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Abstract—In the IEEE 802.11p standard addressing vehicular
communications, Basic Safety Messages (BSMs) can be bundled
together and relayed as to increase the effective communication
range of transmitting vehicles. This process forms a vehicular
ad hoc network (VANET) for the dissemination of safety infor-
mation. The number of “shortest multihop paths” (or geodesics)
connecting two network nodes is an important statistic which can
be used to enhance throughput, validate threat events, protect
against collusion attacks, infer location information, and also
limit redundant broadcasts thus reducing interference. To this
end, we analytically calculate for the first time the mean and
variance of the number of geodesics in 1D VANETs.

I. INTRODUCTION

Vehicular ad-hoc networks (VANETs) are formed by ve-
hicles, wirelessly connected in a communication network.
VANETs dynamically and rapidly self-organise on roads and
highways and can communicate with road side access point in-
frastructure. Primarily, vehicle to vehicle (V2V) and vehicle to
infrastructure (V2I) communications involve safety related is-
sues, such as collision warnings aimed at preventing imminent
car accidents through broadcasting and relaying messages,
thereby increasing local situation awareness [1]. V2V and V2I
communications can also be exploited for applications such
as intelligent cruise control or platooning, traffic information
and management, as well as internet access and advertising.
This paper is concerned with multi-hop communications in
1D VANETs, characterised by roads with no sharp bends and
width much smaller than the wireless transmission range [2].

The IEEE 802.11p standard defines a wireless area network
(WLAN) for dedicated short range communication (DSRC)
among vehicles. The standard defines protocols for the phys-
ical and MAC layers, has a 75 MHz bandwidth allocated at
5.9 GHz, and is the prime candidate currently being deployed
in order to get IEEE 802.11p equipped cars on the roads
[3]. Under the standard, it is possible to bundle together
information on position, speed, direction, brake information,
steering wheel angle, threat-events, etc., and append them to a
basic safety message (BSM) which is then broadcasted [4], [5].
Vehicles within range can then actuate on this information, edit
it, or append to the content message, and re-broadcast, thus
locally flooding the network.

Flooding algorithms are commonplace in ad hoc networks,
however here the algorithm is also spatially constrained to
run along a one-dimensional road network. Such networks are
typically modelled as random geometric graphs [6] formed
by a 1D Poisson point process (PPP) and a communication
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Fig. 1. A one-dimensional unit disk graph (r0 = 1) used to model a VANET.
The geodesic length between the two extreme nodes is k = 3.

range r0 (see Fig.1) directly related to SNR [7] thus lending
themselves to mathematical analysis and engineering. A major
challenge in VANETs is the timeliness and latency in which
information must arrive to be useful to a fast approaching
vehicle. Hop-count statistics find application in a variety of
other settings, e.g., in gas pipe sensor networks [8], nanowires
[9], and map navigation problems in general. Therefore, hop-
count statistics have been extensively studied in 1D [10] and
2D networks [11], [12]. They were first studied by Chandler
[12], who looked at the probability that two wireless network
nodes can communicate in k hops. Such information can
further assist the calculation of network centrality measures
[13], or achieve range-free localisation [14].

In this paper we are concerned with the statistical properties
of the shortest multihop paths, also referred to as geodesics,
between nodes in 1D VANETs. To this end, we calculate
for the first time the first few moments of the number of
geodesics σ between nodes in a 1D VANET, as a function of
the Euclidean distance L between them and the vehicle density
λ. Clearly for L∈((k−1)r0, kr0), the shortest possible path is
of length k hops, employing just k−1 relay nodes, thus defin-
ing a fundamental upper limit on the latency involved with
such transmissions. On the other hand, due to the broadcast
nature of wireless transmissions, multiple BSMs containing
similar information may arrive via different k-hop paths almost
simultaneously. It is therefore of interest to understand the
statistical properties of the number of k-hop paths σk, as
a function of r0, L, and λ. Such statistics can be used to
enhance throughput [15], validate threat events, protect against
collusion attacks, infer location information, and also limit
redundant broadcasts thus reducing interference. Moreover,
calculating shortest paths is a computationally challenging task
[16] which hop-count statistics can alleviate.

II. SYSTEM MODEL

Consider a source node S located at the origin, and a
destination node D a distance L>2r0 to the right of S along
the positive real line. Further, consider a 1D PPP of density
λ vehicles per unit length forming on the real line, with each
point (node) representing a vehicle along an infinite stretch
of road. Nodes are then connected via communication links
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Fig. 2. System Model: All 3-hop paths between source (S) and destination
(D) nodes separated by a distance L ∈ (2r0, 3r0) must involve at least 1
relay node located in each of the shaded “lenses”.

Fig. 3. Probability mass function of the shortest paths σ for r0=1, λ=20,
and L=2.5, 3.5, such that geodesics are of length 3, and 4 respectively.

whenever their Euclidean distance is less than a predefined
communication range r0 (see Fig. 2), thus forming a 1D
network. The source and destination nodes are unable to com-
municate directly and must employ multihop communications
in order to share information. We assume a separation in the
time scales in that the messages are sufficiently fast relative
to the nodes so that we assume a static network during a
multihop transmission. Furthermore we assume a simplified
MAC and PHY with no collision avoidance mechanism and a
binary communication range mode i.e. the unit disk connection
model. Depending on the density of vehicles λ, there may be
none, one, or several multihop paths connecting S and D.
The length of these paths is the number of hops required for a
message to pass between the two vehicles. It follows that the
length of the shortest multihop paths is k= d Lr0 e. Therefore,
paths of length k are geodesic. Running a breadth-first search
(BFS) algorithm can find all geodesic paths in linear-time since
the underlying graph is neither directed, nor weighted. Let
the set of all geodesics be described by Σ(r0, L, λ). Then the
number of geodesic paths is

σk := card
[
Σ(r0, L, λ)

]
. (1)

Monte Carlo simulations of the pmf of σ are shown in Fig.
3. We will first demonstrate the difficulties with obtaining the
distribution of σk for the case of k=3, and then calculate its
first few moments for the general case of k≥3. The cases of
k=1 and k=2 are trivial and therefore omitted.

III. DISTRIBUTION OF GEODESIC PATHS

Let L∈(2r0, 3r0) and k=3 as in Fig. 2 such that there are
two sub-domains L1 and L2 within which relay nodes must
be situated in order for a 3-hop path to exist. We call these
sub-domains lenses, since in two dimensions they are formed
by the intersection of two equal disks. This is because the first
relay node located at a maximum distance of r0 can form a
3-hop path by connecting with any node in L2 =[L−r0, 2r0].

Fig. 4. Schematic showing N1 = 3 nodes in the left lens L1, and the
corresponding sub-domains wi in the right lens L2. Note that w3 is within
range from all three nodes and therefore a fourth node located in w3 will
connect to all in L1, to form three 3-hop paths from S to D. In contrast, w2

is in range of nodes 1 and 2 (not 3), w1 is only in range of node 1 (not 2 or
3), and w0 is not in range from any of the nodes in L1.

By symmetry L1 = [L−2r0, r0] such that the two lenses are
of equal widths |L1|= |L2|=3r0−L. The number N1 of relay
nodes in L1 is therefore a Poisson random variable with mean
Λ3, where we have defined Λk = λ(kr0−L). Moreover, for
each relay node in L1 there corresponds a subset of L2 within
which a second relay node must be located as to form a 3-
hop path from S to D. Labelling the N1 relays in descending
distances di from the source (i.e., L−2r0 ≤ dN1

≤ dN1−1 ≤
. . . ≤ d1 ≤ r0) we can identify subsets [L− r0, di + r0] ⊆ L2

within which if located a second relay can successfully form a
3-hop path. Defining the sub-domains wi = [di+1+r0, di+r0],
for i = 0, 1, . . . N1 with d0 = 2r0 and dN1+1 = L− r0 it can
be seen that a relay node in wi connects to i relays in L1.
We therefore arrive at a simple expression for the number of
shortest 3-hop paths

σ3 =

N1∑
i=1

ini (2)

where the ni is the number of relays in wi and are thus Poisson
random variables with mean λwi (see Fig. 4). The widths wi
are also random variables however must satisfy the constraint
that

∑N1

i=0 wi=3r0−L, i.e., the ni are correlated.
The pmf of σ can be expressed as follows:

P[σ3 =x]=EN1,w

[
P[σ3 =x

∣∣∣N1,w]
]

(3)

where w = {w0, w1, . . . wN1} and any configuration of widths
w is equally likely. We can attempt to obtain the pmf of σ3

through the use of probability generating functions (PGFs).
Namely, we have that the PGF of the random variable Zi= ini
is given by GZi(z) = E[zini ]=Gni(z

i)=eλwi(z
i−1) since ni

is Poisson distributed with mean λwi. It follows that the sum
of N1 such random variables has a PGF given by

Gσ3(z) =

N1∏
i=1

e−λwi(1−zi) (4)

and the corresponding pmf given by

P[σ3 =x] =
∞∑
k=0

P[Ni=k]

∫
[0,3r0−L]N1

1(w)
c

k!

dkGσ3

dzk

∣∣∣
z=0

dw1 . . . dwN1

(5)

where P[Ni = k] =
Λk

3

k! e
−Λ3 and 1(w) is the indicator

function equal to 1 whenever ‖w‖1 = 3r0 − L and zero
otherwise such that

∫
1(w)dw1 . . . dwN1

= 1/c, and c > 0
is some normalisation constant. Geometrically, the indicator
function defines a simplex polytope with N1 + 1 vertices at
{v0, . . .vN1

}T = (3r0 − L)IN1+1. The integral is therefore
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over the surface of the N1-simplex. Recall that the N1-simplex
is a triangle, a tetrahedron, a 5-cell, for N1 = 2, 3, and 4
respectively, and therefore is an evermore complex polytope
embedded in the positive hyperoctant of RN1+1 for which the
integration of (5) becomes intractable. For this reason we next
restrict our study to the mean and variance of σ3.

IV. 3-HOP MEAN AND VARIANCE

We now describe a method which allows us to analytically
derive the moments of σ3. This involves dividing up the lenses
into many small parts and making a simplifying approximation
about the interactions. This allows us to treat the problem as
one involving many independent random variables rather than
trying to account for dependence. The final step is to take the
limit of the number of divisions of the lenses to infinity, in
which our approximation becomes exact.

We firstly split the lenses Li into a large number l� 1 of
equally sized, disjoint domains Lij where |Lij |=(3r0−L)/l

and Li =
⋃l
j=1 Lij . The number of relay nodes in each Lij

is then a Poisson distributed random variable Yij with mean
Λ3/l. For finite l we make the approximation that all relay
nodes in L11 connect with all those in L21, all those in L12

connect with all in L21 and L22 etc. The number of shortest
3-hop paths is then given by

σ3 = lim
l→∞

l∑
q=1

q∑
r=1

Y1qY2r (6)

Using the independence of the Yij we calculate the mean

E[σ3] = lim
l→∞

l∑
q=1

q∑
r=1

E[Y1q]E[Y2r]

= lim
l→∞

(
Λ2

3

l2

)(
l2 + l

2

)
=

Λ2
3

2

(7)

To extract the variance we first define the random variable

Tq = Y1q

q∑
r=1

Y2r (8)

Given that the variance of a sum is equal to the sum of the
variances plus the covariances we have

Var(σ3) = lim
l→∞

l∑
q=1

Var(Tq) + 2

l∑
t=2

t−1∑
s=1

Cov(Ts, Tt) (9)

We first evaluate the variance of Tq . We use the independence
of Y1q and Y2r and note that

∑q
r=1 Y2,r is a Poisson random

variable with mean qλ(3r0−L)/l. In addition we use the mean
of the square of a Poisson random variable with mean x is
equal to x2 + x and derive

Var(Tq) =
q2Λ3

3

l3
+ q

(
Λ3

3

l3
+

Λ2
3

l2

)
(10)

Using (10) we evaluate the limit of the first sum in (9) as

lim
l→∞

l∑
q=1

Var(Tq) =
Λ3

3

3
+

Λ2
3

2
(11)

For the covariance terms in Eq.(9) we let s < t ≤ l and use the
relation Cov(Ts, Tt) = E[TsTt]−E[Ts]E[Tt]. The expectation

Fig. 5. Mean (a) and variance (b) of the number of shortest shortest 3-
hop paths σ as a function of r0 calculated numerically from ensembles of
106 realisations for a range of values of λ (symbols). Also illustrated is the
analytical results of Eq.(7) and Eq.(17) (lines).

of Ts is given by

E[Ts] =
sΛ2

3

l2
(12)

For the expectation of the product we have via (8)

E[TsTt] = E
[(
Y1s

s∑
r=1

Y2r

)
Y1t

( s∑
r=1

Y2r +

t∑
r=s+1

Y2r

)]
(13)

where by splitting the sum in Tt we can factorise using the
mutual independence of the terms as

E[TsTt]=E[Y1s]E[Y1t]
(
E
[( s∑

r=1

Y2r

)2]
+E
[ s∑
r=1

Y2r

]
E
[ t∑
r=s+1

Y2r

])
(14)

evaluating the individual expectations and combining we have

E[TsTt] =
Λ4

3st

l4
+

Λ3
3s

l3
(15)

Combining (12) and (15) we have that Cov(Ts, Tt) =
Λ3

3s
l3 .

We can now evaluate the sum of covariances in (9)∑
s6=t

Cov(Ts, Tt) =
2Λ3

3

l3

l−1∑
s=1

l∑
t=s+1

s =
2Λ3

3

l3

(
l3 − l

6

)
(16)

Taking the limit liml→∞
∑
s6=t Cov(Ts, Tt)=

Λ3
3

3 and combin-
ing it with (11) we may extract the variance

Var(σ3) =
2Λ3

3

3
+

Λ2
3

2
(17)

Similarly we can extract higher order moments of the distri-
bution using this technique. For example the third moment
E[(σ3 −E[σ3])3]=− 5Λ5

3

6 −
Λ4

3

5 , which can be used to analyse
the skewness of the distribution.

V. GENERALISATION TO K-HOP SHORTEST PATHS

More generally for L ∈ ((k − 1)r0, kr0) with integer k
there will be k− 1 lenses of equal width |Li| = kr0−L. The
method of (IV) can still be used. For general k we have

σk = lim
l→∞

l∑
qk−1=1

...

q3∑
q2=1

q2∑
q1=1

Yk−1,qk−1
...Y2,q2Y1,q1 , (18)

where the Yi,qi are Poisson with mean Λk/l. Using that∑n
k=1 k

θ=nθ+1/(θ + 1) + o(nθ+1) we can derive the mean

E[σk] =
Λk−1
k

(k − 1)!
. (19)
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Now, letting T (3)
q =Y2,q

∑q
r=1 Y1,r, we recursively define

T (n+1)
q = Yn,q

q∑
r=1

T (n)
r (20)

By further defining τ
(n)
l =

∑l
r=1 T

(n)
r , such that σk =

liml→∞ τ
(n)
l we can recursively define the expectation of τ (n)

l

E[τ
(n+1)
l ] =

Λ

l

l∑
r=1

E(τ
(n)
l ), (21)

where Λ/l is the mean of the Poisson variables Yi,j . Similarly,
for the variance of τ (n+1)

l we calculate
l∑

r=1

Var(T (n+1)
r ) + 2

l−1∑
s=1

l∑
t=s+1

Cov(T (n+1)
s , T

(n+1)
t ). (22)

Using the recurrence relation we have

Var(T (n+1)
r ) =

(
Λ2

l2
+

Λ

l

)
Var(τ (n)

r ) +
Λ

l
E(τ (n)

r )2 (23)

For the covariance we have

Cov(T (n+1)
s , T

(n+1)
t )=E[T (n+1)

s T
(n+1)
t ]− E[T (n)

s ]E[T
(n)
t ]

=
Λ2

l2

(
E
[ s∑
p=1

T (n)
p

( s∑
p=1

T (n)
p +

t∑
p=s+1

T
(n)
t

)]
−E[τ (n)

s ]E[τ
(n)
t ]
)

=
Λ2

l2

( s∑
p=1

t∑
r=s+1

E[T (n)
p T (n)

r ]+E[(τ (n)
s )2]− E[τ (n)

s ]E[τ
(n)
t ]
)

(24)

where we have used that t > s and split the sum into parts.
We now have

Cov(T (n+1)
s , T

(n+1)
t )=

Λ2

l2

[
Var(τ (n)

s )−E[τ (n)
s ]E[τ

(n)
t ]

+E[τ (n)
s ]2+

s∑
p=1

t∑
r=s+1

Cov
(
T (n)
p , T (n)

r

)
+

Λ2

l2
E[τ (n)

p ]E[τ (n)
r ]
]

(25)

Letting n = k and Λ/l = Λk/l we can combine (21), (22),
(23) and (25) to obtain the variance for σk. For example, for
k = 4 we have Var(σ4) =

6Λ5
4+15Λ4

4+10Λ3
4

60 . This recursion
relation allows us to derive the variance of σk, which involves
evaluating a (k−1)-fold sum of products of random variables
(see (18)) in terms of a simpler (k−2)-fold sum.

VI. CONCLUSION

Motivated by the multihop diffusion of information in
VANETs, realised through the periodic broadcasts of BSMs
as mandated by the DSRC standard [3], we have studied the
statistics of the number σk of shortest k-hop paths in 1D
random networks. Namely, we have derived simple closed
form expressions for the mean and variance of σk for k = 3, 4,
provided a recursive formula for general k, and have confirmed
them numerically using Monte Carlo simulations (see Fig.
5). We argue that knowledge of such statistics can be used
to enhance throughput [15], validate threat events, protect
against collusion attacks, infer location information, and also
limit redundant broadcasts thus reducing interference. As an
example, consider the realistic scenario where there are about

λ = 100 vehicles per km, transmission range is r0 = 0.3
km, and a vehicle detects an event and broadcasts a BSM
containing relevant safety information which should reach at
least a range of L= 1 km from the epicentre of the detected
event. It follows that the length of the shortest multihop path
is k = d Lr0 e = 4, and that the expected number of shortest
paths is E[σ4] = 1333.33 (in either forward or backward
direction). This is clearly unnecessary, and only a fraction of
ν ∈ (0, 1] vehicles should re-broadcast the original BSM. Thus
inverting (19), we can calculate the re-broadcast probability
ν = (ς(k−1)!)1/(k−1)

λ(kr0−L) , where ς is the target number of shortest
paths, e.g., setting ς = 10 we estimate that just 19.5% of
vehicles should re-broadcast the original BSM.
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