingly negative,
the effective mean effective stress becomes increasingly posi-
tive and the strength increases. The back pressure provides
some guard against the pore pressure actually falling to zero.
However, continued suppressed dilation may eventually lead
to a pore pressure below �100 kPa, at which point the pore
water will cavitate and ‘boil’. The generation of gas in the
pore water would turn the undrained test into a drained test.
The potential to mobilise such high negative pressures is not
usually present in situ; therefore the fourth parameter rep-
resents a capped shear stress to take into account the actual
soil behaviour in the field.

EVALUATION OF PARAMETERS γto, G1 AND G2
The advantage of the proposed stress–strain model

for liquefied soils lies in its simplicity and ease of implemen-
tation. In fact, the empirical parameters, that is, γto, G1 and
G2, can conveniently be determined by performing multi-
stage laboratory tests, whereby the sample is initially liq-
uefied by means of cyclic loading, and subsequently sheared
in undrained monotonic condition without dissipation of
excess pore pressure between the two stages. In the absence
of adequate facilities (e.g. cyclic triaxial, cyclic simple shear
and so on), and for preliminary design considerations, the
three parameters can be estimated from data available
in the literature. In this paper, the three parameters have
been determined from published test results obtained from
samples of sands whose index properties are listed in Table 1.
Fig. 6 shows the particle distributions of these sands,
conjointly with grain size distributions of liquefaction-prone
soils. A summary of test data is listed in Table 2.

Take-off shear strain, γto, and initial shear modulus, G1
The take-off shear strain, γto, defined as the engineering

shear strain required to mobilise a shear strength of 1 kPa, is
determined from the stress–strain response of liquefied
samples subjected to undrained monotonic loading, which
have been previously liquefied by the application of cyclic
loads (see for example test in Fig. 4(b)). In the interpretation
of the collated data, the deviator stress q and axial strain εa
from triaxial tests have been converted into equivalent shear
stress τ= q/2 and engineering shear strain, γ=1·5εa, respect-
ively. Fig. 7(a) plots the computed γto against initial relative
density Dr. Beyond the observed scatter, it appears that the
take-off shear strain decreases with increasing Dr. Following
the definition of take-off strain, the initial shear modulus can
be estimated by G1 = 1/γto, where G1 is in kPa. Fig. 7(b)
displays the computed G1 plotted against initial relative den-
sity Dr. It can be observed that the initial stiffness increases
exponentially with increasing Dr.
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Fig. 5. Proposed (monotonic) stress–strain curve for liquefied soil

Table 1. Index properties of sands considered in this study

Sand Gs emax emin D50: mm Uc Particle shape Reference

Redhill 110 2·65 1·04 0·61 0·14 1·63 Angular Lombardi et al. (2014)
Toyoura 2·64 0·97 0·64 0·18 1·66 Sub-angular Lombardi et al. (2014)
Fraser river 2·72 1·00 0·68 0·30 1·68 Sub-angular to sub-rounded Vaid & Thomas (1995)
Syncrude 2·62 0·96 0·55 0·20 3·34 Angular to sub-angular Sivathayalan (1994)
Narita 2·70 1·37 0·77 0·12 3·08 Angular to sub-angular Yasuda et al. (1994)

Note: Gs, specific gravity; emax, emin, maximum and minimum void ratio; D50, 50% finer size; Uc, coefficient of uniformity.
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Shear modulus at large strains, G2
As shown in Fig. 4(b), the shear modulus of the liquefied

sample is practically constant for shear strains larger than γto.
The shear modulus at large strain may be derived from
theoretical considerations that should take into account the
effect of the rate of dilation and level of confinement. Such
an approach, however, would involve a rather laborious
mathematical derivation that seems excessive for the present
initial simplified analysis. Looking for alternative corre-
lations that may exist between G2 and any other soil
parameters, it is herein proposed to estimate the G2 based
on the ratio G2/Gmax, where Gmax denotes the tangent shear
modulus at small strains, that is, ,10�6 (Kramer, 1996).
According to Ishihara (1995), Gmax can be estimated from
the initial void ratio of the sample, e, and confining stress,
σ′c, according to equation (1). Fig. 8 plots G2/Gmax against Dr
for the collated data.

Gmax ¼ 8400
2�17� eð Þ2
1þ eð Þ σ′cð Þ0�5 σ′c and Gmax in kPað Þ

ð1Þ

Figure 8 shows that the computed data are randomly
scattered, presumably due to variations in excess pore pressure
between samples prepared at different relative densities. The
figure, however, identifies three different ranges of G2/Gmax,
namely: 0·1, 0·01 and 0·001, which broadly depend on the
degree of packing of the sample. Considering that G2 is
inversely proportional to confining stress, σ′c, and directly
proportional to Gmax, it is suggested to compute G2 by using
the expression suggested by Dash (2010), given by

G2 ¼ 1
5
Gmaxffiffiffiffiffi
σ′c

p ðin kPaÞ ð2Þ

It is worth noting that equation (2) is based on the fitting of
limited experimental data; however, this is consistent with the
expression recommended by Ishibashi & Zhang (1993).

Maximum shear stress, τmax
The proposed stress–strainmodel for liquefied soils depicted

in Fig. 5 implies that the increase in shear stress cannot
continue indefinitely upon shearing because the dilatative
behaviour exhibited by the liquefied soil terminates at large
strains. From a theoretical point of view, themaximum shear is
attainedwhen the pore pressure reaches a negative value equal
to �100 kPa, upon which cavitation of the pore water occurs
in the sample. According to this reasoning, the limiting value
of shear stress can be computed as follows

τmax ¼ qmax

2
¼ Mc σ′c þ pa kPað Þ

2
ð3Þ

in which Mc denotes the stress ratio at critical state under
conditions of triaxial compression, and pa is the atmospheric
pressure.
An alternative approach would consist in equating τmax to

the residual strength Sr of the liquefied soil. The latter can
conveniently be estimated based on empirical correlations,
such as the ones given in Fig. 2(b).

CONSTRUCTION OF p–y CURVES FROM
STRESS–STRAIN CURVE OF LIQUEFIED SOILS
The proposed method for the construction of p–y curves

from stress–strain curves relies on the similarity between

Table 2. Test data used for derivation of parameters γto, G1 and G2

Material Dr: % σ′c: kPa Apparatus Monotonic strain rate Reference

Toyoura 23 50 Cyclic torsional shear 10%/min Yasuda et al. (1994)
Toyoura 30 50 Cyclic torsional shear 10%/min Yoshida et al., 1994
Toyoura 33 50 Cyclic torsional shear 10%/min Yasuda et al. (1994)
Toyoura 38 50 Cyclic triaxial 1%/min Lombardi et al. (2014)
Toyoura 44 100 Cyclic triaxial 1%/min Lombardi et al. (2014)
Toyoura 50 98 Cyclic torsional shear 10%/min Yasuda et al. (1998)
Toyoura 70 50 Cyclic triaxial 10%/min Yoshida et al. (1994)
Redhill 110 33 100 Cyclic triaxial 1%/min Lombardi et al. (2014)
Redhill 110 37 100 Cyclic triaxial 1%/min Lombardi et al. (2014)
Redhill 110 40 50 Cyclic triaxial 1%/min Lombardi et al. (2014)
Redhill 110 48 100 Cyclic triaxial 1%/min Lombardi et al. (2014)
Redhill 110 59 100 Cyclic triaxial 1%/min Lombardi et al. (2014)
Redhill 110 67 110 Cyclic triaxial 1%/min Lombardi et al. (2014)
Fraser River 19 100 Cyclic triaxial 1%/min Vaid & Thomas (1995)
Fraser River 28 100 Cyclic simple shear 1%/min Sivathayalan (1994)
Fraser River 39 100 Cyclic simple shear 1%/min Sivathayalan (1994)
Fraser River 60 100 Cyclic simple shear 1%/min Sivathayalan (1994)
Syncrude 51 100 Cyclic simple shear 1%/min Sivathayalan (1994)
Narita 38 50 Cyclic torsional shear 10%/min Yasuda et al. (1994)
Narita 53 50 Cyclic torsional shear 10%/min Yasuda et al. (1994)
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load–deflection characteristics of the pile and mechanical
behaviour of the deforming soil. This involves scaling of
stress and strain into compatible soil reaction, p, and pile
deflection, y, respectively. It is assumed that plane strain

conditions are established around the pile at any depth. As a
result, soil adjacent the foundation is expected to flow around
the pile from front to back. Although such an assumption is
acceptable for liquefied soils, the same may not be valid prior
to the onset of liquefaction, when wedge-type failure is likely
to occur, particularly at shallow depths. In accordancewith the
postulated collapse mechanism, the soil–structure interaction
problem can be treated as a set of decoupled plane strain
problems. As shown in Fig. 9, each problem consists of a disc
representing the soil, with outer radius R, and a smaller rigid
disc, with outer radius r0, which represents the pile moving
laterally in the deforming soil. The soil is assumed to adhere
perfectly to the pile. It should be emphasised that the con-
ceptualised problem is analogous to the plane strain problem
employed in plasticity theory for the evaluation of the
undrained lateral capacity of a cylinder moving through an
infinite medium (Randolph & Houlsby, 1984).
Following Osman & Bolton (2005) and Klar (2008), the

soil resistance, p, developed at a mobilised stress, τmob, is
given by

p ¼ NsτmobD ð4Þ
in which Ns is a scaling factor for stress. The mobilised shear
stress, τmob, can be related to an average mobilised engineer-
ing shear strain, γs,mob, defined as the spatial average of the
shear strain γs in the entire volume of the deforming medium.
Introducing the scaling factor for strain, Ms, the average
mobilised engineering shear strain is given by

γs;mob ¼
Ð
V γs dVÐ
V dV

¼ Ms
y
D

ð5Þ

It is noted that the engineering shear strain, γs, is defined as
the difference between major ε1 and minor ε3 principal strains

γs ¼ ε1 � ε3 ð6Þ
If the stress–strain curve to be converted into a p–y curve is

obtained from triaxial compression tests, the major and
minor principal strains correspond to the axial εa and radial
εr strains, respectively. Considering that liquefaction occurs in
undrained condition, the engineering shear strain, γs, can be
expressed in terms of axial strain, εa, such that

γs ¼ ε1 � ε3 ¼ εa � εr ¼ 1�5εa ð7Þ
Considering that in the triaxial apparatus the loading

is axisymmetric, and neglecting end-effects and possible
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Fig. 9. Schematic representation of idealised decoupled plane strain
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problem at a given depth
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problems associated with initial anisotropy of the sample, the
major σ1 and minor σ3 principal stresses correspond to the
axial σa and radial σr stresses, respectively. In this condition
the mobilised stress, τmob, simplifies to

τmob ¼ σ1 � σ3
2

¼ σa � σr
2

ð8Þ

Derivation of scaling parameters
Drawing on the concept of the MSD method (Bolton &

Powrie, 1988; Osman & Bolton, 2005), and its extension
(EMSD) by Klar & Osman (2008), which differs from the
former in having a deformation mechanism that changes
throughout the loading sequence, an energy-based approach
is used to obtain the scaling factors Ns and Ms. Assuming
that the soil–pile system is initially in equilibrium, the rate
of input work Ẇ done by the moving disc – representing the
pile – is given by

Ẇ ¼ pẏ ð9Þ
in which ẏ denotes the increment in lateral displacement, and
p the resulting soil reaction (per unit length of the pile).
The rate of dissipation of energy Ė within the deforming

soil mass, with volume V, is given by

Ė ¼
ð
V

σ1ε̇1 þ 2σ3ε̇3ð ÞdV ð10Þ

The hypothesis of incompressibility implies that major
and minor principal strain rates are equal and opposite
ε̇1 ¼ �ε̇3. Equation (9) can therefore be rearranged such that
the rate of dissipation of energy, Ė, is expressed as a function
of mobilised parameters by

Ė ¼
ð
V

σ1 � σ3ð Þε̇1dV ¼ 2
ð
V
τmobε̇1dV

¼
ð
V
τmobγ̇s;mobdV ð11Þ

The scaling factor for stressNs is estimated by equating the
rate of dissipation of internal energy within the deforming
soil to the work done by the externa load, namely, Ė ¼ Ẇ . In
seeking an upper-bound solution to the problem, Ns is
sought, which minimises the internal work

Ns ¼
min

Ð
V τmobγ̇s;mobdV

� �
τmobDẏ

ð12Þ

The upper-bound calculation required an incremental
numerical procedure. In this study this was implemented in

the finite-element code Comsol Multiphysics (Comsol,
2009). The soil was modelled using a triangular mesh, with
Lagrange-quadratic elements (see Fig. 10(a)). A non-slip
boundary was considered for the soil–pile interface, which
corresponds to a rough surface. The incremental displace-
ment ẏ was applied to the inner boundary of the soil, whereas
the exterior boundary was fixed (see Fig. 10). The deforming
medium was modelled using the simplified strain-hardening
model proposed by the authors (see Figs 5 and 11(a)).
Specifically, six stress–strain curves were chosen for this
parametric analysis, in which γto, G1 and τmax were fixed, but
the ratio G2/G1 was varied from 10 to 500. The optimal
upper-bound solution required the evaluation of the lowest
possible value of Ė, at each incremental displacement and
different radial distances, R. The proposed scaling procedure
of stress–strain into compatible p–y curves is schematically
depicted in Fig. 11(a).
Results obtained from the numerical analysis are plotted in

Fig. 11(b). It can be seen that computed values of scaling
factors were a function of G2/G1. Specifically,Ns ranged from
20·23 to 21·3, before attaining a practically constant value at
large G2/G1. On the other hand, the scaling parameter for
strain Ms decreased from 2·41 to 1·71 with increasing G2/G1.
For design considerations, the lowest values of Ns and Ms
can be considered as conservative. Therefore, the bearing
capacity factor derived from classical theory of plasticity can
be used for scaling stress into compatible soil reaction.
According to Martin & Randolph (2006), the bearing capa-
city factorNs is 9·2 for a smooth pile–soil interface and 11·94
for a rough pile–soil interface.
Figure 11(b) shows that the scaling factor Ms is a

non-linear function of G2/G1. For practical applications,
however, scaling of strain into compatible deflection can be
considered independent of G2/G1. As a result, Ms can be
conservatively taken as the lowest value in Fig. 11(b), that is,
1·87. It should be noted that Ms for liquefied soils obtained
from the finite-element analysis carried out in this study was
lower than that derived by Klar (2008) for a perfectly plastic
material (Ms = 2·6).

VALIDATION OF PROPOSED p–y CURVES FOR
LIQUEFIABLE SOILS
To validate the proposed p–y curve for liquefied soils, a

series of centrifuge tests were re-analysed in order to back-
calculate p–y curves from available experimental data. The
tests considered in this paper were carried out in the centrifuge
facility of Shimizu Corporation (Japan). Detailed information
of the centrifuge facility can be found in Sato (1994).

Boundary with prescribed
displacement, y

Fixed boundary

(a) (b)

Fig. 10. Numerical model used for evaluation of scaling factors Ms and Ns: (a) mesh used in FE model; (b) boundary value problem – left;
deformation mechanism – right
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Centrifuge tests
The testswere performed at a centrifugal acceleration of 30g.

The model container consisted of a laminar box, with inner
dimensions of 805 mm long, 475 mmwide and 324 mm deep.
The soil deposit comprised four soil layers, prepared at differ-
ent densities and using different sands, namely silica sand and
Toyoura sand. The thickness and relative density of each layer
are specified in Fig. 12. To restrict the occurrence of liquefac-
tion to soil layer 2, layer 1 was unsaturated (i.e. degree of

saturation of 10%), whereas layers 3 and 4 were prepared at
higher densities (Dr = 90%). A summary of the scaling para-
meters used for the construction of the models and interpret-
ation of experimental results is given in Table 3. Derivations of
these parameters can be found in Schofield (1981). It is noted
that to satisfy the scaling requirement for the diffusion process,
a high-viscosity silicone oil of 30cS was used as the pore fluid.
A schematic diagram of the instrumentation layout is given

in Fig. 12. The physical model consisted of a 2� 2 pile group
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made of steel pipes. Each pile had an outer diameterof 10 mm,
wall thickness of 0·2 mm and total length of 270 mm. Pile
ends were fully fixed to a rigid plate fitted onto the base of
the model container. One pile in each configuration was
instrumented with pairs of strain gauges. The model included
a rigid quay wall located in front of the pile group, but this
is not considered in the present study. Other transducers
included pore pressure sensors, accelerometers and displace-
ment transducers. In the present study, three tests were
considered for the back-calculation of p–y curves. Each test
was carried out under nearly identical conditions in terms of
input motion and relative density of the liquefiable layer.
However, different distances between quay wall and piled
structure were used in each test, as specified in Fig. 12. The
input motion consisted of a sine wave with a constant
frequencyof 60 Hz, which corresponded to a forcing frequency
of 2 Hz at prototype scale. The amplitude of the sine wave was
gradually incremented, attaining a value of 8g (i.e. 0·27g at
prototype scale) after approximately 0·25 s. In the three tests,
the onset of liquefaction occurred in 5–6 cycles of loading.

Derivation of p–y curves from test data
The derivation of the p–y curves involved three major steps.

(a) Double integration of soil acceleration to compute soil
displacement, ys.

(b) Double integration of bending moment along the pile
to obtain pile deflection, yp. The relative pile–soil
displacement y was subsequently computed as the
difference yp�ys;

(c) Double differentiation of bending moment along the
pile to obtain soil reaction, p.

As the numerical operations of integration and differen-
tiation are sensitive to low-frequency and high-frequency
noise, a band-pass Butterworth filter was applied to all
records before signal processing. Furthermore, because the
computed bending moments were known only at discrete
locations, a cubic spline interpolation function was used to
obtain a continuous bending curve along the instrumented
pile. A similar interpolation function was successfully
employed by Wilson (1998) and Jeanjean (2009) for the
evaluation of p–y curves. The back-calculated p–y curves are
illustrated in Fig. 13, in which the soil resistance p is
normalised by the effective stress, σ′v, and pile diameter, D;
and the displacement, y, is normalised by the pile diameter,
D. Based on the back-calculated p–y curves, the following
conclusions may be drawn.

(a) Figure 13 displays p–y curves relative to three depths
within the liquefiable layer (i.e. soil layer 2 in Fig. 12).
It can be seen that the back-calculated p–y curves
exhibited practically zero stiffness at small deflection.
Evidently, these exhibit a different shape from the
p–y curves used in routine practice, such as the ones
obtained from the p-multiplier method illustrated in
Fig. 1, which significantly overestimate the stiffness
of the foundation, particularly at small displacements.
The implication of using p–y curves having different
shapes has been previously discussed through the
schematic representation in Fig. 3(a).

(b) Figure 14 compares the back-calculated p–y curves with
those computed from the proposed and p-multiplier
methods. It can be observed that the back-calculated
p–y curves exhibit low stiffness at small lateral
displacement, and increasing stiffness and lateral

Table 3. Scaling laws for centrifuge modelling

Quantity Dimension Model/prototype

Stress (M/L)/T2 1
Strain — 1
Length L 1/n
Time (dynamic) T 1/n
Acceleration L/T2 n
Frequency T�1 n
Diffusion time T 1/n2
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Fig. 13. Back-calculated p–y curves from centrifuge tests
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resistance with increasing y. This strain-hardening
behaviour is better captured by the proposed p–y curves
rather than the routine method, which clearly
overestimate the initial foundation stiffness.

CONCLUSIONS
The paper proposes a simplified p–y curve construction

procedure for the analysis of soil–pile interaction problems
in liquefiable soils. The procedure requires the stress–strain
of the liquefied soil, and appropriate scaling factors for the
conversion of stress–strain into compatible soil resistance
p and soil–pile relative deflection y. In contrast to existing
p–y curves for liquefiable soils, the proposed curves retain
the essential features of liquefied soil as observed in both
element and physical model tests. These include practically
zero strength and stiffness at low strains (i.e. γ, γto); and
strain-hardening behaviour at large strains.

Compared with the p-multiplier method, the proposed
p–y curves are more consistent with those back-calculated
from a series of centrifuge tests analysed in this study. On
the other hand, the proposed method underestimates the
pile displacement upon which the soil regains strength and
stiffness, resulting in a sharp increase in stiffness at medium
to large displacement levels.

Despite the simplicity of the method, the proposed
p–y curves can conveniently be implemented in routine
practice for use in design and decision making.

All research data accompanying this publication are
available at http://dx.doi.org/10.15127/1.305161 (Lombardi,
2016).
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NOTATION
D diameter of the pile
Dr relative density
D50 particle size corresponding to 50% passing

E void ratio
Ė dissipation of energy within deforming soil
e initial void ratio

emax maximum void ratio
emin minimum void ratio
Gmax maximum shear modulus

Gs specific gravity
G1 initial shear modulus
G2 shear modulus at large strains
k modulus of subgrade reaction

Mc stress ratio at critical state
Ms scaling factor for strain
mp reduction factor for p–y curves for liquefied soils
Ns scaling factor for stress

(N1)60 equivalent clean sand blow count from SPT
n scaling factor
p soil reaction
pa atmospheric pressure
pu ultimate soil reaction
q deviator stress
R radius of deformable soil
ru excess pore water pressure ratio
r0 outer radius
Sr residual strength of liquefied soil
Uc coefficient of uniformity
V volume
Ẇ work done by external load
y pile–soil deflection
yp pile deflection
ys soil deflection
z depth below ground surface

γmob mobilised shear strain
γs engineering shear strain
γto take-off strain
εa axial strain
εr radial strain
ε1 major principal strain
ε2 minor principal strain
σa axial stress
σ′c effective confining stress
σr radial stress
σθ circumferential (or tangential) stress
σ1 major principal stress
σ3 minor principal stress
τ shear stress

τmax maximum shear stress
τmob mobilised shear stress
τrθ radial shear stress
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