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Spontaneous assembly of chemically encoded
two-dimensional coacervate droplet arrays by
acoustic wave patterning
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Bruce W. Drinkwater2 & Stephen Mann1

The spontaneous assembly of chemically encoded, molecularly crowded, water-rich

micro-droplets into periodic defect-free two-dimensional arrays is achieved in aqueous media

by a combination of an acoustic standing wave pressure field and in situ complex

coacervation. Acoustically mediated coalescence of primary droplets generates single-droplet

per node micro-arrays that exhibit variable surface-attachment properties, spontaneously

uptake dyes, enzymes and particles, and display spatial and time-dependent fluorescence

outputs when exposed to a reactant diffusion gradient. In addition, coacervate droplet

arrays exhibiting dynamical behaviour and exchange of matter are prepared by inhibiting

coalescence to produce acoustically trapped lattices of droplet clusters that display fast and

reversible changes in shape and spatial configuration in direct response to modulations in the

acoustic frequencies and fields. Our results offer a novel route to the design and construction

of ‘water-in-water’ micro-droplet arrays with controllable spatial organization, programmable

signalling pathways and higher order collective behaviour.
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M
iniaturization of fluid compartments in the form of
liquid micro-droplets is important in diverse scientific
areas1 such as chemical and biochemical analysis2,3,

protein crystallization4 and micro-reactor technology5. Many
of these applications require high-throughput analyses of spatially
addressable arrays of liquid micro-droplets over a range of
timescales and chemical/physical environments. Typically,
arrays of droplets with a uniform size have been prepared
by microfluidics6,7, microfabrication8–10, printing11,12 and by
application of electrical13 or magnetic fields14. The droplets are
stabilized by immersion in an appropriate continuous phase
(water droplets in oil for example) or exposure on a dry surface,
which lead to patterns of physically isolated droplets, which can
then be exploited as independent micro-reactors that are
essentially free from cross-contamination. On the other hand,
isolation of the droplets within the arrays is not compatible
with dynamical interactions such as triggering chemical signals
between the droplets or enabling the droplets to communicate
with and respond to time-dependent changes in their external
environment. To achieve these dynamical interactions, new
technologies are required that provide the production and
organization of liquid micro-droplets with similar polarity to
the associated continuous phase, such as the formation
and patterning of water-rich droplets in a continuous aqueous
phase. Such systems are characterized by a relatively low
surface tension between the droplets and continuous phase, and
remain technically challenging. In this regard, recent studies
have described the formation of aqueous coacervate micro-
droplets in a water continuous phase using a parallel-flow
focusing microfluidic device15, and the printing of water-rich
droplets in an aqueous phase using a dextran/polyethylene
glycol (PEG)-based aqueous two-phase system16. However,
the spontaneous organization of water-rich droplets in an
aqueous phase into two-dimensional (2D) arrays with non-close
packed lattices remains a major challenge.

In this paper, we demonstrate the spontaneous assembly
and spatial organization of water-rich molecularly crowded
micro-droplets to form 2D arrays in aqueous media. Droplet
assembly is achieved by a spontaneous process of complex
coacervation17–19, which is a liquid–liquid phase separation
phenomenon driven by attractive electrostatic interactions usually
between counter-charged polyelectrolytes, and entropic gains
from the release of small, bound counter-ions and restructuring
of water molecules. The resultant micron-sized coacervate
droplets comprise a dense, component-enriched viscoelastic
phase, dispersed in a chemically deficient aqueous continuous
phase. Coacervate droplets have been used for storage of
food additives19,20, drug delivery21,22, protein purification23,
and more recently, exploited as membrane-free protocells24–26

capable of enhanced enzymatic activity27, electric field-induced
energization28, and in vitro gene expression29. Herein, we show
that the in situ generation of coacervate micro-droplets and
their spatial organization into 2D periodic lattices in water can be
achieved without direct contact by acoustic trapping methods.
Acoustic radiation forces depend on the acoustic contrast
generated by compositional differences between media30, and
although acoustic beams and standing waves have been
exploited for multi-dimensional trapping, patterning and
manipulation of micron-sized particles, aqueous droplets in oil
and intact cells31–39, generating defect-free uniform patterns with
a single particle positioned at each acoustic pressure node has
only been achieved at a highly specific ratio of particle size to
acoustic standing wavelength36. Significantly, acoustic trapping
has not been used to generate arrays of water-rich droplets
dispersed in an aqueous medium, principally because of the low
interfacial tension of the system.

Using an acoustic standing wave trap, we demonstrate the
spontaneous assembly and organization of polydiallydimethy-
lammonium chloride (PDDA)/adenosine 5/-triphosphate (ATP)
coacervate micro-droplets into defect-free arrays with
controllable lattice spacing and droplet size. We show that
individual PDDA/ATP droplets of near uniform size, typically
50–100 mm in diameter, are produced in the acoustic field by
in situ coalescence of sub-micrometer-sized droplets that
aggregate specifically at the Gor’kov potential energy minima
(acoustic pressure nodes) of the standing wave in the early stages
of pattern formation. Significantly, coalescence between the
primary droplets can be curtailed by adjusting the composition
of the coacervate droplets such that localized aggregates of closely
packed droplets are produced at each node in the acoustic
pressure field. The localized clusters exhibit collective responses
to modulations in the acoustic standing wave to produce arrays
with reversible dynamical properties based on transformations
in droplet shape and exchange of matter between adjacent nodes
in the acoustic field.

Our methodology is applicable to a wide range of complex
coacervate systems involving proteins, DNA, polysaccharides,
nucleotides and synthetic polyelectrolytes. Coacervates exhibiting
strong interactions with the underlying substrate remained
spatially patterned when the acoustic field is switched off, while
those showing reduced surface pinning produce arrays of
single micro-droplets that display spatially confined dynamic
motions such as localized spinning. Moreover, periodic arrays of
chemically encoded single droplets containing sequestered dye
molecules, proteins, enzymes, nanoparticles or microparticles can
be readily produced in situ during droplet assembly or partitioned
into the patterned arrays post-assembly. By adjusting the ratio
of PDDA and ATP to limit local molecular diffusion we
demonstrate that acoustically patterned populations of coacervate
droplets containing different chemical information can be spatially
positioned within the sample chamber of the trapping device.
Finally, we show that it is possible to transit a reaction wavefront
through an array of acoustically trapped enzyme-containing
coacervate micro-droplets by establishing an appropriate chemical
gradient within the sample chamber of the device.

Results
Acoustic patterning of coacervate micro-droplet arrays. The
spontaneous assembly and patterning of molecularly crowded
PDDA/ATP coacervate micro-droplets in water was undertaken
using a custom-made acoustic trapping device that was fabricated
from polyethylene terephthalate and consisted of a central square
chamber and four piezoelectric transducers arranged around the
periphery (Fig. 1a and Supplementary Fig. 1). Opposing transducers
were wired in parallel and driven as a pair with a sinusoidal voltage
supply by a signal generator. Each of the two orthogonally arranged
pairs was operated at slightly different frequencies such that the
total acoustic radiation force field tended to the sum of the
force fields of the individual pairs at times greater than 8ms
(see Methods). As the response time of the droplets was
considerably greater than 8ms, this simple summation approach
was valid for all the experiments undertaken. Simulations of the
resultant acoustic standing wave pressure field showed a periodic
array of nodes and anti-nodes in a 2D grid-like pattern that
were associated with the minima (pressure nodes) and maxima
(pressure antinodes), respectively, of the Gor’kov potential
energy distribution (Fig. 1b,c). An aqueous solution of PDDA
(Mw¼ 100–200 kDa) was placed into the central chamber and
aqueous ATP then added in the presence of an acoustic standing
wave field generated from orthogonally arranged opposing
transducer pairs typically operating at 6.76/6.78 MHz or
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4.99/5.00 MHz with corresponding wavelengths of 219/218mm and
297/296mm, respectively (see Methods). Vigorous mixing of the
solutions gave rise to spontaneous liquid–liquid phase separation
and the formation of molecularly crowded PDDA/ATP coacervate
droplets that exhibited sufficient acoustic contrast to become
trapped by the acoustic radiation force. Migration and trapping of
the droplets at the pressure nodes of the acoustic field was
consistent with the increased density and bulk modulus of the
coacervate micro-droplets compared with the aqueous continuous
phase. Moreover, coalescence of the trapped coacervate droplets
in the pressure node was accelerated due to the second
acoustic radiation force that acts over short distances32. As a
consequence, the micro-droplets although initially trapped in the
three-dimensional field, slowly sedimented under gravity onto
the PEG functionalized glass substrate to produce a defect-free
square array of uniform-sized droplets with a lattice spacing that
was determined by half of the acoustic wavelength. Typically,
centre-to-centre spacings of 110 and 150mm were observed for
arrays produced under acoustic frequencies of 6.76/6.78 and
4.99/5.00 MHz, respectively (Fig. 1d,e). Doping of the polymer/
nucleotide mixtures with rhodamine isothiocyanate (RITC)-tagged
polyallylamine hydrochloride (PAH; polycationic polymer) or
trinitrophenol-ATP (TNP-ATP) produced acoustically ordered
arrays of fluorescent micro-droplets (Fig. 1f,g), and confirmed
the presence of the complex coacervate phase within the
droplets.

Optical microscopy video monitoring of the formation
of single droplets within the acoustic trap operating at
6.76/6.78 MHz (10 V) indicated that they were produced
simultaneously by in situ coalescence of sub-micrometer-sized

primary droplets that accumulated around each node in the early
stages of pattern formation (Fig. 2a and Supplementary Movie 1).
Accumulation and coalescence of multiple primary droplets at
each acoustic node was predominant up to 5 min after mixing
PDDA (1 ml, 5 mM monomer, 100–200 kDa) and ATP (100 ml,
50 mM), after which the trapped single droplets grew slowly over
a period of 45 min to attain a near uniform size with a mean
diameter of approximately 70 mm. When all the nodes were filled
with droplets (typically after 3 min), a plot of the average droplet
diameter against time was fitted to an exponential function
(R2¼ 0.991) (Fig. 2b), and measurements of the droplet
polydispersity index showed a marked increase in particle size
homogeneity within the first 9 min of acoustic trapping (Fig. 2c).
Thus, it was possible to control the size of the droplets while
maintaining a constant lattice spacing by removing the
supernatant from the sample chamber after various time
intervals to quench the coalescence process. For this, we used
the pseudo-kinetic plots shown in Fig. 2b as a calibration curve to
guide the preparation of 2D arrays with fixed spacing and
geometry but variable droplet size. Increasing the initial PDDA
and ATP concentrations accelerated droplet growth for the same
acoustic frequencies by increasing the rate of coalescence at the
acoustic nodes. For example, increasing the PDDA and ATP
concentrations to 7.5 and 75 mM, respectively, produced droplets
with a larger mean diameter (83 mm) within a shorter time
period (18 min) (Supplementary Fig. 2). Merging of single
droplets located at adjacent positions in the 2D array was also
more apparent at higher polymer concentrations (Supplementary
Fig. 3). Conversely, decreasing the initial concentrations in the
acoustic trapping device reduced the rate of droplet coalescence at
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Figure 1 | Acoustic patterning of coacervate micro-droplet arrays. (a) Schematic representation of the acoustic trapping device. Four piezoelectric

transducer (PZT) elements (purple cuboids) are arranged around a central square sample chamber, and driven as two pairs. Coacervate micro-droplets are

spontaneously assembled and patterned into 2D arrays within the chamber due to the periodic acoustic standing wave pressure field. Additional chambers

behind each of the PZTs are filled with water to provide cooling. (b) Simulation of the acoustic pressure distribution in the acoustic trapping device; high

pressure (red), low pressure (blue). Gradients in acoustic pressure cause the coacervate micro-droplets to be forced towards the acoustic pressure nodes

(blue). (c) Simulation showing the Gor’kov potential distribution in the acoustic trapping device. The separation distance between the nodes is half of the

acoustic wavelength (l). Inset shows single anti-node with local directions of the acoustic radiation force (arrows). (d,e) Optical microscopy images of

acoustically patterned PDDA/ATP droplets produced using transducer pairs operated at 6.76/6.78 MHz (10 V) by addition of ATP (100ml, 50 mM) to

PDDA (1 ml, 5 mM monomer, 100–200 kDa) contained in the sample holder (d), or at 4.99/5.00 MHz (10 V) (ATP, 200ml, 50 mM; PDDA, 2 ml, 5 mM

monomer) (e). The lattice spacing is increased at the lower acoustic frequency. Mean size of the droplets (ca. 110mm) in e is larger because of the

increased amounts of PDDA and ATP used in the preparations. (f,g) Fluorescence microscopy images of TNP-ATP (0.1 mol%) (f) and RITC-PAH-doped

(10 mol%) (g) PDDA/ATP droplets showing the presence of TNP-ATP and PAH throughout the interior of the coacervate phase. Images shown in d,f,g and

e were recorded at 45 and 30 min, respectively, after mixing the PDDA and ATP solutions. Scale bars, 150mm.
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the acoustic nodes (Supplementary Fig. 4). In general, the ratio
(RD/l ) of droplet diameter (D) to wavelength (l) was in the
range 0oRD/lo0.36, with an upper limit that was smaller than
expected theoretically (0oRD/lo0.5) due to premature merging
of adjacent droplets trapped at the nodes by accumulation of
relatively large droplets growing in the suspension during the
patterning process.

Similar procedures were used to self-assemble, trap and
acoustically pattern PDDA-containing coacervate micro-droplets
prepared from a range of components including proteins (bovine
serum albumin, BSA), polysaccharides (carboxymethyldextran,
CM-D), polynucleotides (double stranded DNA (dsDNA)) and
anionic polymers (polyacrylic acid, PAA), as well as coacervates
formed by complexation of polyethylenimine (PEI) and CM-D.
In general, the PDDA-containing coacervates were prepared
by placing the above solutions into the sample chamber of
the device followed by addition of PDDA (Mw¼ 8.5 kDa) in
the presence of two orthogonal acoustic standing waves
(6.76/6.78 MHz, 10 V) (see Methods). In each case, 2D arrays of
spatially organized single micro-droplets could be produced in
aqueous media via coalescence of primary droplets at the acoustic
nodes (Supplementary Figs 5–9).

Dynamical behaviour in coacervate micro-droplet arrays.
Given the propensity for coacervates to adopt a range of
physical and chemical properties depending on their composition,
surface charge, dehydration and complexation strength17–23,
we developed experimental procedures for controlling the
dynamical behaviour of the acoustically patterned droplets
when immersed in aqueous media. Binding of the droplets to
the underlying PEGylated glass substrate was modulated by
changes in composition and exploited to induce droplet
rotation and provide a method for immobilizing or dispersing
the arrays in water when the acoustic field was switched off.
Acoustically trapped PDDA (100–200 kDa)/ATP single droplets
were so strongly attached to the substrate that they adopted a
hemispherical morphology and exhibited minimal rotational
movement in the presence of the acoustic field (Supplementary
Fig. 10). As a consequence, they remained spatially fixed at the
lattice positions for extended periods of time (tZ12 h) when the
acoustic pressure was switched off. Acoustically trapped PDDA
(8.5 kDa)/CM-D single droplets in contrast were less firmly
attached to the PEGylated glass substrate and displayed spatially
confined localized spinning at the potential energy minima of the
pressure field possibly due to an acoustic streaming force
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Figure 2 | Growth of acoustically trapped coacervate micro-droplets. (a) Time-dependent optical microscopy images showing the growth of PDDA/ATP

coacervate droplets at the nodes of an acoustic standing wave pressure field generated by transducer pairs operating at 6.76/6.78 MHz (10 V). The images

were recorded at t¼0, 3, 5, 10, 15 and 45 min after addition of ATP (100ml, 50 mM) to a PDDA solution (1 ml, 5 mM monomer, 100–200 kDa) contained within

the sample chamber of the acoustic trapping device. Inset at t¼ 3 min: high-magnification image showing localized aggregate of coalescing primary droplets;

sub-micrometre-sized droplets are observed as indistinct areas of higher optical contrast surrounding the two larger droplets undergoing coalescence; scale

bars, 20mm (inset) and 50mm. (b) Plot showing change in mean diameter of PDDA/ATP coacervate micro-droplets against time during growth within the

acoustic field under the above conditions. An induction time of ca. 3 min was observed during which the primary sub-micrometer-sized droplets sedimented

onto the glass substrate. Error bars represent the standard deviation of the size of coacervate micro-droplets at different time intervals in the same device.

(c) Corresponding time-dependent plot of the polydispersity index (PDI) for PDDA/ATP micro-droplets shown in b after mixing PDDA and ATP.
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(Supplementary Movie 2). Attachment of the PDDA/CM-D
droplets was further reduced by addition of high molecular
weight fluorescein isothiocyanate (FITC)-CM-D (25 mol%) such
that the arrays slowly dispersed into bulk solution when the
acoustic field was removed.

Using a similar strategy, changes in composition, PDDA
molecular weight or charge ratio between the coacervate
components were exploited to promote or inhibit single droplet
formation at the nodes of the acoustic standing wave pressure
field by influencing the interfacial tension between the coalescing
primary droplets. Whereas 2D arrays of polymer-protein
PDDA/BSA single droplets were produced using a low
molecular weight PDDA (8.5 kDa), replacing the polymer with
a 100–200 kDa PDDA gave rise to a square grid comprising
aggregates of non-coalescing PDDA/BSA droplets that remained
trapped at the acoustic nodes (Supplementary Fig. 11). We
attributed these differences to increases in the relaxation time
and viscosity of the coacervate droplets prepared with high
molecular weight PDDA (ref. 40). Aggregates of non-coalescing
primary droplets with a mean diameter of 310 nm and net
negative surface charge (� 20 mV) (Supplementary Fig. 12) were
also patterned in acoustically trapped arrays prepared from
mixtures of PDDA (8.5 kDa), FITC-tagged CM-D and CM-D
(Fig. 3a,b). Significantly, by using FITC-CMD in the above
preparations, we were able to generate ordered arrays of

aggregates that were only loosely attached to the underlying
substrate. As a consequence, modulations in the acoustic
radiation force could be used to generate fast (o1 min) and
reversible changes in the shape and spatial configuration of the
droplet aggregates to produce dynamical patterns capable of
exchanging matter between adjacent nodes in the acoustic field.
For example, by exciting transducer pairs that operated in-phase
at the same frequency (6.76 MHz) we were able to transform the
localized aggregates into new spatial configurations (Fig. 3c,d and
Supplementary Movie 3)41. In addition, patterns of discrete
spherical aggregates could be reversibly transformed in aqueous
media into vertically or horizontally oriented elliptical shapes,
further distorted into continuous fringes of micrometre-sized
coacervate droplets, and then recapitulated by switching on/off
the corresponding pairs of piezoelectric transducers (Fig. 3e–g
and Supplementary Movie 4).

Molecular uptake and spatially positioned enzyme activity. We
prepared acoustically trapped arrays of chemically encoded
single droplets by spontaneously sequestering water-soluble
organic dyes of different charge, proteins, enzymes, polystyrene
nanoparticles or silica microparticles into the molecularly
crowded PDDA/ATP droplets during or after the assembly
process in aqueous media (Fig. 4a–f and Supplementary Fig. 13).
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Figure 3 | Dynamical behaviour of acoustically trapped coacervate micro-droplets. (a) Optical microscopy image showing acoustically patterned 2D array

comprising discrete spherical aggregates of non-coalescing sub-micrometre-sized PDDA/FITC-CM-D/CM-D coacervate droplets. The optical contrast

originates from the collection of micro-droplets within each aggregate; individual droplets are too small to be clearly resolved. The droplets were prepared by

adding PDDA (100ml, 50 mM monomer, 8.5 kDa) to 1 ml of a CM-D (36 mM)/FITC-CM-D (9 mM) mixture contained within the sample chamber of an

acoustic trapping device using two orthogonal transducer pairs operating at different frequencies (6.76/6.78 MHz, 10 V); scale bar, 100mm. (b) Simulation of

the acoustic field shown in a showing the Gor’kov potential distribution in the acoustic trapping device; high pressure (red), low pressure (blue). (c) Optical

microscopy image of sample shown in a but using orthogonal transducer pairs operating in-phase at the same frequency (6.76 MHz, 10 V) to produce a 2D

array of non-spherical coacervate micro-droplet aggregates; scale bar, 100mm. (d) Simulation of the acoustic field shown in c showing the Gor’kov potential

distribution in the acoustic trapping device; high pressure (red), low pressure (blue). (e,f) Time-dependent series of fluorescence microscopy images showing

acoustically induced reversible transformation of a square lattice of discrete spherical aggregates of non-coalescing sub-micrometre PDDA/FITC-CM-D/

CM-D coacervate droplets into elliptical arrangements and continuous vertical fringes (e) followed by recapitulation of the 2D array and subsequent reversible

manipulation of the square lattice into horizontal lines of non-interacting coacervate micro-droplets (f); t¼ time in seconds after switching on/off the

corresponding pairs of piezoelectric transducers (PZTs); scale bar, 100mm. (g) Simulation of the acoustic pressure distribution in the acoustic trapping device

operating with only one pair of PZTs; high pressure (red), low pressure (blue).
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For example, uptake of FITC-tagged glucose oxidase (FITC-GOx)
was achieved by injecting an ATP solution into a pre-mixed
PDDA/FITC-GOx solution contained within the device under an
acoustic radiation force field (Supplementary Fig. 14). Measure-
ments of the time-dependent changes in FITC-GOx
mean fluorescence intensity at the acoustic pressure nodes
and antinodes showed progressive increases and decreases,
respectively, over the initial 30 min period (Fig. 4g), indicating
that FITC-GOx was spontaneously sequestered into the
assembling coacervate droplets. Corresponding mean
fluorescence line intensity measurements recorded over the initial
30 min across a row of FITC-GOx-containing PDDA/ATP
coacervate droplets showed the emergence of a periodic
one-dimensional profile with a spacing of ca. 110mm (Fig. 4h)
and highly uniform local intensity distributions (Fig. 4i),
indicating that droplets with comparable enzyme concentrations
could be readily produced by acoustic trapping.

Based on the capability of the acoustically trapped coacervate
droplets to sequester a range of water-soluble molecules during
pattern formation, we developed a method for preparing spatially
positioned populations of different functional arrays within
the same sample chamber. For this, we inhibited the formation
of a single extended uniform array throughout the chamber
by limiting local molecular diffusion on mixing PDDA
(100–200 kDa) and ATP. This was achieved by reversing the
standard location of the PDDA and ATP solutions such that ATP

was contained within the sample chamber and a small volume of
PDDA along with an enzyme then gently injected at a localized
position and the mixture left undisturbed in the acoustic field.
Consequently, the ATP: PDDA monomer molar ratio was 100: 1
rather than 1: 1, and coacervation occurred immediately around
the point of injection to produce primary droplets that coalesced
in the acoustic field to generate a highly localized array of
enzyme-containing single droplets (Supplementary Fig. 15).
By repeating this procedure but using three different enzymes
with relatively high partition constants (K) (GOx, K¼ 60;
amyloglucosidase (AGx, K¼ 355); or horseradish peroxidase
(HRP), K¼ 62)) in the injected PDDA solutions, we were able to
prepare distinct spatial domains of functional droplet arrays
within the same device (Fig. 5a).

Given the above observations, we reasoned that it should be
possible to develop acoustic trapping protocols for the
preparation of water-based droplet arrays capable of sensing
specific chemicals in the environment. As proof-of-principle we
acoustically patterned an array of HRP-containing PDDA/ATP
coacervate micro-droplets at a spacing of ca. 110 mm, and exposed
the pattern to a gradient of H2O2 and o-phenylenediamine
(o-PD) by diffusing the substrate mixtures specifically from one
side of the device. Conversion of non-fluorescent o-PD to
fluorescent cationic 2,3-diaminophenazine (2,3-DAP) by the
coacervate droplet-sequestered enzyme was recorded by
fluorescence microscopy42,43. Within a few minutes of injecting
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Figure 4 | Chemical encoding of acoustically patterned coacervate micro-droplets. (a–f) Fluorescence microscopy images of acoustically patterned

PDDA/ATP coacervate droplets containing methylene blue (a), calcein (b), sulforhodamine B (c), nile red (d), FITC-labelled 100 nm-sized polystyrene

particles (partition constant¼4,000) (e) or FITC-GOx (f); scale bars, 100mm. (g) Plots of time-dependent increase and decrease in FITC-GOx mean

fluorescence intensity measured at the acoustic nodes (red curve) and antinodes (blue curve), respectively, after addition of ATP (50ml, 25 mM) to a

premixed solution of PDDA (1 ml, 2.5 mM, monomer, 8.5 kDa) and FITC-GOx (1mg ml� 1) solution under an acoustic standing wave pressure field

(6.76/6.78 MHz, 10 V). Error bars represent the standard deviation of the mean fluorescence intensities at acoustic nodes (red) or antinode (blue) at

different time intervals in the same device. (h) Mean fluorescence line intensity profiles recorded across FITC-GOx-containing PDDA/ATP coacervate

droplets prepared as in g after 0 (black line), 10 (blue line) and 30 min (red line) of exposure in the acoustic trapping field. (i) Statistical counts of mean

fluorescence intensity of FITC-GOx-containing PDDA/ATP droplets after 30 min. Sample was prepared as in g. Images shown in a–e and f were recorded at

45 and 30 min, respectively, after mixing. a.u., arbitrary unit.
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the small molecule substrates the fluorescence images showed a
clear response to the environmental stimulus in the form of a
chemical wavefront that propagated through the coacervate
micro-droplet array (Fig. 5b). Measurements of the fluorescence
associated with HRP-mediated 2,3-DAP production in individual
coacervate droplets positioned along a single row lying parallel to
the direction of diffusion showed a lag time of ca. 12 s between
adjacent droplets (Fig. 5c). Line profiles recorded along the
direction of diffusion at different time intervals showed that the
output signals of each droplet were strongly dependent on their
spatial positions (Fig. 5d). Moreover, although the droplets were
activated at different times depending on their proximity to the
diffusion front, the rate of change in mean fluorescence intensity
was similar for each droplet (Fig. 5c), suggesting that the
enzymatic response was effectively unchanged across the 2D
array. In contrast, only marginal differences in activation were
observed between adjacent droplets positioned in single rows
lying perpendicular to the diffusion front (Fig. 5e).

Discussion
Our results indicate that structured acoustic radiation forces are a
powerful, versatile and inexpensive tool to manipulate the spatial
assembly of uniform-sized coacervate micro-droplets in aqueous
media to produce functional water-based molecularly crowded

liquid droplet periodic arrays comprising selective chemicals,
biomolecules and catalysts. Patterning functional water-based
droplets in aqueous media is challenging because of the minimal
acoustic contrast, structural instability associated with low
interfacial tension, and difficulty of sequestering solutes into the
droplets due to the small values of the equilibrium partitioning
constants. These challenges have been circumvented by combining
an acoustic standing wave force field with in situ complex
coacervation to generate defect-free arrays of single coacervate
droplets or droplet aggregates arranged in 2D lattices with
controllable spacing, variable surface-attachment properties and
reversible dynamical behaviour. The final size of the droplets can
be controlled by changes in the chemical concentrations or by
quenching coalescence of the primary droplets to produce 2D
arrays with fixed spacing and geometry but variable droplet size.
While our studies have focused on the generation of square grids, it
should be straightforward to extend the methodology to more
complex droplet patterns through appropriate geometrical recon-
figuration of the piezoelectric transducers and sample chamber44.

A key advantage of the described methodology is associated with
the diverse physical and chemical properties of coacervates, which
can be readily tailored by changes in composition, binding
constants, dehydration and surface charge17–23. As a consequence,
coacervate micro-droplets exhibiting variable viscosities, different
levels of molecular crowding and surface adherence, and diverse
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Figure 5 | Spatial positioning of mixed populations and enzyme activity. (a) Fluorescence microscopy image showing three spatially positioned domains

of enzyme-containing PDDA (100–200 kDa)/ATP droplet arrays with sequestered GOx (green), AGx (blue) or HRP (red) (see arrows). The ensemble was

prepared by sequentially adding premixed solutions of PDDA (1ml, 25 mM, monomer)/FITC-GOx (0.2 mg ml� 1), PDDA (1 ml, 25 mM monomer)/AGx

(0.2 mg ml� 1), or PDDA (1ml, 25 mM, monomer)/RITC-HRP (0.2 mg ml� 1) to ATP (1 ml, 2.5 mM) contained within the acoustic trapping device operating

under an acoustic standing wave pressure field (6.76/6.78 MHz, 10 V). (b) Fluorescence microscopy image of an acoustically patterned 2D array of

110mm-spaced HRP-containing PDDA (100–200 kDa)/ATP coacervate droplets recorded 250 s after diffusion of H2O2/o-PD into one side of the reaction

chamber along the y direction (arrows). Formation of the fluorescent 2,3-DAP product is observed in the form of a chemical wave-front that transits across

the droplet array; scale bars in a and b, 100 mm. (c) Plots of time-dependent changes in 2,3-DAP fluorescence mean intensity associated with patterned

HRP-containing PDDA/ATP coacervate micro-droplets positioned 110 mm apart along a single row aligned parallel to the direction of H2O2/o-PD diffusion

(y axis in b). Plots for three droplets positioned at alternate lattice points lying parallel to the diffusion direction (y axis) and at increasing distances

from the advancing wave-front (redogreenoblue) are shown. A time lag of ca. 12 s is observed between droplets position on adjacent lattice points.

(d) Fluorescence line intensity profiles recorded across a single row of HRP-containing PDDA/ATP droplets aligned along the direction of diffusion

(y axis in b) 50, 100, 150, 200, 225, 250, 275 and 300 s after injection of H2O2/o-PD into the reaction chamber. (e) Similar plots as in c but for three

droplets positioned at alternate lattice points in a row lying perpendicular to the diffusion front showing minimal differences in their enzymatic activity at a

given time. a.u., arbitrary unit.
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sequestration of small molecules and macromolecules can be easily
prepared using a wide range of components and conditions.
Acoustic patterning of such droplets could, therefore, provide steps
towards new types of aqueous-based arrays for use in the storage
and spatially ordered release of drugs such as antimicrobials from
2D platforms, as ordered substrates for the patterning of micro-
reactors based on DNA/enzyme sensing, and as organized
platforms for biomolecule purification and protein crystallization.
In each case, the high sequestration potential and relatively low
dielectric constant of the molecularly crowded coacervate droplets
specifically enable the selective uptake, storage and potential
communication of a wide range of functional components
capable of operating dynamically in a continuous aqueous media.

Finally, we describe a rudimentary demonstration of using
chemically encoded droplet arrays for the enzyme-mediated
sensing of substrate molecules flowing through the sample
chamber, suggesting that it should be possible to develop devices
capable of sustaining chemical signals between the droplets as well
as enabling spatial and temporal responses to changing conditions
in the external environment. While this is a challenging prospect,
the ability to spatially position multiple populations of functionally
correlated droplets under water within the same device, such as
three members of an enzyme cascade reaction as shown in Fig. 5a,
control their surface attachment, and acoustically regulate their
inter-droplet edge distance to control the diffusion length of
signalling molecules could together provide the basis for increased
operational complexity. In this regard, we note that coacervate
micro-droplets have been recently exploited as models of
membrane-free protocells24–29, suggesting that the combination
of acoustic patterning and in situ coacervation could provide a
novel route towards the design and construction of protocell
communities with controllable spatial organization, programmable
signalling pathways and chemical circuitry, and higher order
collective behaviour.

Methods
Acoustic trapping. A custom-built acoustic trapping device based on a square
arrangement of four piezoelectric transducers with a thickness of 1 mm (Noliac,
NCE 51, L15�W2 mm) or 0.4 mm (Noliac, NCE 51, L15�W5 mm) was used.
The opposing transducer pairs were wired in series, driven by two signal generators
(Agilent 33220a-001), and connected to an oscilloscope (Agilent DSOX2014A).
The orthogonal transducer pairs were run at slightly different frequencies during
the trapping process. Transducer pairs with a thickness of 1 or 0.4 mm were
operated at the third harmonic frequency (6.76/6.78 MHz) or at their fundamental
frequency (4.99/5.00 MHz), respectively. The corresponding wavelengths were
219/218 mm (6.76/6.78 MHz) and 297/296 mm (4.99/5.00 MHz).

Acoustic-mediated assembly and geometric patterning. Neutrally charged
PDDA/ATP coacervate micro-droplets were prepared in situ within a custom-built
acoustic trapping device based on a square arrangement of four piezoelectric
transducers. Typically, an aqueous solution of PDDA (1 ml, 5 mM monomer,
100–200 kDa) was placed into the device chamber and aqueous ATP (100 ml,
50 mM) then added in the presence of two orthogonal acoustic standing waves
generated from opposing transducer pairs operating at 6.76/6.78 MHz (10 V).
Experiments were also undertaken under the same field conditions but at different
polymer and nucleotide concentrations (PDDA; 1 ml, 2.5 and 7.5 mM monomer,
100–200 kDa; ATP; 100ml , 25 and 75 mM). Solution volumes were doubled
(PDDA, 2 ml, 5 mM monomer; ATP, 200 ml, 50 mM) for trapping experiments
undertaken with transducer pairs operating at lower frequencies of 4.99/5.00 MHz.
In all cases, the PDDA monomer: ATP molar ratio was approximately 1: 1,
mixtures were stirred to ensure homogeneous formation of the coacervate droplets
in the square chamber, and the pH was adjusted to 7. The composition of the
trapped coacervate micro-droplets was elucidated using fluorescence microscopy
by doping the polymer/nucleotide mixtures with a fluorescent derivative of ATP
(TNP-ATP) or a rhodamine-tagged cationic polymer (RITC-PAH). Samples of
doped PDDA/ATP droplets were prepared with a TNP-ATP: ATP or PAH: PDDA
monomer molar ratios of 1:1000, or 1:9, respectively.

Similar procedures were used to self-assemble, trap and acoustically pattern
coacervate PDDA-containing coacervate micro-droplets prepared from a range of
components including proteins (BSA), polysaccharides (CM-D), polynucleotides
(dsDNA) and anionic polymers (PAA), as well as coacervates formed by
complexation of PEI and CM-D. In each case, solutions of BSA (1 ml, 5 mg ml� 1,

pH 7), CM-D (1 ml, 45 mM monomer, pH 8), 4/1 (mol/mol) CM-D/FITC-CM-D
mixtures (1 ml, 45 mM total monomer, pH 8), dsDNA (1 ml, 5 mg ml� 1, Tris
buffer (10 mM, pH 8)) or PAA (100 ml, 200 mM monomer, pH 8) were placed in
the chamber of the acoustic device operating with two orthogonal acoustic standing
waves (6.76/6.78 MHz, 10 V), and the following amounts of PDDA with a
molecular weight of 8.5 kDa added: BSA (62 ml, 50 mM monomer, pH 7), CM-D
(75 ml, 100 mM monomer, pH 8), 4/1 (mol/mol) CM-D/FITC-CM-D mixtures
(75 ml, 100 mM monomer, pH 8), dsDNA (100 mM, 150 ml, 8.5 kDa, monomer, Tris
buffer (10 mM, pH¼ 8)) or PAA (1 ml, 20 mM monomer, pH 8). Typically, a
PDDA: BSA weight ratio of 1: 10, and PDDA: CM-D, PDDA: DNA base, and
PDDA: PAA monomer molar ratios of approximately 1: 6, 1: 1 and 1: 1,
respectively, were used. PEI/CM-D coacervate droplets were prepared by injecting
an aqueous solution of PEI (50 ml, 300 mM monomer) into a CM-D solution
(1 ml, 15 mM monomer) housed in the chamber of the acoustic device operating
with two orthogonal acoustic standing waves (6.76/6.78 MHz, 10 V) to give a final
monomer molar ratio of 1: 1 and pH 8. In each case, the mixtures were stirred to
ensure a homogeneous formation of coacervate droplets in the square chamber.

Uptake studies in PDDA/ATP droplet arrays. Acoustically patterned arrays of
PDDA/ATP droplets were prepared as above (6.76/6.78 MHz, 10 V) in the presence of
methylene blue (10ml, 1 mM), nile red (10ml, 1 mM), sulforhodamine B (10ml, 1 mM)
or calcein (1ml, 1 mM), and fluorescence images recorded after 15 min to determine
the level of molecular uptake. Sequestration of polymer or inorganic particles into the
acoustically trapped droplets was undertaken by injecting 100ml of premixed
polystyrene nanoparticles (100 nm, 5� 10� 2 wt.%) or silica microparticles (2.5mm,
2.5� 10� 2 wt.%) and aqueous ATP (100ml, 50 mM) into a PDDA solution (1 ml,
5 mM monomer; PDDA monomer: ATP¼ 1, pH ¼ 7) contained with the device and
subjected to two orthogonal acoustic standing waves (6.76/6.78 MHz, 10 V).
The mixtures were stirred to ensure homogeneous formation of the coacervate dro-
plets in the square chamber. Three-dimensional confocal microscopy construction of
the silica microparticle-containing PDDA/ATP droplets was undertaken by adding
sulforhodamine B (10ml, 1 mM) to the coacervate micro-droplet array after 45 min of
acoustic processing. In situ sequestration of FITC-GOx into PDDA/ATP acoustically
trapped micro-droplet arrays was achieved by injecting aqueous ATP (100ml, 50 mM)
into 1 ml of PDDA (8.5 kDa, 5 mM monomer) containing FITC-GOx (1mg ml� 1) in
the presence of two orthogonal acoustic standing waves (6.76/6.78 MHz, 10 V;
PDDA monomer: ATP¼ 1, pH¼ 7). Partition coefficients (K) for dye molecules and
enzymes were determined by measuring the concentrations (C) in the supernatant
(super) and coacervate (coac) phase, and given as K¼Ccoac/Csuper. Concentrations
were determined from characteristic absorption/emission spectra according to
previously reported methods25.

Spatial organization of acoustically trapped PDDA/ATP droplet arrays. A 1 ml
volume of a pre-mixed solution of PDDA (25 mM monomer, 100–200 kDa) and
FITC-GOx (0.2 mg ml� 1) were gently added to an ATP solution (1 ml, 2.5 mM)
contained within the chamber of an acoustic trapping device in the presence of two
orthogonal acoustic standing waves (6.76/6.78 MHz, 10 V). After injection, the
device was left undisturbed so that enzyme-containing coacervate micro-droplets
were formed specifically at the nodal regions within a localized area close to the
point of injection of the PDDA/FITC-GOx mixture. A mixture (1 ml) of PDDA
(25 mM monomer) and RITC-HRP (0.2 mg ml� 1) was then injected under the
same acoustic standing wave field at a different location in the ATP-filled chamber
so that two spatially separated arrays of PDDA/ATP droplets containing either
FITC-GOx or RITC-HRP were obtained. Repeating this procedure with a mixture
of PDDA (1 ml, 25 mM monomer) and Dylight 405-AGx (0.2 mg ml� 1) produced a
third population of PDDA/ATP droplets within the device chamber.

Enzyme reactions in acoustically trapped droplets. A mixture (1 ml) of PDDA
(25 mM monomer, 100–200 kDa) and RITC-HRP (0.2 mg ml� 1) was added to
1 ml of ATP (2.5 mM) in the presence of two orthogonal acoustic standing waves
(6.76/6.78 MHz, 10 V). After 45 min, the acoustic field was switched off and then
the supernatant was carefully removed and exchanged with Milli-Q water three
times without disturbing the array of coacervate micro-droplets. 20 ml of a
mixture of H2O2 (50 mM) and o-phenylenediamine (o-PD, 25 mM) was then
added at the bottom of the device, and left undisturbed. Fluorescence microscopy
(lex¼ 355–425 nm, lem¼ 455 nm) was used to detect the HRP-mediated
conversion of non-fluorescence o-PD to fluorescence cationic 2,3-DAP.

Simulation methods. Each opposed transducer pair is excited with a sinusoidal
voltage and after an initial transient period an acoustic standing wave is established
in the chamber. If reflections are ignored, the standing wave can be thought of as
the sum of two counter-propagating plane waves according to a previous
approach45. The total acoustic pressure in the devices is then given by the sum of
the two standing waves created by the orthogonal pairs:

p ¼ p1ðeik1x þ e� ik1xÞeio1 t þ p2ðeik2y þ e� ik2yÞeio2 t : ð1Þ
where k1 ¼ o1

c0
and o1 is the angular frequency in rad/s and c0 is the speed of sound

in the host fluid. The numerical subscript denotes the orthogonal pair under
consideration, and is required as the transducer pairs were often operated at
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different frequencies. The Cartesian axes are defined by x and y. Transducer pair-1
creates a standing wave in x whereas transducer pair-2 creates a standing wave in y.
Gor’kov described the forces as resulting from a potential field, U. Using
this approach the acoustic radiation force, ~F, can be found from

~F ¼ �rU ; ð2Þ

U ¼ 4p
3

a3 f1
1

2r0c2
0

pj j2
� �

� f2
3
4
r0 ~vj jh i2

� �
ð3Þ

f1 ¼ 1� r0c2
0

rpc2
p

and f2 ¼
2 rp=r0 � 1
� �
2rp=r0 þ 1

; ð4Þ

where pj j2
� �

and ~vj j2
� �

are the mean squared pressure and particle velocity
respectively at the object, a is the radius of the spherical object, r is the density and
the subscripts denote the particle, ‘p’, or host, ‘o’ properties. Note also, for a
harmonic sound field,~v ¼ 1

ior0
rp.

In devices where the transducers were operated at the same frequency, equation
(1) was applied directly to the resultant pressure field. In cases where each of the
transducer pairs were operated at different frequencies, equation (1) was applied to
the field from each pair separately and the results summed. This latter calculation
assumes that any interference between these two fields averages to zero, which is
the case for time periods significantly greater than the modulation time,
Tm ¼ 1

o2 �o1
¼ 8ms.

Data availability. All underlying data are included in full within this paper and in
the supplementary information.

References
1. Huebner, A. et al. Microdroplets: a sea of applications? Lab Chip 8, 1244–1254

(2008).
2. Chiu, D. T., Lorenz, R. M. & Jeffries, G. D. Droplets for ultrasmall-volume

analysis. Anal. Chem. 81, 5111–5118 (2009).
3. Gorris, H. H. & Walt, D. R. Analytical chemistry on the femtoliter scale.

Angew. Chem. Int. Ed. 49, 3880–3895 (2010).
4. Li, L. & Ismagilov, R. F. Protein crystallization using microfluidic technologies

based on valves, droplets and SlipChip. Annu. Rev. Biophys. 39, 139–158
(2010).

5. Song, H., Chen, D. L. & Ismagilov, R. F. Reactions in droplets in microfluidic
channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006).

6. Pompano, R. R., Liu, W. S., Du, W. B. & Ismagilov, R. F. Microfluidics using
spatially defined arrays of droplets in one, two, and three dimensions.
Annu. Rev. Anal. Chem. 4, 59–81 (2011).

7. Jebrail, M. J., Bartsch, M. S. & Patel, K. D. Digital microfluidics: a versatile tool
for applications in chemistry, biology and medicine. Lab Chip 12, 2452–2463
(2012).

8. Jackman, R. J., Duffy, D. C., Ostuni, E., Willmore, N. D. & Whitesides, G. M.
Fabricating large arrays of microwells with arbitrary dimensions and
filling them using discontinuous dewetting. Anal. Chem. 70, 2280–2287 (1998).

9. Kobaku, S. P., Kota, A. K., Lee, D. H., Mabry, J. M. & Tuteja, A. Patterned
superomniphobic-superomniphilic surfaces: templates for site-selective
self-assembly. Angew. Chem. Int. Ed. 51, 10109–10113 (2012).

10. Popova, A. A. et al. Droplet-array (DA) sandwich chip: a versatile platform for
high-throughput cell screening based on superhydrophobic-superhydrophilic
micropatterning. Adv. Mater. 27, 5217–5222 (2015).

11. Arrabito, G., Galati, C., Castellano, S. & Pignataro, B. Luminometric
sub-nanoliter droplet-to-droplet array (LUMDA) and its application
to drug screening by phase I metabolism enzymes. Lab Chip 13, 68–72 (2013).

12. Sun, Y. N., Zhou, X. G. & Yu, Y. D. A novel picoliter droplet array for parallel
real-time polymerase chain reaction based on double-inkjet printing. Lab Chip
14, 3603–3610 (2014).

13. Kim, B. et al. Control of charged droplets using electrohydrodynamic repulsion
for circular droplet patterning. J. Micromech. Microeng. 21, 075020 (2011).

14. Timonen, J. V. I., Latikka, M., Leibler, L., Ras, R. H. A. & Ikkala, O. Switchable
static and dynamic self-assembly of magnetic droplets on superhydrophobic
surfaces. Science 341, 253–257 (2013).

15. van Swaay, D., Tang, T.-Y. D., Mann, S. & deMello, A. Microfluidic formation
of membrane-free aqueous coacervate droplets in water. Angew. Chem. Int. Ed.
54, 11429–11432 (2015).

16. Tavana, H. et al. Nanolitre liquid patterning in aqueous environments for
spatially defined reagent delivery to mammalian cells. Nat. Mater. 8, 736–741
(2009).

17. Kizilay, E., Kayitmazer, A. B. & Dubin, P. L. Complexation and coacervation of
polyelectrolytes with oppositely charged colloids. Adv. Colloid Interface Sci.
167, 24–37 (2011).

18. van der Gucht, J., Spruijt, E., Lemmers, M. & Stuart, M. A. C. Polyelectrolyte
complexes: Bulk phases and colloidal systems. J. Colloid Interface Sci. 361,
407–422 (2011).

19. de Kruif, C. G., Weinbreck, F. & de Vries, R. Complex coacervation of proteins
and anionic polysaccharides. Curr. Opin. Colloid Interface Sci. 9, 340–349
(2004).

20. Schmitt, C. & Turgeon, S. L. Protein/polysaccharide complexes and coacervates
in food systems. Adv. Colloid Interface Sci. 167, 63–70 (2011).

21. Johnson, N. R. & Wang, Y. D. Coacervate delivery systems for proteins and
small molecule drugs. Expert Opin. Drug Deliv. 11, 1829–1832 (2014).

22. MacEwan, S. R. & Chilkoti, A. Applications of elastin-like polypeptides in drug
delivery. J. Control. Release 190, 314–330 (2014).

23. Xu, Y. S., Mazzawi, M., Chen, K. M., Sun, L. H. & Dubin, P. L.
Protein purification by polyelectrolyte coacervation: influence of protein
charge anisotropy on selectivity. Biomacromolecules 12, 1512–1522
(2011).

24. Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide-nucleotide
microdroplets as a step towards a membrane-free protocell model. Nat. Chem.
3, 720–724 (2011).

25. Williams, D. S. et al. Polymer/nucleotide droplets as bio-inspired functional
micro-compartments. Soft Matter 8, 6004–6014 (2012).

26. Aumiller, W. M. & Keating, C. D. Phosphorylation-mediated RNA/peptide
complex coacervation as a model for intracellular liquid organelles. Nat. Chem.
8, 129–137 (2016).

27. Crosby, J. et al. Stabilization and enhanced reactivity of actinorhodin polyketide
synthase minimal complex in polymer-nucleotide coacervate droplets.
Chem. Commun. 48, 11832–11834 (2012).

28. Yin, Y. et al. Non-equilibrium behaviour in coacervate-based protocells under
electric-field-induced excitation. Nat. Commun. 7, 10658 (2016).

29. Tang, T.-Y. D., van Swaay, D., deMello, A., Anderson, J. L. R. & Mann, S.
In vitro gene expression within membrane-free coacervate protocells.
Chem. Commun. 51, 11429–11432 (2015).

30. Bruus, H. Acoustofluidics 7: the acoustic radiation force on small particles.
Lab Chip 12, 1014–1021 (2012).

31. Baker, N. V. Segregation and sedimentation of red blood-cells in ultrasonic
standing waves. Nature 239, 398–399 (1972).

32. Evander, M. & Nilsson, J. Acoustofluidics 20: applications in acoustic trapping.
Lab Chip 12, 4667–4676 (2012).

33. Ding, X. Y. et al. On-chip manipulation of single microparticles, cells,
and organisms using surface acoustic waves. Proc. Natl Acad. Sci. USA 109,
11105–11109 (2012).

34. Caleap, M. & Drinkwater, B. W. Acoustically trapped colloidal crystals that
are reconfigurable in real time. Proc. Natl Acad. Sci. USA 111, 6226–6230
(2014).

35. Marzo, A. et al. Holographic acoustic elements for manipulation of levitated
objects. Nat. Commun. 6, 8661 (2015).

36. Collins, D. J. et al. Two-dimensional single-cell patterning with one cell per well
driven by surface acoustic waves. Nat. Commun. 6, 8686 (2015).
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