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ABSTRACT
Post-main-sequence planetary science has been galvanized by the striking variability, depth
and shape of the photometric transit curves due to objects orbiting white dwarf WD 1145+017,
a star which also hosts a dusty debris disc and circumstellar gas, and displays strong metal
atmospheric pollution. However, the physical properties of the likely asteroid which is dis-
charging disintegrating fragments remain largely unconstrained from the observations. This
process has not yet been modelled numerically. Here, we use the N-body code PKDGRAV to
compute dissipation properties for asteroids of different spins, densities, masses and eccen-
tricities. We simulate both homogeneous and differentiated asteroids, for up to 2 yr, and find
that the disruption time-scale is strongly dependent on density and eccentricity, but weakly
dependent on mass and spin. We find that primarily rocky differentiated bodies with moderate
(∼3–4 g cm−3) bulk densities on near-circular (e � 0.1) orbits can remain intact while oc-
casionally shedding mass from their mantles. These results suggest that the asteroid orbiting
WD 1145+017 is differentiated, resides just outside of the Roche radius for bulk density but
just inside the Roche radius for mantle density, and is more akin physically to an asteroid like
Vesta instead of one like Itokawa.

Key words: methods: numerical – minor planets, asteroids: general – planets and satellites:
dynamical evolution and stability – planets and satellites: physical evolution – planets and
satellites: rings – white dwarfs.

1 IN T RO D U C T I O N

Observations of the fates of planetary systems help constrain their
formation and subsequent evolution, and provide unique insights
into their bulk composition. Planets, moons and asteroids which
survive engulfment from their parent star’s giant branch evolution
(Villaver & Livio 2009; Kunitomo et al. 2011; Mustill & Villaver
2012; Adams & Bloch 2013; Nordhaus & Spiegel 2013; Villaver
et al. 2014; Payne et al. 2016a,b; Staff et al. 2016) represent a
sufficient reservoir of material to eventually ‘pollute’ between one-
quarter and one-half of all Milky Way white dwarfs with metals
(Zuckerman et al. 2003, 2010; Koester, Gänsicke & Farihi 2014).
This fraction is roughly commensurate with that of planet-hosting
main-sequence stars (Cassan et al. 2012).

The high mass density of white dwarfs (∼105–106 g cm−3) en-
sures that their atmospheres stratify chemical elements (Schatz-
man 1958), allowing for the relatively easy detection of metals
(Zuckerman et al. 2007; Klein et al. 2010, 2011), particularly with
high-resolution ultraviolet spectroscopy (Xu et al. 2013, 2014; Wil-
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son et al. 2015, 2016). Consequently, trends amongst the chemical
diversity and bulk composition of exoasteroids, which are the build-
ing blocks of planets, may be inferred and linked to specific families
in the Solar system (Gänsicke et al. 2012; Jura & Young 2014) or to
the compositional evolution during accretion of exoplanets them-
selves (Carter et al. 2015).

The pollutants are accreted from either or both surrounding de-
bris discs and direct impacts. About 40 white dwarf debris discs
have now been identified (Zuckerman & Becklin 1987; Becklin
et al. 2005; Gänsicke et al. 2006, 2008; Farihi, Jura & Zuckerman
2009; Barber et al. 2012; Wilson et al. 2014; Farihi 2016; Manser
et al. 2016), exclusively around white dwarfs which are polluted,
strengthening the link between pollution and debris discs. Bod-
ies may frequently impact the white dwarf directly (Wyatt et al.
2014, Brown, Veras & Gänsicke 2017), including comets (Alcock,
Fristrom & Siegelman 1986; Veras, Shannon & Gänsicke 2014b;
Stone, Metzger & Loeb 2015), moons (Payne et al. 2016a,b), aster-
oids (Bonsor, Mustill & Wyatt 2011; Debes et al. 2012; Frewen &
Hansen 2014; Antoniadou & Veras 2016), or small planets (Hamers
& Portegies Zwart 2016). Alternatively, upon entering the Roche
(or disruption) radius, one of these bodies may break up, forming
a disc (Graham et al. 1990; Jura 2003; Debes et al. 2012; Bear &
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Soker 2013; Veras et al. 2014a, 2015b) which eventually, and in
a non-trivial manner, accretes on to the white dwarf (Bochkarev
& Rafikov 2011; Rafikov 2011a,b; Metzger, Rafikov & Bochkarev
2012; Rafikov & Garmilla 2012).

How planets might perturb these smaller bodies into the Roche
radius is a growing field of study (Veras 2016a) which is now
buttressed with self-consistent simulations merging stellar evolu-
tion and multiplanet dynamics over many Gyr (Veras et al. 2013a;
Mustill, Veras & Villaver 2014; Veras 2016b) or even over one Hub-
ble time (Veras & Gänsicke 2015; Veras et al. 2016a,c). Planets are
generally required as perturbing agents because self-perturbation
into the Roche radius due to radiative effects alone is unlikely
(Veras, Eggl & Gänsicke 2015a,c). Amongst the presence of ex-
ternal stellar perturbers, planets provide a key pathway for smaller
bodies to collide with the white dwarf (Bonsor & Wyatt 2012; Bon-
sor & Veras 2015; Petrovich & Muñoz 2016).

Before the year 2015, what was missing from the framework
detailed above were detections of asteroids breaking up within
the Roche radius of a white dwarf. That situation changed with
the discovery of photometric transits from K2 light curves of WD
1145+017. These strongly suggest that at least one body around this
white dwarf is disintegrating (Vanderburg et al. 2015). The transit
signatures change shape and depth on a nightly basis (Gänsicke et al.
2016; Rappaport et al. 2016) in a manner which is unique amongst
exoplanetary systems, prompting intense follow-up studies (Croll
et al. 2015; Alonso et al. 2016; Gary et al. 2016; Redfield et al.
2016; Xu et al. 2016; Zhou et al. 2016). A plausible interpretation
of the observations, exemplified by fig. 7 of Rappaport et al. (2016),
is that a single asteroid is disintegrating and producing multiple
nearly co-orbital fragments. However, the actual tidal disruption
has not yet been modelled numerically, and, with the exception of
Gurri, Veras & Gänsicke (2017), all previous studies on this system
have been observationally focused.

In this paper, we perform this task, and utilize both homogeneous
and differentiated rubble piles to model the evolution of an object
which could create the observational transit signatures. We first, in
Section 2, describe the known parameters of the objects orbiting
WD 1145+017. Then, in order to begin quantifying disruption, in
Section 3, we summarize different simple formulations of the Roche
radius which have appeared in the literature and how they relate to
our simulations. The setup for these simulations is described in
Section 4, and the results are reported in Section 5. We discuss the
implications for WD 1145+017 and utility of our study to similar
systems in Section 6, and conclude in Section 7.

2 K N OW N PA R A M E T E R S

The known orbital parameters of the WD 1145+017 system are ef-
fectively limited to the orbital periods of individual transit features.
These periods are obtained directly from the photometric transit
curves for features which are observed over multiple nights, and
are known to exquisite precision. As suggested by Rappaport et al.
(2016), only one periodic signal, at 4.50 h, has been consistently
detected over a timespan of about 2 yr (going back to the K2 obser-
vations presented by Vanderburg et al. 2015) and may be associated
with the major disrupting parent body. Other transit features, which
could be interpreted as co-orbital disintegrating debris, have or-
bital periods ranging from 4.490 to 4.495 h (Gänsicke et al. 2016;
Rappaport et al. 2016).

These periods, however, do not translate into well-constrained
semimajor axes because the stellar mass, MWD, is not well known.
However, under the reasonable assumption (e.g. Tremblay et al.

Table 1. Proportionality constants for different formulations (equations 2–
4) of the Roche radius and different generalized strengthless body types. The
relations between constants are K = 1.61k, C = 1.63k and R = 0.75K3.
The term ‘spinning’ assumes synchronous spinning from being tidally
synchronized.

Body type K k C R Ref.

Solid no spin 1.26 0.78 1.27 1.50
Solid spinning 1.44 0.89 1.45 2.24 a
Fluid no spin 1.69 1.05 1.70 3.62 b
Fluid spinning 2.46 1.53 2.49 11.2 c

Notes.
a : see equation 4.131 of Murray & Dermott (1999).
b : Sridhar & Tremaine (1992)
c : Roche (1847)

2016) that MWD = 0.5 M�–0.7 M�, the semimajor axis a of the dis-
rupting asteroid – henceforth denoted as the parent body – lies in the
range 0.0051–0.0057 au (assuming a negligible-mass parent body).
The typically used fiducial white dwarf mass of MWD = 0.6 M�
gives a = 0.0054 au.

3 RO C H E R A D I U S

Does this semimajor axis value lie within the white dwarf Roche
radius? The answer is not obvious because it depends on how the
Roche radius is defined (see equation 9.1 of Veras 2016a for a
summary of the different equations in the post-main-sequence lit-
erature) and how much internal strength the bodies are assumed to
have (Cordes & Shannon 2008; Veras et al. 2014b; Bear & Soker
2015). We will ignore material strength for the remainder of this
paper because for objects larger than about 10 km, the gravitational
binding energy is more significant than any material strength (Benz
& Asphaug 1999; Leinhardt & Stewart 2012).

Assume that a Roche radius rd defines a disruption sphere. Hence

rd ∝ RWD

(
ρWD

ρ

)1/3

∝
(

MWD

ρ

)1/3

(1)

= KRWD

(
ρWD

ρ

)1/3

= k

(
MWD

ρ

)1/3

(2)

where ρ is the bulk density of the orbiting body, and ρWD and
RWD are the density and radius of the white dwarf. The definition
ambiguity arises with the choice of proportionality constants, K or
k, which are related through K ≈ 1.61k.

The exact value of K (or k) depends on the nature of the body;
see Table 1. A more thorough treatment in the strengthless case
(Davidsson 1999) reveals that rd should also be explicitly depen-
dent on the body’s tensile strength and shear strength, parame-
ters which determine when the body will specifically fracture or
split.

A useful Roche radius expression which is rescaled for white
dwarf systems is (equation 1 of Bear & Soker 2013)

rd

R�
= 0.65C

(
MWD

0.6 M�

)1/3 (
ρ

3 g cm−3

)−1/3

(3)

which is related to equation (2) through C = 1.63k. Bear &
Soker (2013) stated that C = 1.3–2.9, which hence corresponds to
k = 0.80–1.78 and K = 1.29–2.87. Motivated by Chandrasekhar’s
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1010 D. Veras et al.

Figure 1. The relation between density (ρ) and orbital period (P) of a
strengthless spherical homogeneous rubble pile which resides just at the
Roche radius (equation 5); tidally locked rubble piles are in synchronous
rotation and arrows indicate stable regions. The relation is general, and is
independent of the properties of the central object. Dots indicate the orbital
period of the likely disintegrating asteroid at WD 1145+017.

seminal work (Chandrasekhar 1969), Leinhardt et al. (2012) instead
defined a proportionality constant R in their equation 5 as,

R ≡ 3

4

ρ

ρWD

(
rd

RWD

)3

(4)

which can be shown to be related to K through R = 0.75K3 (see
Table 1). Overall, K varies only within a factor of 2 for these different
scenarios.

Constraining the numerical values of these constants enables one
to estimate ρ from knowledge of the orbital period P alone. If one
assumes that the body’s orbit is circular and the body resides just at
the Roche radius, then comparing equation (2) with Kepler’s third
law cancels out the (unknown) white dwarf mass and leads to the
relation

ρ = 4π2k3

GP 2

= (
0.72 g cm−3

)R(
P

4.5 h

)−2

. (5)

Equation (5) provides a useful quick way to estimate the density
of a disrupting body if only its orbital period is known. For the
bodies orbiting WD 1145+017 (with periods of roughly 4.5 h), this
formula gives ρ = 1.08, 1.62, 2.61, 8.04 g cm−3 for the solid no spin,
solid spinning, fluid no spin and fluid spinning, cases, respectively.
We plot equation (5) in Fig. 1 for the purpose of wider use beyond
this individual planetary system.

All of the bodies in the figure are strengthless. Incorporating
strength would complicate equations (1–4), and the resulting curves
would be different. The fluid case is not important for the numerical
aspects of our study, but was included in Fig. 1 and Table 1 for

comparison with and clarification of existing literature on Roche
radii formulations. In contrast to fluids, granular materials, in gen-
eral, can withstand considerable shear stress when they are under
pressure (section 4.2 of Mann, Nakamura & Mukai 2009).

4 N U M E R I C A L M E T H O D S

The analysis from the last section shows that knowledge of P
can provide strong constraints on ρ. We explore this possibility
in the case of WD 1145+017 with numerical simulations of rub-
ble piles, which are aggregates bound together by self-gravity. We
used the N-body gravity tree code PKDGRAV (Stadel 2001), which
has been modified with the ability to detect and resolve collisions
amongst individual particles (Leinhardt, Richardson & Quinn 2000;
Richardson et al. 2000).

4.1 Common properties

Our simulations required us to specify a central mass and semi-
major axis. We chose values which correspond to P ≈ 4.5 h
(M� = 0.60 M� and a = 0.0054 au) for all simulations because
our focus is on modelling the WD 1145+017 system. We adopted a
constant timestep of 50 s for all simulations, a choice which is suf-
ficient to resolve the collisions within each rubble pile (see section
5.3 of Veras et al. 2014a for details).

4.2 Other parameter choices

Other parameters that we varied amongst different simulations in-
clude rubble pile structure, number of particles, bulk density ρ

and mass M (and hence radius R), plus eccentricity e and spin. See
Table A1 for the full list of simulations; three highly referenced sim-
ulations are repeated here in Table 2 for demonstration purposes.
The table columns are as follows.

(i) Packing type. We created our rubble piles with two different
internal packing structures: (1) hexagonal closest packing (HCP;
Leinhardt et al. 2000) and (2) random packing. See Fig. 2 for a
visual comparison.

(ii) Differentiated. This column indicates if the rubble pile was
homogeneous or differentiated. The differentiated rubble piles all
contained a ‘core’ (green particles in Fig. 2; image B2) and ‘mantle’
(white particles in Fig. 2; image B2). Each type of particle has
different properties: each core particle was four times more massive
than each mantle particle although all particles had the same size.
For these rubble piles, about 35 per cent of particles were core
particles.

(iii) Number of particles. The vast majority of our simulations
contained about 5000 particles, which is a well-justified choice
(e.g. Leinhardt et al. 2012; Veras et al. 2014a) because disruption
properties have been shown to be independent of particle number
until it becomes smaller than roughly 1000. Some long-duration
simulations necessarily featured smaller number of particles due to
computational limitations.

Table 2. Details of three simulations which appear throughout the text and in Figs 5–10. All simulations performed in this work are detailed in the appendix.

Simulation Packing Differe- Number of Density Mass Radius e Spin Duration Outcome
name type ntiated particles (g cm−3) (kg) (km) (d) (disruption type)

HCP134 Hexagonal No 5003 2.60 1.0 × 1022 1000 0.00 0 90 full
RandDiff19 Random Yes 5000 3.50 1.2 × 1022 1000 0.00 1 90 mantle
RandDiff32 Random Yes 5000 3.50 1.2 × 1022 1000 0.01 1 90 full

MNRAS 465, 1008–1022 (2017)
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Figure 2. (A) A rubble pile with hexagonal closest packing (HCP) of 5003
particles. (B) A randomly packed differentiated rubble pile consisting of
5000 particles. ( B2) A hemispherical cutaway of B to show the structure
(not a distinct initial condition).

(iv) Density. Our choices for ρ (1.0−4.6 g cm−3) were moti-
vated by Fig. 1 and encompassed the Roche radius regions for
solid parent bodies which may be spinning, and a fluid parent body
with no spin. This range is reasonable but not exhaustive: the dif-
ferentiated bodies limit the density on the upper end because the
density of the core would be too high if the bulk density was much
above 4.6.

(v) Mass. We have considered different parent body masses, even
though theoretically tidal disruption of a strengthless body should
be scale-independent for any asteroid size (and therefore be in-
dependent of mass for a set density; see Solem 1994). We sam-
pled seven orders of magnitude in parent body mass (M = 1016–
1022 kg), a range which is bounded from below by parent bodies
whose mutual co-orbital interactions would produce period vari-
ations on the order of tenths of seconds (Gurri et al. 2017) and
from above based on when instability might set in at a significant
level (Veras, Marsh & Gänsicke 2016b). Planet-mass objects are not
assumed to frequently enter white dwarf Roche radii (Veras et al.
2013a; Mustill et al. 2014; Veras & Gänsicke 2015; Veras et al.
2016a; Veras 2016b) unless they are smaller than the terrestrial
planets and, perhaps, are perturbed by a stellar companion (Hamers
& Portegies Zwart 2016; Petrovich & Muñoz 2016).

(vi) Radius. The radius was simply computed from our choices
of M and ρ.

(vii) e (eccentricity). Observations so far do not constrain ec-
centricity, and in the absence of constraints, circular orbits are
the simplest assumption. We sampled eccentricities up to 0.2; see
Section 5 for more details.

(viii) Spin. The values of 0, 1 and 2 indicate no spin, synchronous
spin, and twice the synchronous spin rate. A spin value of 0 effec-
tively refers to rotation once per orbit in the direction opposite to
the motion in the corotating frame. A spin value of 2 instead refers
to rotation once per orbit in the orbit direction in the corotating
frame.

(ix) Duration. All simulations were run for at least three months
(90 d), and some up to 2 yr (730 d). The timespan of 90 d is
both computationally feasible and observationally motivated (WD
1145+017 is observed on an almost nightly basis and hence well-
sampled over the course of months). This timespan covered nearly
481 orbits. 2 yr corresponds to about 3900 orbits, which represents
the overall baseline of observations of the disintegrating asteroid,
dating back to the K2 observations reported by Vanderburg et al.
(2015).

(x) Outcome. The homogeneous cases result in either full or no
disruption (none). The differentiated primary bodies could result in
one additional outcome: mantle disruption, where some mantle is
lost but the core remains intact.

Figure 3. Disruption characteristics for homogeneous HCP progenitors as
a function of parent body mass (M) and density (ρ) for circular orbits. Dots
illustrate rubble piles which disrupted (HCP1 to HCP53) within one day (red
dots) or between one day and one month (purple dots). Crosses represent
rubble piles which remained stable throughout their simulations (HCP54 to
HCP111), with durations of 90 d (green crosses) or 2 yr (black crosses).
The density boundary between disruption and remaining intact is sharp, and
is between 2.5 and 3.0 g cm−3 for all masses sampled.

Overall, computational limitations required us to judiciously
choose the resolution with which to sample each parameter range,
and how to partition our choices amongst different rubble pile con-
structions.

5 SI MULATI ON R ESULTS

An observationally relevant question is, can we match the transit
observations with a disrupting rubble pile?

5.1 Homogeneous rubble piles

Our first attempt to tackle the answer is to consider the simplest
object: a homogeneous one. Also, one of the strictest observational
constraints is that the transits are still observed after 2 yr. Therefore,
this constraint is the first which we try to replicate. We do so by
presenting our results primarily in terms of how quickly the parent
body fully disintegrates (Figs 3 and 4). We consider a rubble pile to
have disrupted after the mass of the most massive remaining clump
is less than one per cent of mass of the original rubble pile. This
disruption process for homogeneous rubble piles is illustrated in
Fig. 5.

5.1.1 Density constraints

Fig. 3 demonstrates disruption times as a function of M and ρ (for
simulation details see Table A1) for rubble piles on circular orbits.
The dots consist of all rubble piles which disrupted within 90 d;
nearly all of these are red dots, indicating disruption within one
day. Alternatively, the crosses signify rubble piles which remained
intact throughout the duration of the simulation; green crosses rep-
resent our standard numerical resolution 90-d simulations and black
crosses represent lower numerical resolution 2-yr simulations. The
boundary between the dots and crosses, at ρ ≈ 2.5–3.0 g cm−3, is
sharp. The plot illustrates the strong sensitivity of disruption to this
density boundary, and the relative insensitivity to mass.

MNRAS 465, 1008–1022 (2017)
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Figure 4. Disruption time-scales for M = 1022 kg, different eccentricities (shown on plots), and two different parent body densities (2 g cm−3, left-hand panel;
4 g cm−3, right-hand panel). Included on the figure are all simulations labelled HCP112 through HCP133 from Table A1 (the horizontal curves for HCP120
to HCP129 in the right-hand panel all overlap). In the left-hand panel, all parent bodies fully disrupt within two orbits, regardless of eccentricity; generally, the
higher the eccentricity, the quicker the dissipation. The right-hand panel demonstrates this correlation clearly (a disruption time-scale of three months occurs
for some e value between 0.12 and 0.13).

Figure 5. The disruption of a homogeneous hexagonal closest packing (HCP) rubble pile from simulation HCP134 (ρ = 2.6 g cm−3, e = 0). The images are
shown in the rotating frame, where left is radially towards the white dwarf and the direction of the orbit is towards the top of the page. The white numbers in
the upper part of each panel refer to the number of orbits. An animation accompanying this figure is available online.

5.1.2 Eccentricity constraints

The last section demonstrates that homogeneous primary bodies
on circular orbits either disrupt quickly or not at all. These two
possibilities do not aid in the interpretation of the observations.
Therefore, here we consider non-zero eccentricities. These might
allow a rubble pile to dip in-and-out of the Roche radius, shedding
some mass during every pericentre passage.

Fig. 4 displays results for simulations of non-circular rubble piles.
The simulations in the figure utilize the same semimajor axis as the
zero-eccentricity simulations, so that the variations seen are strongly
dependent on the decreasing periapse at increasing eccentricity. The
plots suggest that for a sufficiently high bulk density (ρ � 2.5 g cm−3

from Fig. 3), there exists a critical eccentricity below which the
parent body will remain intact for at least three months. For
ρ = 2 g cm−3 (left-hand panel) rubble piles disrupt even on circular
orbits, and increasing eccentricity speeds up the disruption (from
about 8 h to 5 h). In the right-hand panel, where ρ = 4 g cm−3, this
critical eccentricity lay in-between 0.12 and 0.13. Further, the right-
hand panel indicates a clearly monotonic trend between increasing
eccentricity and disruption time: e = 0.20 corresponds to disruption
within a day, whereas rubble piles with 0.14 ≤ e ≤ 0.15 disrupt
within a week, and those with e = 0.13 take about a month to break
apart.

5.2 Simulation results for differentiated rubble piles

Our results with homogeneous rubble piles could not explain the
constant periodic signal or the transient signals over a 2 yr period.
Therefore, motivated by Leinhardt et al. (2012), who suggested that
a differentiated body might allow for partial disruption, we also
adopted a differentiated rubble pile. This assumption is realistic
because the primary body could easily be large enough (like the
asteroid Vesta; Gurri et al. 2017; Rappaport et al. 2016) to be dif-
ferentiated. For differentiated bodies, the packing type for rubble
piles has a more pronounced effect than in the homogeneous case.
Therefore, for greater realism, all of our differentiated rubble piles
were randomly packed (consequently, because of the lower packing
efficiency, these rubble piles will disrupt more easily; see Figs 2
and 12).

5.2.1 Physics of disruption

The disruption of differentiated rubble piles is more complex than
those of homogeneous ones, and has been thoroughly described
in Canup (2010) and Leinhardt et al. (2012). We do not repeat
their detailed analyses here, but rather just emphasize some of the
important points below, and focus instead on the implications for the

MNRAS 465, 1008–1022 (2017)
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Figure 6. Mantle disruption of a differentiated synchronously spinning rubble pile on a circular orbit with ρ = 3.5 g cm−3 (simulation RandDiff19). The
white particles are mantle particles, and the green core particles underneath remain hidden. After about half of an orbit, mantle particles start streaming from
the L1 and L2 Lagrange points. After about four orbits, the streaming became intermittent. An animation accompanying this figure is available online.

Figure 7. Similar to Fig. 6, except for the case of complete disruption with e = 0.10 (simulation RandDiff32). Subsequent to mantle stripping, the core is
not dense enough to resist disruption, and both the white mantle particles and green core particles are visible after three orbits. An animation accompanying
this figure is available online.

Figure 8. Spreading of stripped particles around the white dwarf (located at the centre) for the mantle disruption in Fig. 6 (simulation RandDiff19). The
disrupting rubble pile is at the same position in each panel, centre-right. Rubble pile particles have been inflated to enhance their visibility. An animation
accompanying this figure is available online.

WD 1145+017 system. Overall, our simulations here are consistent
with the behaviour seen in those works.

We characterize the outcome of disrupting a rubble pile with a
mantle and core in one of three ways: (i) no disruption, (ii) mantle
disruption and (iii) full disruption.

Mantle disruption is shown in Fig. 6 (simulation RandDiff19)
and in the accompanying online animation. In this case, the green
core particles remain in place and hidden from view as the white
mantle particles are slowly stripped off. The streaming occurs at the
L1 and L2 Lagrange points after the rubble pile has been distorted
into the shape of a lemon. This process reproduces the schematic in
fig. A1 of Rappaport et al. (2016), except for the major difference
that in our numerical simulations, particles stream off from both L1
and L2, as opposed to just L1. The streaming is not symmetrical
from both ends of the parent body, and up to 20 per cent more of
the shorn-off particles emanates from one Lagrangian point than
the other (see Section 6). The streaming of particles increases the
density of the rubble pile, which allows it to subsequently resist
disruption. Therefore, after about four orbits, the mantle stripping

becomes intermittent. The core density is high enough for the core
particles to remain protected from escape.

Full disruption occurs when, subsequent to mantle stripping, the
remnant core is not dense enough to resist breakup. This situation is
visualized in Fig. 7 (simulation RandDiff32), whose rubble pile
is equivalent to that in Fig. 6, except placed on an e = 0.1 orbit.
After three orbits, most of the mantle has already separated and is
in the process of forming a ring. After four orbits, the entire pile
has catastrophically disrupted.

The trajectory of the stripped off particles forms a ring, just
as in the homogeneous case. In Fig. 8, we illustrate this time
sequence for the mantle disruption in Fig. 6. After about 10 or-
bits, the particles have covered an arc halfway around the white
dwarf. After about 20 orbits, a full ring has formed, albeit one
which contains inhomogeneities. We discuss ring filling times in
Section 6.

Because the particles are stripped off from L1 and L2, they orbit
at slightly different distances than does the centre of the rubble pile.
Consequently, these particles have slightly different (both larger and
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Figure 9. Close-up of the rightmost panel of Fig. 8 (simulation RandDiff19), illustrating annular extent, clumpiness and voids. Particles have been inflated
to enhance their visibility.

shorter) orbital periods than the parent body; see Section 6 for more
details.

In order to visualize this difference in orbital period from our
simulations, in Fig. 9, we have zoomed-in on the top-left arc of
the rightmost panel of Fig. 8. This close-up illustrates both the
scale of the annulus, and regions of clumpiness and voids. For M =
1020 kg and 1022 kg parent bodies, the difference in orbital periods
from particles on each end of the annulus is on the order of, re-
spectively, a couple tens of seconds, and about 100 s. In this regard,
the M = 1020 kg case better matches the orbital period differences
given by fig. A3 and equation A11 of Rappaport et al. (2016) and
table 1 of Gänsicke et al. (2016). Further, this mass is consistent
with the estimates given by Gurri et al. (2017) and Rappaport et al.
(2016). The slight excess difference that we see over Rappaport
et al.’s (2016) calculation is likely due to collisions in the forming
ring.

5.2.2 Transit model

How do these disruption simulations relate to observable photomet-
ric transits? WD 1145+017 features some of the most spectacu-
lar transit curves of any exoplanetary system, with transit depths
reaching 60 per cent, transit features appearing and disappear-
ing on a nightly basis, and some appearing over multiple nights.
The periods of the individual transits are stable to a few seconds
(table 1 of Gänsicke et al. 2016 and table 4 of Rappaport et al. 2016)
even though they differ by up to tens of seconds. In other words,
the individual periods are seen to be more stable than their spread
among different fragments. Rappaport et al. (2016) suggested that
the transit curves in WD 1145+017 may be a result of fragments
which break off from a single asteroid. Because we have found that
mantle stripping is intermittent, this process could produce frag-
ments which occasionally obscure the light from the white dwarf
and create detectable dips in photometric light curves.

Our gravity-only simulations are too simplistic to reproduce the
detail in these transit curves, particularly because they arise from
dust- and gas-streaming off the fragments rather than from geomet-
rical blocking of the white dwarf by solid bodies. Nevertheless, we
have created a transit model from our simulations by inflating the
size of our particles which stream away from the disrupted rubble
pile. The flux was calculated by dividing the face of the white dwarf

Figure 10. Illustrative model of photometric transit depths due to mantle
stripping, a process which intermittently streams particles off of a rubble pile.
Shown here are two consecutive orbits offset in flux. The rubble pile used
here was from simulation RandDiff19 (Fig. 6), with particles suitably
inflated. See the main text for more details.

into about 27 000 pixels, and counting the number which were not
obscured by the transiting fragments.

Fig. 10 displays the result, in two consecutive orbits offset by
flux. Here, we have used only the particles which emanated from
the rubble pile (which is shown in Fig. 6; simulationRandDiff19)
during the previous 50 orbits. The choice of 50 orbits is arbitrary, but
represents the idea that fragments are only ‘active’ – i.e. expelling
a cloud of gas or dust – for a finite time.1 The time shown is
a few hundred orbits after the start of the run, once the rate of
fragment escape has slowed. Following Gänsicke et al. (2016),
we also introduced two scaling factors: (i) the particle sizes were
inflated to four times the size of the white dwarf (in order to achieve
appropriate durations) and (ii) the transit depths were scaled such
that the maximum depth was 0.5. The line-of-sight inclination was
assumed to be offset by 2.◦25 from an edge-on orientation, following
the assumption in Gänsicke et al. (2016).

1 If we had not implemented a cutoff, then the simulation would have been
saturated as fragments were spread into a ring, but not removed.
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Figure 11. Disruption time-scales for differentiated rubble piles, where the core particle mass is quadruple that of the mantle particle mass (simulations
RandDiff1 to RandDiff22). The rubble piles are on circular orbits and have either no spin (left-hand panel) or synchronous spin, equivalent to being
tidally locked (right-hand panel). The slight decrease in mass at the tens of percent level seen in the curves with ρ ≥ 3.2 g cm−3 indicate mantle disruption.
Full disruption occurs for ρ ≤ 3.1 g cm−3. This robust constraint on density, although specific to the rubble pile modelled, is similar to the robustness of the
density constraints observed in Figs 3 and 4.

The primary benefit of this simulation is to show that (i) the
transit durations over a single orbit are commensurate with those
actually observed, and (ii) the non-uniformity of the transit features
may be reproduced by mantle stripping. Because the stripping is
intermittent, this process may help explain the transience of some
of the observed features.

5.2.3 Density constraints

Our simulations suggest that the process of mantle disruption might
play an important role in the dynamics of WD 1145+017. A nat-
ural accompanying question is, for what values of ρ does mantle
disruption occur? In order to pursue an answer, and informed by the
bounds imposed from our homogenous rubble pile results, we have
simulated differentiated rubble piles with 11 different bulk core plus
mantle densities from 2.5 to 4.0 g cm−3.

We present the results in Fig. 11, which has a similar format
to Fig. 4 and contains the simulations labelled RandDiff1 to
RandDiff22 in Table A1 . Here, however, mantle disruption is
indicated by a slight decrease, at the few to tens of per cent level, in
normalized mass of the largest remaining clump, before levelling
off. Note that mantle or full disruption occurs in every simulation
in the figure. The amount of material lost decreases for higher
densities; at the high end (ρ = 4.0 g cm−3), in the left- and right-
hand panels, respectively, 2.1 and 3.9 per cent of the total mass was
lost. For ρ < 3.2 g cm−3, mantle disruption can be observed to
occur for a few hours before full disruption occurs more quickly.

Comparison of the two panels in the figure indicates that the
initial spin of the rubble pile makes little difference to the outcomes,
except at the boundaries of the disruption regimes. For the particular
differentiated rubble piles we sampled in this work (with a core four
times more massive than the mantle), the transition density between
mantle disruption and full disruption occurs at ρ = 3.1 g cm−3. At
this density, a synchronously spinning rubble pile disrupts an order
of magnitude more quickly than a rubble pile with no initial spin.

Although the boundary defined by ρ = 3.1 g cm−3 is strongly
linked to the structure of the differentiated rubble pile which we
adopted, the clear division between disruption regimes on the figure

Figure 12. Boundaries between the regimes of ‘full disruption’, ‘mantle
disruption’ and ‘no disruption’. The darker hollow symbols refer to simu-
lations with randomly packed rubble piles, and the lighter filled symbols to
outcomes with hexagonal-closely packed (HCP) rubble piles. The bound-
aries are approximated by the dashed lines, and are in good agreement with
fig. 2 of Leinhardt et al. (2012).

suggests that other rubble pile constructions will yield similarly
robust constraints.

5.2.4 General constraints

Other shape geometries may need to be considered when modelling
disruption of parent bodies in other systems. In fact, the results of
our simulations might aid in future efforts, a prospect which we
consider in this subsection.

Unlike for homogeneous rubble piles, which either disrupt fully
or not at all, differentiated rubble piles could undergo no disruption,
mantle disruption or full disruption. In order to better quantify
the parameter regimes encompassing these ternary outcomes, we
present Figs 12 and 13.

Fig. 12 links disruption with R and ρ through equations (4)
and (5). The darker symbols represent simulations RandDiff2
through RandDiff11, plus RandDiff23, RandDiff24 and
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Figure 13. Pinpointing the three regimes where full disruption, mantle
disruption and no disruption occur as a function of stellar mass (MWD) and
parent body semimajor axis (a). The regions are identified by the horizontal
labels. The curves are based on the dashed lines in Fig. 12 and are applicable
only for our randomly packed rubble pile simulations.

RandDiff25. The lighter symbols represent the outcomes for ad-
ditional simulations (HCPDiff1 to HCPDiff11). The arbitrarily
drawn dashed lines then approximate the critical values (4.4 and
6.1) of R which separate the three regimes.

Fig. 12 can be compared directly to the bottom plot of fig. 2 of
Leinhardt et al. (2012), which presents outcomes of tidal disruption
simulations of randomly packed differentiated moons. Although
they sampled a range of a, and hence P, the agreement with the
critical values of 4.4 and 6.1 is good, to within one unit of R in
each case. Any differences could be attributed to the details of the
packing geometry, including the bulk radius.

These critical values of 4.4 and 6.1 were then used to create
Fig. 13, which ignores our knowledge of P. This figure approxi-
mates the boundaries between the disruption regimes (red = full
disruption, green = mantle disruption, black = no disruption) in
(a, MWD) space, for all possible white dwarf masses, where two
extreme densities (1 g cm−3 and 8 g cm−3) are given. The solid
lines provide absolute bounds. In the region to the left of the red
solid line, full disruption always occurs. In the region to the right
of the green solid line, no disruption ever occurs. In between those
two lines, any three possibilities may occur depending on the choice
of ρ. If the asteroid is less differentiated or centrally concentrated,
then these curves would all shift rightwards.

Both figures represent useful tools for quick identification of a
disruption regime for future discoveries of disintegrating bodies
around stars. These stars need not be restricted to white dwarfs.
In fact, several bodies disintegrating around main-sequence stars
are now known (Rappaport et al. 2012, 2014; Croll et al. 2014;
Bochinski et al. 2015; Sanchis-Ojeda et al. 2015).

6 D ISCUSSION

6.1 Roche radius location

We can now return to the question of whether the disrupting asteroid
is within the Roche radius of WD 1145+017. Consider that (1) the
observational data suggest that the asteroid has not undergone full
disruption for over 2 yr, (2) we have shown that an asteroid which
remains intact for this long has ρ � 3.1 g cm−3 on a near-circular
orbit, (3) the density which corresponds to the Roche radius for this
white dwarf is, for a solid, tidally locked body, 1.6 g cm−3, (4) we

have shown that mantle disruption can qualitatively reproduce the
intermittent transit features which are observed.

These statements imply that the parent body is not within the
Roche radius for its bulk density, but rather just outside, and un-
dergoing mantle disruption. Some caveats which might negate this
conclusion are if the asteroid’s shape is significantly non-spherical,
the asteroid is differentiated in a complex manner, or if the aster-
oid’s mass contains a significant amount of non-solid matter. These
cases all represent viable, interesting and important topics for fu-
ture studies. Objects like 67P/Churyumov–Gerasimenko hint at the
complexity of small Solar system bodies, and similar bodies could
maintain an internal reservoir of volatiles even throughout the giant
branch phases of stellar evolution (Jura & Xu 2010; Jura et al. 2012;
Malamud & Perets 2016).

The details of the disruption which we have shown here are
different than those envisaged by Rappaport et al. (2016). Here, we
see mass streaming from both L1 and L2 points. Further, we find
that the relative fraction of particles escaping from L1 is slightly
greater than those from L2, with the disparity increasing for higher
bulk densities. In particular, for ρ = 3.9 g cm−3, 56 per cent come
from L1, whereas for both ρ = 4.0 g cm−3 and ρ = 4.2 g cm−3,
59 per cent originate from L1. These differences are observationally
constrained, although only material with shorter orbits is visible
(Gänsicke et al. 2016; Rappaport et al. 2016). Perhaps the fragments
with longer periods are not currently active, or that the imbalance
between streaming from L1 and L2 becomes larger with time. K2
data did show some very weak signals at longer periods, but their
reality could not be confirmed independently, as those signals are
below the sensitivity threshold for ground-based observations.

If the asteroid indeed lies just outside of the Roche radius, then
how did it arrive at a nearly circular orbit at that location? One
possibility is that sustained gas ejection may be strong enough to
appreciably decay the orbit of close minor planets (e.g. equations
32– 33 of Perez-Becker & Chiang 2013), although the exact manner
of the orbital evolution may be nontrivial (Boué et al. 2012; Veras
et al. 2013b; Dosopoulou & Kalogera 2016a,b). An alternative (A.
Johansen, private communication) is that the asteroid represents a
second-generation minor planet which grew out of smaller debris
from a disrupted planetesimal which accumulated outside of the
Roche radius, an idea previously proposed for Solar system moons
(e.g. Crida & Charnoz 2012). Charnoz et al. (2011) suggested that
the inner mid-sized moons of Saturn (Mimas, Enceladus, Tethys,
Dione and Rhea) could all have been formed by a viscously spread-
ing massive ring which was itself the result of a large disruptive
impact. Phobos and Deimos (Mars’s moons) could have formed
close enough to their parent planet that they have since spiraled in
close to Mars due to tidal decay of the orbit (Rosenblatt & Charnoz
2012).

6.2 Ring filling time

We have shown that disrupting rubble piles form rings. How effi-
ciently does the debris spread around the white dwarf? We approach
this question both analytically and with the numerical output. A key
caveat to both approaches is that gas drag is neglected, which may
play a significant role in the WD 1145+107 system.2 Also, the

2 Gas is likely produced from sublimation and/or collisions of solid particles.
The most recent substantial attempt to model this interaction between gas
and dust (Metzger et al. 2012) indicates a complexity which is beyond the
scope of this work.
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analytical approach ignores collisions, which are treated in the PKD-
GRAV simulations.

6.2.1 Analytic filling times

Assume the breakup is instantaneous and occurs at a distance rb

and that the particles composing the parent body are collisionless.
Then, from equation 25 of Veras et al. (2014a), a breakup event will
fill out a complete ring in space in a filling time tfill given by

tfill

P
= r

3
2

b

[{
r2

b + 2aR − rbR

rb − R

} 3
2

−
{

r2
b −2a × min(rcrit−rb, R)+rbmin(rcrit−rb, R)

rb+min(rcrit−rb, R)

} 3
2
]−1

,

(6)

where

rcrit = 2arb(
1 + M

MWD

)
(2a − rb)

≈ 2arb

2a − rb
(7)

is the distance at which a particle’s orbit becomes parabolic
(will escape from the system). For the parent bodies orbiting
WD 1145+017, if we suppose they break up at pericentre, then
rb = a(1 − e) and

tfill

P
= (1−e)
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2

⎡
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) 3
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2

⎤
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−1

≈ a

6R
(1 − e)2 (8)

= 1.3 × 103
( a
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) (
R

100 km

)−1

(1 − e)2 (9)

corresponding to a filling time of

tfill ≈ 250 d
( a

0.00535 au

) (
R

100 km

)−1

(1 − e)2 . (10)

Note that the filling time is dependent on radius, and hence mass,
for a given density (unlike for disruption). The reason is because the
physical separation of the L1 and L2 points depends on the parent
body size. Hence, particles leaving from the Lagrangian points will
have larger initial orbital period differences for larger parent body
sizes.

6.2.2 Numerical filling times

Numerically, one way to determine how quickly particles spread
into a ring is to consider the time evolution of the centre of
mass of the particles, rCOM. Initially, rCOM ≈ a ≈ 92RWD, assum-
ing RWD = 8750 km (a fiducial white dwarf radius; Veras et al.
2014a). As the rubble pile disrupts and the particles spread into
a ring, this centre of mass will gradually move towards the cen-
tre of the white dwarf. Consequently, a uniform ring is formed as
rCOM → 0. However, as rCOM approaches zero, it oscillates as ring
particles overtake each other, and potentially collide. This move-
ment ceases to be monotonic, and inhomogeneities in the ring will
show up as non-zero values of rCOM.

Figure 14. Ring filling times. Plotted is the time evolution of rCOM, which
is the distance between the centre of mass of the rubble pile particles and
the centre of the white dwarf. As the rubble pile disrupts and a ring fills out,
this distance decreases. When rCOM = 0, a uniform ring has been created.
Inhomogeneities (clumpiness and voids) in the ring result in the ‘bounces’
along the x-axis. Plotted symbols (stars for M = 1022 kg, triangles for
M = 1021 kg, squares for M = 1020 kg; yellow for ρ = 1.0 g cm−3 and pink
for ρ = 2.5 g cm−3) indicate the analytical predictions for the filling times
of asteroids which are assumed to instantaneously disrupt at their orbital
pericentres (equations 8 and 10).

6.2.3 Results

In Fig. 14, we plot the time evolution of rCOM for all homoge-
neous HCP rubble piles that are disrupted. Overplotted as stars,
triangles and a square are the analytical estimates of the filling
time from equation (10). Quantifying the extent of the agreement
between the analytics and numerics is not possible unless one de-
fines the meaning of a ring which has been ‘filled’: the curves in
Fig. 14 appear to ‘bounce’ on the x-axis several times before settling.
Equation (10) best reproduces a point in-between the second and
third bounce.

Some trends from the figure are worth noting, particularly be-
cause of their potential use for interpreting future observations:
(i) the circularization time decreases with increasing mass, (ii) the
‘bounciness’ increases with increasing mass, (iii) rubble piles with
M � 1020 kg generally spread out into full rings within about
three months and (iv) for a given mass, higher density rubble
piles more quickly achieve particle coverage throughout the or-
bit, but do not necessarily evenly fill out the ring more quickly or
smoothly.

The figure demonstrates that the ring filling times range from
10 to 100 d for 1019 kg � M � 1022 kg. Although this
time-scale fits within the baseline of observations, the ring is
not directly observed. One possible reason is that the ring is
collisionally eroded; another is that the newly disrupted pieces
of mantle are not active. However, theoretical models which in-
clude dust and/or gas might better link observed infrared excess
(indicating dust) or circumstellar gas (Xu et al. 2016) with ring
formation.

7 C O N C L U S I O N

The properties of the asteroid disintegrating around white dwarf
WD 1145+017 are poorly constrained observationally. Theoretical
work, however, can help remedy this shortfall, and in this case
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suggests that the disintegrating asteroid orbiting WD 1145+017
appears to reside just outside of the bulk density Roche radius.

In particular, we have modelled the tidal disruption of strength-
less rubble piles with an orbital period equal to that of the longest-
lasting observed transit signature. We found robust constraints on
density (Figs 3 and 11) and eccentricity (Fig. 4), and weak con-
straints on mass (Fig. 3) and spin (Fig. 11) (but see the last para-
graph of Section 5.2.1). By modelling both homogeneous and dif-
ferentiated rubble piles, we found that ρ � 2.75 g cm−3 ensures
disruption within one day, whereas ρ � 3.10 g cm−3 guarantees
that rubble piles on circular orbits will remain intact for at least
2 yr. Nevertheless, the intact differentiated rubble piles all undergo
mantle disruption, which produces intermittent streams of parti-
cles which may contribute to the observed photometric transit dips
(Fig. 10). If the eccentricity of the disrupting object exceeds 0.130,
then it is unlikely to remain intact for more than one month unless
ρ > 4.0 g cm−3.

Useful ancillary results include figures which may be applicable
for studies of disruption around other stars. These figures include a
mass-free relation between orbital period and density (Fig. 1, and
equation 5) and parameter-space locations where we can expect to
find mantle disruption versus full disruption (Figs 12 and 13).

We must caution that our seemingly robust results for WD
1145+017 rely on several assumptions: (i) the parent body is spher-
ical, (ii) the parent body is strengthless and (iii) the parent body or its
fragments are not affected by the extant dust or gas in the system. Re-
laxing these assumptions (e.g. Metzger, Rafikov & Bochkarev 2012;
Movshovitz, Asphaug & Korycansky 2012; Schwartz, Richardson
& Michel 2012) as new observations warrant might place stricter
physical constraints on the system.
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Brown J. C., Veras D., Gänsicke B. T., 2017, in press
Canup R. M., 2010, Nature, 468, 943

Carter P. J., Leinhardt Z. M., Elliott T., Walter M. J., Stewart S. T., 2015,
ApJ, 813, 72

Cassan A. et al., 2012, Nature, 481, 167
Chandrasekhar S., 1969, Ellipsoidal Figures of Equilibrium. Yale Univ.

Press, New Haven
Charnoz S. et al., 2011, Icarus, 216, 535
Cordes J. M., Shannon R. M., 2008, ApJ, 682, 1152
Crida A., Charnoz S., 2012, Science, 338, 1196
Croll B. et al., 2014, ApJ, 786, 100
Davidsson B. J. R., 1999, Icarus, 142, 525
Debes J. H., Walsh K. J., Stark C., 2012, ApJ, 747, 148
Dosopoulou F., Kalogera V., 2016a, ApJ, 825, 70
Dosopoulou F., Kalogera V., 2016b, ApJ, 825, 71
Farihi J., 2016, New Astron. Rev., 71, 9
Farihi J., Jura M., Zuckerman B., 2009, ApJ, 694, 805
Frewen S. F. N., Hansen B. M. S., 2014, MNRAS, 439, 2442
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APPENDI X A : SI MULATI ON TABLE

Table A1. Summary of simulations. The radii are rounded to two significant digits. Bold entries indicate important variables which were varied within
each set.

Simulation Packing Differe- Number of Density Mass Radius e Spin Duration Outcome
name type -ntiated particles (g cm−3) (kg) (km) (d) (disruption type)

HCP1 Hexagonal No 5003 1.00 1016 14 0.00 0 90 Full
HCP2 Hexagonal No 5003 1.00 1017 29 0.00 0 90 Full
HCP3 Hexagonal No 5003 1.00 1018 62 0.00 0 90 Full
HCP4 Hexagonal No 5003 1.00 1019 130 0.00 0 90 Full
HCP5 Hexagonal No 5003 1.00 1020 290 0.00 0 90 Full
HCP6 Hexagonal No 5003 1.00 1021 620 0.00 0 90 Full
HCP7 Hexagonal No 5003 1.00 1022 1300 0.00 0 90 Full

HCP8 Hexagonal No 5003 1.25 1016 12 0.00 0 90 Full
HCP9 Hexagonal No 5003 1.25 1017 27 0.00 0 90 Full
HCP10 Hexagonal No 5003 1.25 1018 58 0.00 0 90 Full
HCP11 Hexagonal No 5003 1.25 1019 120 0.00 0 90 Full
HCP12 Hexagonal No 5003 1.25 1020 270 0.00 0 90 Full
HCP13 Hexagonal No 5003 1.25 1021 580 0.00 0 90 Full
HCP14 Hexagonal No 5003 1.25 1022 1200 0.00 0 90 Full

HCP15 Hexagonal No 5003 1.50 1016 12 0.00 0 90 Full
HCP16 Hexagonal No 5003 1.50 1017 25 0.00 0 90 Full
HCP17 Hexagonal No 5003 1.50 1018 54 0.00 0 90 Full
HCP18 Hexagonal No 5003 1.50 1019 120 0.00 0 90 Full
HCP19 Hexagonal No 5003 1.50 1020 250 0.00 0 90 Full
HCP20 Hexagonal No 5003 1.50 1021 540 0.00 0 90 Full
HCP21 Hexagonal No 5003 1.50 1022 1200 0.00 0 90 Full
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Table A1 – continued

Simulation Packing Differe- Number of Density Mass Radius e Spin Duration Outcome
name type -ntiated particles (g cm−3) (kg) (km) (d) (disruption type)

HCP22 Hexagonal No 5003 1.75 1016 11 0.00 0 90 Full
HCP23 Hexagonal No 5003 1.75 1017 24 0.00 0 90 Full
HCP24 Hexagonal No 5003 1.75 1018 51 0.00 0 90 Full
HCP25 Hexagonal No 5003 1.75 1019 110 0.00 0 90 Full
HCP26 Hexagonal No 5003 1.75 1020 240 0.00 0 90 Full
HCP27 Hexagonal No 5003 1.75 1021 510 0.00 0 90 Full
HCP28 Hexagonal No 5003 1.75 1022 1100 0.00 0 90 Full

HCP29 Hexagonal No 5003 2.00 1016 11 0.00 0 90 Full
HCP30 Hexagonal No 5003 2.00 1017 23 0.00 0 90 Full
HCP31 Hexagonal No 5003 2.00 1018 49 0.00 0 90 Full
HCP32 Hexagonal No 5003 2.00 1019 110 0.00 0 90 Full
HCP33 Hexagonal No 5003 2.00 1020 230 0.00 0 90 Full
HCP34 Hexagonal No 5003 2.00 1021 490 0.00 0 90 Full
HCP35 Hexagonal No 5003 2.00 1022 1100 0.00 0 90 Full

HCP36 Hexagonal No 5003 2.25 1016 10 0.00 0 90 Full
HCP37 Hexagonal No 5003 2.25 1017 22 0.00 0 90 Full
HCP38 Hexagonal No 5003 2.25 1018 47 0.00 0 90 Full
HCP39 Hexagonal No 5003 2.25 1019 102 0.00 0 90 Full
HCP40 Hexagonal No 5003 2.25 1020 220 0.00 0 90 Full
HCP41 Hexagonal No 5003 2.25 1021 470 0.00 0 90 Full
HCP42 Hexagonal No 5003 2.25 1022 1000 0.00 0 90 Full

HCP43 Hexagonal No 5003 2.50 1016 9.9 0.00 0 90 Full
HCP44 Hexagonal No 5003 2.50 1017 21 0.00 0 90 Full
HCP45 Hexagonal No 5003 2.50 1018 46 0.00 0 90 Full
HCP46 Hexagonal No 5003 2.50 1019 98 0.00 0 90 Full
HCP47 Hexagonal No 5003 2.50 1020 210 0.00 0 90 Full
HCP48 Hexagonal No 5003 2.50 1021 460 0.00 0 90 Full
HCP49 Hexagonal No 5003 2.50 1022 990 0.00 0 90 Full

HCP50 Hexagonal No 5003 2.75 1016 9.5 0.00 0 90 Full
HCP51 Hexagonal No 5003 2.75 1017 21 0.00 0 90 Full
HCP52 Hexagonal No 5003 2.75 1018 44 0.00 0 90 Full
HCP53 Hexagonal No 5003 2.75 1019 95 0.00 0 90 Full
HCP54 Hexagonal No 5003 2.75 1020 210 0.00 0 90 None
HCP55 Hexagonal No 5003 2.75 1021 440 0.00 0 90 None
HCP56 Hexagonal No 5003 2.75 1022 950 0.00 0 90 None

HCP57 Hexagonal No 5003 3.00 1016 9.3 0.00 0 90 None
HCP58 Hexagonal No 5003 3.00 1017 20 0.00 0 90 None
HCP59 Hexagonal No 5003 3.00 1018 43 0.00 0 90 None
HCP60 Hexagonal No 5003 3.00 1019 93 0.00 0 180 None
HCP61 Hexagonal No 3985 3.00 1019 93 0.00 0 365 None
HCP62 Hexagonal No 3011 3.00 1019 93 0.00 0 730 None
HCP63 Hexagonal No 5003 3.00 1020 200 0.00 0 90 None
HCP64 Hexagonal No 5003 3.00 1021 430 0.00 0 90 None
HCP65 Hexagonal No 5003 3.00 1022 930 0.00 0 180 None
HCP66 Hexagonal No 3985 3.00 1022 930 0.00 0 365 None
HCP67 Hexagonal No 3011 3.00 1022 930 0.00 0 730 None

HCP68 Hexagonal No 5003 3.25 1016 9.0 0.00 0 90 None
HCP69 Hexagonal No 5003 3.25 1017 19 0.00 0 90 None
HCP70 Hexagonal No 5003 3.25 1018 42 0.00 0 90 None
HCP71 Hexagonal No 5003 3.25 1019 90 0.00 0 180 None
HCP72 Hexagonal No 3985 3.25 1019 90 0.00 0 365 None
HCP73 Hexagonal No 3011 3.25 1019 90 0.00 0 730 None
HCP74 Hexagonal No 5003 3.25 1020 190 0.00 0 90 None
HCP75 Hexagonal No 5003 3.25 1021 420 0.00 0 90 None
HCP76 Hexagonal No 5003 3.25 1022 900 0.00 0 180 None
HCP77 Hexagonal No 3985 3.25 1022 900 0.00 0 365 None
HCP78 Hexagonal No 3011 3.25 1022 900 0.00 0 730 None

HCP79 Hexagonal No 5003 3.50 1016 8.8 0.00 0 90 None
HCP80 Hexagonal No 5003 3.50 1017 19 0.00 0 90 None
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Table A1 – continued

Simulation Packing Differe- Number of Density Mass Radius e Spin Duration Outcome
name type -ntiated particles (g cm−3) (kg) (km) (d) (disruption type)

HCP81 Hexagonal No 5003 3.50 1018 41 0.00 0 90 None
HCP82 Hexagonal No 5003 3.50 1019 88 0.00 0 180 None
HCP83 Hexagonal No 3985 3.50 1019 88 0.00 0 365 None
HCP84 Hexagonal No 3011 3.50 1019 88 0.00 0 730 None
HCP85 Hexagonal No 5003 3.50 1020 190 0.00 0 90 None
HCP86 Hexagonal No 5003 3.50 1021 410 0.00 0 90 None
HCP87 Hexagonal No 5003 3.50 1022 880 0.00 0 180 None
HCP88 Hexagonal No 3985 3.50 1022 880 0.00 0 365 None
HCP89 Hexagonal No 3011 3.50 1022 880 0.00 0 730 None

HCP90 Hexagonal No 5003 3.75 1016 8.6 0.00 0 90 None
HCP91 Hexagonal No 5003 3.75 1017 19 0.00 0 90 None
HCP92 Hexagonal No 5003 3.75 1018 40 0.00 0 90 None
HCP93 Hexagonal No 5003 3.75 1019 86 0.00 0 180 None
HCP94 Hexagonal No 3985 3.75 1019 86 0.00 0 365 None
HCP95 Hexagonal No 3011 3.75 1019 86 0.00 0 730 None
HCP96 Hexagonal No 5003 3.75 1020 190 0.00 0 90 None
HCP97 Hexagonal No 5003 3.75 1021 400 0.00 0 90 None
HCP98 Hexagonal No 5003 3.75 1022 860 0.00 0 180 None
HCP99 Hexagonal No 3985 3.75 1022 860 0.00 0 365 None
HCP100 Hexagonal No 3011 3.75 1022 860 0.00 0 730 None

HCP101 Hexagonal No 5003 4.00 1016 8.4 0.00 0 90 None
HCP102 Hexagonal No 5003 4.00 1017 18 0.00 0 90 None
HCP103 Hexagonal No 5003 4.00 1018 39 0.00 0 90 None
HCP104 Hexagonal No 5003 4.00 1019 84 0.00 0 180 None
HCP105 Hexagonal No 3985 4.00 1019 84 0.00 0 365 None
HCP106 Hexagonal No 3011 4.00 1019 84 0.00 0 730 None
HCP107 Hexagonal No 5003 4.00 1020 180 0.00 0 90 None
HCP108 Hexagonal No 5003 4.00 1021 390 0.00 0 90 None
HCP109 Hexagonal No 5003 4.00 1022 840 0.00 0 180 None
HCP110 Hexagonal No 3985 4.00 1022 840 0.00 0 365 None
HCP111 Hexagonal No 3011 4.00 1022 840 0.00 0 730 None

HCP112 Hexagonal No 5003 2.00 1022 1100 0.001 0 90 Full
HCP113 Hexagonal No 5003 2.00 1022 1100 0.005 0 90 Full
HCP114 Hexagonal No 5003 2.00 1022 1100 0.010 0 90 Full
HCP115 Hexagonal No 5003 2.00 1022 1100 0.020 0 90 Full
HCP116 Hexagonal No 5003 2.00 1022 1100 0.050 0 90 Full
HCP117 Hexagonal No 5003 2.00 1022 1100 0.100 0 90 Full
HCP118 Hexagonal No 5003 2.00 1022 1100 0.150 0 90 Full
HCP119 Hexagonal No 5003 2.00 1022 1100 0.200 0 90 Full

HCP120 Hexagonal No 5003 4.00 1022 840 0.001 0 90 None
HCP121 Hexagonal No 5003 4.00 1022 840 0.005 0 90 None
HCP122 Hexagonal No 5003 4.00 1022 840 0.010 0 90 None
HCP123 Hexagonal No 5003 4.00 1022 840 0.020 0 90 None
HCP124 Hexagonal No 5003 4.00 1022 840 0.050 0 90 None
HCP125 Hexagonal No 5003 4.00 1022 840 0.080 0 90 None
HCP126 Hexagonal No 5003 4.00 1022 840 0.090 0 90 None
HCP127 Hexagonal No 5003 4.00 1022 840 0.100 0 90 None
HCP128 Hexagonal No 5003 4.00 1022 840 0.110 0 90 None
HCP129 Hexagonal No 5003 4.00 1022 840 0.120 0 90 None
HCP130 Hexagonal No 5003 4.00 1022 840 0.130 0 90 Full
HCP131 Hexagonal No 5003 4.00 1022 840 0.140 0 90 Full
HCP132 Hexagonal No 5003 4.00 1022 840 0.150 0 90 Full
HCP133 Hexagonal No 5003 4.00 1022 840 0.200 0 90 Full
HCP134 Hexagonal No 5003 2.60 1022 1000 0.00 0 90 Full

RandDiff1 Random Yes 5000 2.50 8.9 × 1021 1000 0.00 0 90 Full
RandDiff2 Random Yes 5000 2.60 9.3 × 1021 1000 0.00 0 90 Full
RandDiff3 Random Yes 5000 2.75 9.8 × 1021 1000 0.00 0 90 Full
RandDiff4 Random Yes 5000 2.90 1.0 × 1022 1000 0.00 0 90 Full
RandDiff5 Random Yes 5000 3.00 1.1 × 1022 1000 0.00 0 90 Full
RandDiff6 Random Yes 5000 3.10 1.1 × 1022 1000 0.00 0 90 Full
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Table A1 – continued

Simulation Packing Differe- Number of Density Mass Radius e Spin Duration Outcome
name type -ntiated particles (g cm−3) (kg) (km) (d) (disruption type)

RandDiff7 Random Yes 5000 3.20 1.1 × 1022 1000 0.00 0 90 Mantle
RandDiff8 Random Yes 5000 3.50 1.2 × 1022 1000 0.00 0 90 Mantle
RandDiff9 Random Yes 5000 3.80 1.4 × 1022 1000 0.00 0 90 Mantle
RandDiff10 Random Yes 5000 3.90 1.4 × 1022 1000 0.00 0 90 Mantle
RandDiff11 Random Yes 5000 4.00 1.4 × 1022 1000 0.00 0 90 Mantle

RandDiff12 Random Yes 5000 2.50 8.9 × 1021 1000 0.00 1 90 Full
RandDiff13 Random Yes 5000 2.60 9.3 × 1021 1000 0.00 1 90 Full
RandDiff14 Random Yes 5000 2.75 9.8 × 1021 1000 0.00 1 90 Full
RandDiff15 Random Yes 5000 2.90 1.0 × 1022 1000 0.00 1 90 Full
RandDiff16 Random Yes 5000 3.00 1.1 × 1022 1000 0.00 1 90 Full
RandDiff17 Random Yes 5000 3.10 1.1 × 1022 1000 0.00 1 90 Full
RandDiff18 Random Yes 5000 3.20 1.1 × 1022 1000 0.00 1 90 Mantle
RandDiff19 Random Yes 5000 3.50 1.2 × 1022 1000 0.00 1 90 Mantle
RandDiff20 Random Yes 5000 3.80 1.4 × 1022 1000 0.00 1 90 Mantle
RandDiff21 Random Yes 5000 3.90 1.4 × 1022 1000 0.00 1 90 Mantle
RandDiff22 Random Yes 5000 4.00 1.4 × 1022 1000 0.00 1 90 Mantle
RandDiff23 Random Yes 5000 4.20 1.50 × 1022 1000 0.00 1 90 Mantle
RandDiff24 Random Yes 5000 4.40 1.56 × 1022 1000 0.00 1 90 None
RandDiff25 Random Yes 5000 4.60 1.64 × 1022 1000 0.00 1 90 None

RandDiff26 Random Yes 5000 2.75 9.8 × 1021 1000 0.00 2 90 Full
RandDiff27 Random Yes 5000 2.75 9.8 × 1021 1000 0.01 0 90 Full
RandDiff28 Random Yes 5000 2.75 9.8 × 1021 1000 0.01 1 90 Full
RandDiff29 Random Yes 5000 3.00 1.1 × 1022 1000 0.01 0 90 Full
RandDiff30 Random Yes 5000 3.00 1.1 × 1022 1000 0.01 1 90 Full
RandDiff31 Random Yes 5000 3.50 1.2 × 1022 1000 0.01 0 90 Full
RandDiff32 Random Yes 5000 3.50 1.2 × 1022 1000 0.01 1 90 Full
RandDiff33 Random Yes 5000 3.50 1.2 × 1022 1000 0.01 2 90 Full
RandDiff34 Random Yes 5000 4.00 1.4 × 1022 1000 0.01 0 90 Mantle
RandDiff35 Random Yes 5000 4.00 1.4 × 1022 1000 0.01 1 90 Mantle
RandDiff36 Random Yes 5000 4.00 1.4 × 1022 1000 0.02 0 90 Full
RandDiff37 Random Yes 5000 4.00 1.4 × 1022 1000 0.02 1 90 Full

HCPDiff1 Hexagonal Yes 5003 2.00 7.41 × 1021 1000 0.00 1 90 Full
HCPDiff2 Hexagonal Yes 5003 2.10 7.78 × 1021 1000 0.00 1 90 Mantle
HCPDiff3 Hexagonal Yes 5003 2.20 8.15 × 1021 1000 0.00 1 90 Mantle
HCPDiff4 Hexagonal Yes 5003 2.40 7.99 × 1021 965 0.00 0 90 Mantle
HCPDiff5 Hexagonal Yes 5003 2.50 8.33 × 1021 965 0.00 0 90 Mantle
HCPDiff6 Hexagonal Yes 5003 2.60 8.64 × 1021 965 0.00 0 90 Mantle
HCPDiff7 Hexagonal Yes 5003 2.75 9.15 × 1021 965 0.00 0 90 Mantle
HCPDiff8 Hexagonal Yes 5003 2.80 1.04 × 1022 1000 0.00 1 90 Mantle
HCPDiff9 Hexagonal Yes 5003 3.00 1.11 × 1022 1000 0.00 1 90 Mantle
HCPDiff10 Hexagonal Yes 5003 3.20 1.18 × 1022 1000 0.00 1 90 None
HCPDiff11 Hexagonal Yes 5003 3.40 1.26 × 1022 1000 0.00 1 90 None
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