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Remote, Depth-based Lung Function Assessment
Vahid Soleimani, Student Member, IEEE, Majid Mirmehdi, Senior Member, IEEE, Dima Damen, Member, IEEE,

James Dodd, Sion Hannuna, Charles Sharp, Massimo Camplani, Member, IEEE, and Jason Viner

Abstract—Objective: We propose a remote, non-invasive ap-
proach to develop Pulmonary Function Testing (PFT) using a
depth sensor. Method: After generating a point cloud from scene
depth values, we construct a 3D model of the subject’s chest.
Then, by estimating the chest volume variation throughout a
sequence, we generate volume-time and flow-time data for two
prevalent spirometry tests: Forced Vital Capacity (FVC) and
Slow Vital Capacity (SVC). Tidal volume and main effort sections
of volume-time data are analysed and calibrated separately to
remove the effects of a subject’s torso motion. After automatic
extraction of keypoints from the volume-time and flow-time
curves, seven FVC (FVC, FEV1, PEF, FEF25%, FEF50%, FEF75%

and FEF25−75%) and four SVC measures (VC, IC, TV and
ERV) are computed and then validated against measures from a
spirometer. A dataset of 85 patients (529 sequences in total),
attending respiratory outpatient service for spirometry, was
collected and used to evaluate the proposed method. Results:
High correlation for FVC and SVC measures on intra-test and
intra-subject measures between the proposed method and the
spirometer. Conclusion: Our proposed depth-based approach is
able to remotely compute 11 clinical PFT measures, which gives
highly accurate results when evaluated against a spirometer on a
dataset comprising 85 patients. Significance: Experimental results
computed over an unprecedented number of clinical patients
confirm that chest surface motion is linearly related to the
changes in volume of lungs, which establishes the potential
towards for an accurate, low-cost and remote alternative to
traditional cumbersome methods, like spirometry.

Index Terms—Chest surface reconstruction, chest volume es-
timation, forced vital capacity (FVC), Kinect noise analysis,
pulmonary function testing (PFT), spirometry, slow vital capacity
(SVC).

I. INTRODUCTION

PULMONARY Function Testing (PFT) is a vital com-
ponent of clinical assessment in the investigation of

respiratory diseases. This can be achieved by a variety of
measures, including exercise testing, lung volume measure-
ment, and dynamic breathing tests. Traditional measures of
pulmonary function, such as spirometry [1] and whole body
plethsmography [2] (which measures lung volumes and gas
transfer) require patient co-operation and direct contact with
the equipment. There are other measures of lung physiology
which are even more invasive, such as arterial blood gas sam-
pling (direct arterial sampling) and cardiopulmonary exercise
testing (treadmill or exercise bike) [1]. Comparatively among
these methods, spirometry is the most prevalent to assess lung
function due to its portability, price, and accuracy for medical
diagnosis.
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To perform a spirometry test, patients are asked to breathe
through a mouthpiece while a nose-clip is applied to prevent
air leakage. The two primary clinical protocols undertaken
with a spirometer are forced vital capacity (FVC) and slow
vital capacity (SVC). The former comprises a maximal inspi-
ration followed by a forced maximal expiration, and the latter
a maximal inspiration followed by a slow, controlled, maximal
expiration. Various clinical PFT measures, such as FVC,
FEV1, PEF, FEF25−75% (FVC measures) and VC, IC, TV
and ERV (SVC measures) are calculated within a spirometry
test [1], [3]. These PFT measures, and their combinations,
are used in the diagnosis and assessment of obstructive lung
diseases, e.g. Chronic Obstructive Pulmonary Disease (COPD)
and Asthma, and restrictive lung diseases, e.g. lung fibrosis.

Although spirometry is an accurate and reliable clinical
method, there are some disadvantages which limit its appli-
cation. The spirometer is a particularly challenging device for
certain clinical populations to perform with, such as the frail
elderly, children, and cognitively impaired patients. It needs
to be recalibrated at least every couple of days and a new
mouthpiece and nasal clip are needed for each patient.

In this paper, we propose a novel depth-based method for
remote lung function assessment by estimating and tracking
the volume of the chest to compute clinically acquired FVC
and SVC measures. For depth sensing, we use the Microsoft
Kinect V2 RGB-D sensor [4] which is based on time-of-flight
technology. The estimated measures are correlated against
results obtained using a spirometer for 85 patients who at-
tended a respiratory outpatient service for spirometry. In our
previous work [5], we demonstrated that the Microsoft Kinect
can be used to estimate chest volume and compute intra-test
PFT measures. To the best of our knowledge, the only other
work that remotely computes and reports PFT measures (just
two, FVC and FEV1) is [6] which used the first generation,
structured-light based, Kinect. Their study mainly focused
on estimating passive airway resistance and was tested on 5
healthy subjects who were instructed to mark their inhalation
and exhalation manually (using the computer mouse) during
the test.

We extend our previous work in [5] by: (a) detailed
analysis of volume-time data to automatically extract more
reliable keypoints for calculating scaling factors and measures,
(b) obtaining three more FVC measures i.e. FEF25%, FEF50%

and FEF75%, (c) performing comparative analysis of PFT
measures obtained by the proposed method and spirometer,
(d) investigating subjects’ upper body motion during the test
and its effects on volume-time data, (e) generalizing the intra-
subject scaling factor, and (f) evaluating the proposed method
on 85 actual patients (compared to 40 in [5]).

Our proposed system has been developed in response to
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increasing clinical interest in contactless or remote techniques
for respiratory assessment. It can be exploited for a wide range
of potential applications, such as screening for respiratory
diseases, home monitoring, and gating controls for radiological
imaging techniques. The proposed system is easy to setup and
does not require calibration on a daily basis. Due to remotely
assessing the lungs, not only does it cut the costs (pneumatach
and disposable accessories), but also it decreases infection
risks caused by connecting to a pneumatach. Furthermore, our
method requires no specialist training.

There are several recent studies that only estimate breath-
ing rate, without performing PFT, using structured-light [6]–
[18], time of flight cameras [5], [19], [20], video cameras
[21], [22], and other remote sensors [23], [24]. These are
briefly considered in Section II. In Section III, we present
an overview and schematic of the proposed approach. Then in
Section IV, we describe the Kinect noise analysis and filtering,
3D chest modelling, and volume estimation. This is followed
in Section V with volume-time data keypoints computation
and analysis. Extracting clinical PFT measures is presented
in Section VI and our proposed method for scaling factor
generalization is described in Section VII. The system config-
uration, the dataset, and the experimental results are presented
in Section VIII. The paper is concluded in Section IX. A list
of abbreviations used in the paper is provided in the Appendix.

II. LITERATURE REVIEW

Remote respiratory monitoring has recently become a po-
tential solution and is attracting more researchers, especially
since the availability of affordable depth sensors, such as the
first generation Microsoft Kinect, and then later the Microsoft
Kinect V2, which use structured-light and time-of-flight tech-
niques respectively. While many works, referred to below, have
investigated breathing rate, respiratory waveform estimation,
and respiration resistance using depth sensors, we know of
only our own earlier work [5] and Ostadabbas et al. [6] that
have applied the Kinect to PFT measurement in particular.
Further, we have many more subjects and a much wider range
of PFT measures.
Structure-light approaches – Ostadabbas et al. [6] applied
the first generation Kinect to compute two PFT measures (FVC
and FEV1) for the estimation of airway resistance, defined
as lung pressure divided by the airflow. Five healthy subjects
were asked to blow through various numbers of straws (to
induce varied airway resistance) while their lung volume was
measured over time. They instructed subjects to press their
back against the wall to restrict their body movement and use
a wireless mouse to timestamp their inhalation and exhalation
during the test. They reported on average 0.88 correlation
between their method and spirometry for the FEV1 measure.

Aoki et al. [7] proposed a non-contact respiration measure-
ment technique, using the first generation Kinect, by extracting
the volume of the thoracoabdominal region formulated on the
skeleton joint positions available from the sensor. Respiration
waveforms were generated by computing the changes to this
volume. Their results were validated against an expiration gas
analyser and flow meter and they reported 0.98 correlation

between volume change (estimated by their method) and the
air flow volume (measured by an expiratory gas analyser).
Yu et al. [8] developed an elaborate calibration technique,
along with a predefined chest wall mask, to approximately
extract the subject’s chest wall region and dimensions. The
respiratory volume was estimated by using the computed
length per pixel and depth information. Correlation of 0.96
was reported against a spirometer for estimating respiratory
volume. Similar to [8], Seppanen et al. [9] used the first
generation Kinect to estimate the respiration rate (of healthy
subjects) by generating respiratory airflow waveform using
several models from depth sensor data. The best coefficient
of determination (R2) between the spirometer signal and the
estimated airflow signal was reported as 0.93. Benetazzo et
al. [12] detected respiratory rates by applying a weighted
averaging filter to the chest region pixels segmented by using
the first generation Kinect skeleton’s shoulder and torso joint
positions. Their breathing rate results were evaluated against
a spirometer, with an outcome of 0.98 correlation. Tahavori
et al. [13] used a first generation Kinect placed above the
participant’s body who was required to be supine and obtained
the average depth value of 16 regions of interest on the
chest and abdomen over time to analyse their motion. After
applying principal component analysis (PCA) to the average
depth values of these regions, they demonstrated that the first
principal component describes nearly 70% of the motion data
variance in chest and abdomen surfaces. Other works of note
that extract the respiratory rate using the structured-light based
Kinect are [14]–[18].

In an example non-Kinect, yet structured-light approach,
De Boer et al. [10] deployed two cameras as a stereo pair
to capture a predefined light pattern projected onto the chest
wall and estimate chest volume changes. The volume was
defined as the enclosed space between the chest surface and
the work bench, for which R2 = 0.91 was reported when
compared against a spirometer. The authors reported that their
PFT measures correlated with the spirometer at R2 = 0.97,
but provided no further details.
Time-of-flight approaches – In [19], Ostadabbas et al.
proposed a non-invasive, passive method, using the Microsoft
Kinect V2 and a pulse oximeter, to assess the severity of
airway obstruction as mild, moderate or severe. To estimate
respiration airflow, 14 healthy subjects were asked to breathe
through various straws to induce airway obstruction externally
in a spontaneous breathing session while lying supine to
minimize body movement effects. In a separate stage, they
estimated breathing rate and tidal volume of 14 patients in a
sitting position to classify their airway obstruction severity.
In both parts, they asked each subject to perform some
instructions, e.g. pressing the pulse oximeter buttons during
the test. They reported 76.2% and 80% accuracy in detecting
airways obstruction in healthy and ill subjects respectively.

Penne et al. [20] employed a time-of-flight camera and used
the flat clinic bed in a calibration stage and fit a reference plane
onto it. Then, with a test subject present, the two best-fitting
planes were found for the chest and abdomen regions, and are
used to compute the breathing signal. They compared their
respiration signal against that obtained from an ANZAI belt
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Fig. 1. A schematic of the proposed method.

for chest and abdomen regions and reported 0.85 and 0.91
correlation respectively.

In our preliminary work [5], we obtained several PFT
measures of FVC and SVC tests remotely using Kinect V2
depth data by computing volume-time and flow-time curves
of chest volume changes. We evaluated on 40 patients by
comparing their computed measures to those obtained from
a spirometer. These results are reproduced in the Section VIII
of this paper.
RGB video camera approaches – Tan et al. [21] proposed a
single video camera approach which used image subtraction to
detect the motion of the chest and abdomen regions in subjects
wearing a striped pattern shirt. After applying an averaging
filter, the breathing signal was obtained from the number of
moving pixels given a threshold. They evaluated their results
against a stain gauge, a thermistor, and a flow monitoring
system, but reported only subjective assessments. Frigola et
al. [22] used optical flow to detect body movement to monitor
inhalation and exhalation during sleep. Although they used an
elastic cloth band as their groundtruth, comparative evaluation
results were not reported.
Other sensor approaches – Other example methods of note
to monitor respiratory rate are Scalise et al. [23] who used a
Laser Doppler Vibrometer and Sato and Nakajima [24] who
employed a stereo system with an infrared beam fibre grating
projection. Further, there have been a number of marker-
based (motion capture system) clinical works [25]–[28]. These
approaches are expensive and require a complicated calibration
process. They mainly focus on the existence of correlation
between chest wall motion and actual lung volume changes.

III. OVERVIEW

Fig. 1 presents an overview of the proposed method. After
identifying and segmenting the chest region in each depth
frame of the sequence captured by the Kinect, the volume
of the thoracic wall is estimated and the Kinect volume-
time and flow-time curves are generated. Next, the Kinect
volume-time curve is smoothed using a moving averaging filter
and then keypoints are automatically computed for both the
depth and spirometry measurements. After establishing linear
scaling factors, needed to calibrate the curves from the depth
sensor, PFT measures are computed on the depth sensor curve
and their stability over multiple runs for the same subject
is analysed and compared against the spirometer measures.
We show that these scaling factors are subject-specific as
they relate to the natural body motion of the subject while
performing PFTs. Accordingly, by investigating subjects’ trunk

motion patterns, we generalize intra-subject scaling factors to
compute intra-subject PFT measures.

IV. CHEST MODELLING AND VOLUME-TIME DATA
COMPUTATION

Kinect V2 Sensor Noise – Kinect depth estimation suffers
from measurement noise caused by the depth sensor technol-
ogy. Since the Kinect V2 was released only recently, there is
little public information on the nature and characteristics of
its noise. We performed a planar noise analysis to find the
optimal distance range between the sensor and the subject.

In this experiment, we estimated the sensor measurement
error by placing the Kinect at various distances - from 60cm
to 500cm at 20cm intervals - in front of a white wall under
normal room temperature and lighting conditions, with the
sensors optical axis approximately perpendicular to the wall.
At each position, a sequence of 200 frames were recorded and
15K depth values were randomly sampled from a constant-
size patch at the center of the sensor’s viewpoint and the
standard deviation was computed for them. Fig. 2 illustrates
this standard deviation in mm plotted against the sensor
distance to the wall. It shows a non-linear behaviour similar
to the general ToF depth sensors [29]. Furthermore, a similar
noise curve was reported by Breuer et al. [30]. Noise increases
between 60 and 80cm, and then drops to its minimum at
∼150cm. Accordingly, we carried out all our experiments with
the Kinect placed at ∼150cm from the subject. However, noise
may vary under different environmental lighting and temper-
ature conditions and also depends on the sensor temperature
itself. These factors therefore require the optimal distance to
be re-computed for the environment the device is to be used
in.
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Fig. 2. Planar surface noise analysis within a distance range of 60−500cm.
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To filter noise in the measurements, an edge-preserving
bilateral filter [31] was applied to each frame of our data:

BF [I]p =
1

Wp

∑
q∈S

Gσs

(
‖p− q‖

)
Gσr

(
|Ip − Iq|

)
Iq, (1)

where Wp is the normalization factor, Gσs
is a spatial Gaussian

kernel, Gσr
is a range Gaussian kernel, p and q are the

locations of central and neighbour pixels, ‖p−q‖ is Euclidean
distance between pixel locations p and q, and I is the image
to be filtered. The range parameter σr of the bilateral filter
was determined to be 1.5, which is approximately equal to
the standard deviation of distance measuremnts obtained by
the Kinect at the chosen distance of ∼150cm. In particular,
this value was selected, as in [32] according to the level of
noise at this distance, to optimize the performance of the range
component of the bilateral filter. For the spatial filter, we select
Wf = 13 which guarantees a good trade-off between accuracy
and processing speed, also reported by Camplani et al. in a
similar filtering approach. Consequently, σs = Wf/6, such
that the the significant part of the Gaussian kernel (up to 3σs)
is completely included within the selected window Wf [33].
Smoothed Volume-time Curve – The volume-time curve was
obtained for each sequence by estimating the chest volume as
a function of time. Smoothing of the volume-time curve, in
one form or another, is routinely applied in all other works, for
example in [19], [34]–[36]. Here, although the bilateral filter
was applied to each frame of the depth sequence, the volume-
time curve still remained considerably noisy (see Fig. 3) as
the chest volume is estimated temporally in a very limited
chest wall motion, i.e. ±2.5cm approximately. Thus, we used
a non-causal moving average filter, which is a low pass finite
impulse response (FIR) filter [37], to eliminate high frequency
noise of the Kinect volume-time curve, i.e.

Vout(t) =
1

N

(N−1)/2∑
i=−(N−1)/2

Vin(t− i), (2)

where Vin(k) and Vout(k) are the input and filtered volume-
time curves respectively, and N is the averaging window size,
which is computed as N = 15 based on the filter cut-off
frequency of 1Hz [38]. The cut-off frequency was chosen
according to the range of respiratory rates (frequency) for
healthy adults at 12− 20 breaths/minute (0.2− 0.34 Hz) [39],
elderly at 16− 25 breaths/minute (0.27− 0.42 Hz) [40], and
those with severely pulmonary disorders at 36 breaths/minute
(0.6 Hz) at most [41]. The computed range of respiratory rates
for the 85 patients of our dataset, at 8 − 32 breaths/minute
(0.13 − 0.53 Hz), satisfies the chosen cut-off frequency of
1Hz.
3D Modelling of Thoracic Wall – After obtaining a point
cloud representing the captured scene from the filtered depth
images, a subject’s chest area was segmented automatically
using body joints estimated by Kinect software (SDK2.0),
defined by ShoulderRight, ShoulderLeft, SpineShoulder and
SpineMid joint positions. The chest wall surface was then
reconstructed by applying a 2D Delaunay triangulation [42]
on the point cloud (Fig. 4a).
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Fig. 3. Volume-time curve before and after applying moving averaging filter.

3D-chest-model based volume estimation – Given the 2.5D
data, we proposed in [5] a method to approximate the chest
volume by computing the volume between the model of the
thoracic wall and a reference plane at a predefined distance
from the camera. Our approach is sufficient to compute
the volume-time curve V (t) that models variations in the
approximated volume, based on the assumption that body
movements are minimal during PFT and can be ignored1.
The reconstructed chest wall surface was then enclosed by
surrounding lateral surfaces and a reference plane (Fig. 4b),
and its volume was estimated using the Divergence Theorem.
More information about our volume estimation can be found
in [5].

Chest-averaging based volume estimation – Similar
to previous approaches [6], [12], [15], [17], [18], we also
estimated the uncalibrated chest volume at time point t by
computing the average distance of each pixel located in the
chest region. Chest-averaging is simple and fast to compute.

1This assumption is revisited in Sections V-B, V-C and VII
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Fig. 5. (a) Kinect and spirometer FVC volume-time curve and their corresponding keypoints, (b) Kinect and spirometer SVC volume-time curve and their
corresponding keypoints.

We report results using both the 3D-chest-model based [5]
and chest-averaging methods in Sections VIII-B and VIII-D.

V. VOLUME-TIME DATA KEYPOINTS AND ANALYSIS

All PFT tests start with a few cycles of normal breathing,
called tidal volume, followed by the intended lung function
test, called main effort. Since our Kinect volume-time data
measures the chest volume in cubic metres (m3) relative to
an arbitrary plane, as opposed to the spirometer’s air volume
measure in litres, we need to linearly scale the y-axis in the
volume-time curves (using computed scaling factors) to enable
the correlation of computed measures. Note that this is not
to imply that the Kinect truly measures lung volume: chest
volume is a proxy for the amount of air within the lungs
that we show is linearly related to air flow as measured by
spirometry.

A. Keypoints Computation

Several keypoints were automatically computed from the
volume-time curves to (a) identify tidal volume and the main
effort, (b) establish scaling factors, and (c) compute PFT
measures. Five keypoints are required for separating tidal
volume and main effort in the FVC and SVC volume-time
curve, V (t), which are named as {C,D} (beginning and end
of tidal volume) and {E ,A,B} (beginning to the end of main
effort), as illustrated in Fig. 5.

In order to compute keypoints correctly, first we need to
find the FVC and SVC volume-time curve extrema which
identify respiratory cycles during the PFT test. Since the
curve can be noisy (e.g. because of chest movement and
coughing), local minima or maxima may be incorrectly se-
lected. To avoid false local extrema, the difference between
two consecutive turning points, which are introduced as local
extrema, needs to be greater than a threshold γ. Considering
Vmin and Vmax as the smallest and greatest estimated chest

volume in a sequence (volume-time curve global minimum and
maximum), [Vmax − Vmin] indicates the maximum volume of
exchanged air that occurs during main effort. A fraction of this
exchanged volume is defined as γ to identify local extrema,
i.e. γ = 1

ρ [Vmax − Vmin], where ρ is defined as the ratio of
the greatest exhaled air during main effort (6.8) to the smallest
exhaled air during tidal volume (0.35) among all sequences,
which is ρ = ∼20.

Note that SVC volume-time curve presents inhalation and
exhalation in the opposite direction to the FVC volume-time
curve. This means, while an increase in FVC volume-time
curve corresponds to exhalation, it indicates inhalation in the
SVC volume-time curve. This is similar to the volume-time
curves obtained from the spirometer.
FVC keypoints – In FVC, keypoints D and E are coincident
in V (t). Since lungs always contain a residual air volume, the
amount of exhaled air volume in deep expiration is greater
than inhaled air in a deep inspiration. Hence, keypoints A
and B, indicating the beginning and end of deep expiration
respectively, are more detectable than other points. They were
extracted, timestamped tA and tB respectively, as a pair of
consecutive minimum and maximum points with the largest
change in volume between them during expiration, such that,

[tA, tB] =arg min
tx
i
,ty

i

{
x(txi )− y(tyi )

}
, 1 = i . . . n

∀txi , t
y
i 3 tyi > tx1 , (3)

where X and Y are sets of volume-time curve extrema
computed as minima and maxima, x(.)∈X and y(.)∈Y ,
txi and tyi are each minimum and maximum corresponding
timestamps, and n is computed as

n = min(|X|, |
|Y |⋃
i=1

y(tyi )|), tyi > tx1 . (4)
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The local maximum directly before tA was selected as E (and
thus D). The first extremum of the curve was selected as C.

In addition to the volume-time curve, we also used the
flow-time curve to compute some FVC measures. The flow
is defined as the rate of changing volume, i.e. V̇ (t) = ∂V

∂t .
FVC peak flow and time zero – To compute some FVC test
measures, such as FEV1, we also needed to compute the Peak
Flow (PF) point and ‘time zero’ t0 (Fig. 6). PF is the point
at tPF with the maximum air flow speed during main effort
exhalation,

tPF = arg max
t∈[tA,tB]

{ ∂
∂t

(
V (t)

)
}. (5)

Since FEV1 is a timed PFT measure, instead of keypoint
A (timestamped tA), a starting ‘time zero’ t0 keypoint is
used for computing FEV1 (Fig. 6). This is because keypoint
A is affected by hesitant or delayed exhalation in the main
effort manoeuvre leading to an incorrect and decreased FEV1
value. After subtracting V (tA) from the estimated volume, t0
is computed using the back-extrapolation approach [1],

t0 = tPF −
[
V (tPF )− V (tA)

]
×
[
∂

∂t

(
V (t)

)∣∣∣
t=tPF

]−1
.(6)

SVC keypoints – In the SVC test, we extracted {C,D} and
{E ,B,A} keypoints for partitioning the volume-time curve
into the tidal volume and main effort respectively as shown
in Fig. 5b. Similar to the FVC keypoints extraction method,
to be able to find other keypoints, we first computed {B,A}
timestamps as,

[tB, tA] =arg max
ty
i
,tx

i

{
y(tyi )− x(txi )

}
, i = 1 . . .m

∀tyi , t
x
i 3 txi > ty1, (7)

where notations are similar to (3) and m was computed as

m = min(|
|X|⋃
i=1

x(txi )|, |Y |), txi > ty1 . (8)

Here, in the volume-time curve V (t), inhalation in SVC shows
as exhalation in FVC. Thus, we still used the exhalation part
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Fig. 6. ‘time zero’ and peak flow in FVC volume-time curve.

of the main effort, which is more reliable, to extract B and
A, similar to the FVC test. Keypoint E marks the beginning
of inhalation in main effort and is determined as the local
minimum directly before tB. Like FVC, C is chosen as the first
extremum of the curve, and D is the local maximum directly
before tB. For computing SVC measures, four maxima and
four minima keypoints (Fi and Gi in Fig. 5b) from the tidal
volume part are also required.

B. Tidal Volume Analysis and Calibration

To be able to extract PFT measures from the Kinect
volume-time curve and compare them with those given by the
spirometer, and thus evaluate our proposed method, we needed
to (a) temporally align Kinect and spirometer volume-time
curves and (b) compute scaling factors and (c) use them to
calibrate the Kinect volume-time curve. We perform alignment
and scaling separately for the tidal volume and main effort
parts, to take into consideration any inevitable trunk movement
when subjects take a deep inhalation, followed by a maximal
exhalation.

After selecting the tidal volume parts of the Kinect and
spirometer volume-time curves using the C & D keypoints, we
performed some pre-processing operations on these two sub-
signals to allow them to be directly compared. The spirometer
sub-signal was sampled at the Kinect sampling rate of 30Hz.
Both signals are normalized to zero mean. Finally, the two
sub-signals were synchronized by computing the optimal time
delay using windowed cross-correlation,

τdelay = arg max
τ

(+∞∑
−∞

V ∗k (t)Vs(t+ τ)

)
, (9)

where V ∗k (t) and Vs(t) denote the complex conjugate of
Kinect normalized tidal volume and spirometer subsampled
and normalized tidal volume curves respectively.

The tidal volume scaling factor can be computed using
only a pair of consecutive minimum and maximum points [5],
however this is not very reliable. We modelled it with a first
degree polynomial, V̂s = ξtv · V̂k + ψtv , where V̂s and V̂k are
subsampled and aligned Kinect and spirometer tidal volume
data, ψtv is the offset between the Kinect and spirometer tidal
volume parts, and ξtv presents the tidal volume scaling factor.
Since the Kinect and spirometer tidal volume parts were mean
zero normalized, then ψtv ≈ 0.

However, in many cases, this approach is insufficient to deal
with an incremental or decremental trend in the data that can
appear in one or both of the Kinect and the spirometer data.
Fig. 7a shows example Kinect and spirometer tidal volume
curves each plotted on a different scale, with the left y-axis
for the uncalibrated Kinect volume and the right y-axis for
the spirometer volume (L). Both curves exhibit such a trend
which makes the extraction of a correct scaling factor (or an
alignment process) a cantankerous task (see Fig. 7b). This
trend might occur because of one or more reasons: the use of
a nasal Oxygen mask by patients during the test (which affects
only the spirometer data), lung hyperinflation, or the subject’s
body movements.
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Fig. 7. (a) Existing trends in spirometer and Kinect tidal volume curves, (b) Incorrect Kinect Calibrated tidal volume because of existing trend, (c) Correct
Kinect calibrated tidal volume after removing the trend.

A simple approach to modelling the trend to help eliminate
it would be a linear regression model. However, we found this
to be insufficient due to the non-linear nature of the trend,
thus we applied Empirical Mode Decomposition (EMD) [43]
to estimate the trend more accurately. EMD is an adaptive
method to decompose a non-linear and non-stationary signal
in the time domain into its individual components (Intrinsic
Mode Functions or IMFs) and a residual r, from which no
more IMFs can be extracted and can be said to represent the
signal’s trend (10):

s(t) =

l∑
j=1

IMF j(t) + r(t). (10)

Figs. 8a and 8b present the first three IMFs and the residual
of a tidal volume curve (where the residual displays the signal
trend), and the modified tidal volume curve after applying
EMD. Fig. 7c shows the Kinect and spirometer tidal volume
curves with their trend estimated and removed by EMD, and
the Kinect curve has been calibrated using the correct tidal
volume scaling factor. Note we used the modified tidal volume
curves to compute scaling factors only and other analysis were
performed on the original Kinect and spirometer data.
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Fig. 8. (a) Original Kinect tidal volume curve, IMF s and the residual signal,
(b) Tidal volume curve after removing the trend.

C. Main Effort Analysis and Calibration

As stated in Section V-B, the Kinect and spirometer volume-
time curves were aligned only using their tidal volume sections
to avoid errors arising from the subjects upper body movement
during main effort. Then, the main effort scaling factor (ξme)
was obtained by solving V̂s = ξme · V̂k +ψme, using only the
A & B keypoints on each signal as they are less affected by
motion artefacts and thus more reliable. Unlike in the tidal
volume calibration process where ψtv was zero, ψme here
correlates with body movement and appears as an offset along
the y-axis. However, in scenarios where subjects are stationary
during the whole test (e.g. see Fig. 5b), then ψme ≈ 0, and
there is no offset between the tidal volume and main effort
parts.

We calibrated the tidal volume and main effort parts in-
dividually and generated two calibrated Kinect volume-time
curves. For the first (tidal volume calibrated), the whole Kinect
volume-time curve is scaled by multiplying by the tidal volume
scaling factor ξtv , as computed in Section V-B. Then, it was
vertically aligned with the spirometer tidal volume part by
making both the Kinect and spirometer tidal volume part
zero-mean, as shown in Fig. 9a. For the second (main effort
calibrated), the whole Kinect volume-time curve was scaled
by multiplying the main effort scaling factor ξme, computed
in this section, and vertically aligned with the spirometer tidal
volume part by adding the main effort offset ψme to all Kinect
volume-time data, as shown in Fig. 9b.

VI. COMPUTATION OF CLINICAL PFT MEASURES

FVC measures – Within a FVC spirometry test, several
clinical measures are provided by the spirometer software. In
addition to these numerical measures, there are two common
‘qualitative’ presentations of lung function test, i.e. volume-
time curve and flow-volume loop (Figs. 10a and 10b), that
pulmonologists often use these graphs to visually diagnose
problems in the patient’s breathing function.

The 7 most significant FVC measures that we compute using
the proposed Kinect FVC volume-time and flow-time data are:
(i) FVC as the maximum amount of air in litres blown out
after a maximal inhalation, determined as the volume change
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Fig. 9. (a) Volume-time curve calibrated using spirometer tidal volume part, (b) Volume-time curve calibrated using spirometer main effort part.
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Fig. 10. (a)-(b) FVC measures on volume-time curve and flow-volume loop extracted from our dataset.

between keypoints A & B, i.e. FV C =
[
V (tB) − V (tA)

]
,

(ii) FEV1 (Forced Expiratory Volume) as the volume of air
forcibly expired in 1 second starting from ‘time zero’ (6), i.e.
FEV 1 =

[
V (t0 + 1) − V (t0)

]
, (iii) PEF (Peak Expiratory

Flow) as the maximum speed of exhaled air, i.e. PEF =
V̇ (tPF ), (iv) FEF25% (Forced Expiratory Flow as flow of
exhaled air at 25% of FVC, i.e. FEF25% = V̇ (t0.25FV C), (v)
FEF50% as flow of exhaled air at 50% of FVC, i.e. FEF50% =
V̇ (t0.5FV C), (vi) FEF75% as flow of exhaled air at 75% of
FVC, i.e. FEF75% = V̇ (t0.75FV C), and (vii) FEF25−75% as
the mean forced expiratory flow between 25% and 75% of the
FVC, computed as FEF25−75% = 0.75FV C−0.25FV C

t(FEF25%)−t(FEF75%) .

FVC, FEV1 and FEF25−75% are illustrated in Figs. 10a

and 10b and PEF, FEF25%, FEF50% and FEF75% measures
are marked on flow-volume loop in Fig. 10b. Note that since
the last four measures are computed using volume-time and
flow-time data, only their corresponding locations are marked
as ‘index’ on volume-time curve in Fig. 10a (using their
timestamps).

SVC measures – Within an SVC test, four clinical measures
are provided by the spirometer software, and only one ‘qualita-
tive’ presentation of lung function, i.e. the volume-time curve
(Fig. 11), which we compute on Kinect volume-time data:
(i) VC (Vital Capacity) as the volume change between full
inspiration and complete expiration between keypoints B &
A, i.e. V C =

[
V (tB)−V (tA)

]
, (ii) IC (Inspiratory Capacity)
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as the volume change between taking a slow, full inspiration
and the passive end-tidal expiration, i.e. difference of volume
at keypoint B and the average volume at group keypoints G
within the tidal volume section,

IC = V (tB)− 1

4

4∑
i=1

V (tGi), (11)

(iii) TV (Tidal Volume) as the volume of air inspired and
expired at rest condition, i.e. the average volume difference
between group keypoints F & G,

TV =
1

4

4∑
i=1

[
V (tFi)− V (tGi)

]
, (12)

and (iv) ERV (Expiratory Reserve Volume) as the volume
change between passive end-tidal expiration and complete
expiration, i.e. difference of the average volume at group
keypoints G within the tidal volume section and volume at
keypoint A,

ERV =
1

4

4∑
i=1

V (tGi)− V (tA), (13)

Note that, based on spirometry experiment protocols [1], each
FVC and SVC test should be repeated several times (at least
three) to ensure consistency.

VII. SCALING FACTOR GENERALIZATION

So far we have shown that we can compute PFT measures
from the Kinect volume-time and flow-time curves which have
been calibrated by applying scaling factors computed using the
corresponding spirometer volume-time curve. We refer to this
as an ‘intra-test’ procedure. However, we need to remove this
dependency, so we can compute PFT measures for a new trial2

using only Kinect volume-time data - i.e. a more practical
‘intra-subject’ procedure.

2A trial refers to each performance of the FVC/SVC test by each subject.

As the change in the distance of the Kinect to a subject’s
thoracic wall is directly related to the change in their lung
volume, our scaling factors are specific to each subject. In
theory, this relationship should remain unchanged for a subject
who performs a test several times (even on different days) with
the same system configuration. However, in practice, this is
only true for the tidal volume scaling factors, but not for the
main effort scaling factor due to the subject’s trunk motion.
Since there is no significant movement during tidal volume,
it should be possible to detect body movement during main
effort by comparing scaling factors ξtv and ξme. However,
even when ξtv and ξme are very similar (i.e. ξtv/ξme ≈ 1),
which implies there is no torso motion, the Kinect volume-
time curve might still be affected by body movements. This
can be categorized in two ways: (a) backward motion at the
beginning of deep inhalation (between E and A keypoints)
for FVC and SVC tests, and (b) forward lean at the beginning
or middle of the deep and fast exhalation (after A in both
tests), and then a move back at the end of exhalation such
that it compensates the first forward lean - which might be also
accompanied by the motion pattern in (a) as well. Figs. 12a
and 12b present two examples of volume-time curves related
to categories (a) and (b) and their scaling factors. The effects
of similar motion artifacts on chest volume estimation, have
also been reported in Yu et al. [8], Ostadabbas et al. [19], and
Soleimani et al. [5], previously.

The similarity of the motion patterns of trunk movements
across different trials of a subject allows us to estimate the best
matching scaling factors for calibrating the Kinect volume-
time curve of a new trial. This means that unless there is
unexpected body movement, we can train our system to learn
the tidal volume and main effort scaling factors for each
subject, which enables us to compute PFT measures directly
from the Kinect volume-time curve without using spirometer
data when testing.
Training phase – We used training data, provided as pairs
of corresponding Kinect and spirometer volume-time curves
from training trials, to compute training tidal volume scaling
factors

{
ξ`tv
}ntv

`=1
and training main effort scaling factors and

offsets
{

(ξ`me, ψ
`
me)
}nme

`=1
, as explained in Sections V-B and

V-C. ntv and nme are number of tidal volume and main effort
training trials.
Testing phase – We calibrated the Kinect volume-time curve
of a test trial, by applying the best matching scaling factors
and offsets learned from the training phase. Our analysis
showed that because the spirometer volume-time curve is
always correct, then similar Kinect volume-time curves can
be calibrated using similar scaling factors and offsets. Thus,
to calibrate the test Kinect volume-time curve, we found the
best matching scaling factors and offsets from the training
phase using the curve similarity measures

Ftv =
1

4

4∑
i=1

[
Vk(tFi)− Vk(tGi)

]
, (14)

Fme =
[
Vk(tB)− Vk(tA)

]
, (15)

where Vk(t) is the original Kinect volume-time curve, and
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Fig. 12. (a)-(b) Different types of torso motion which affect main effort even while ξtv & ξme values (mentioned in top of the figures) are very close to
each other.

tA, tB, tFi and tGi are automatically computed keypoint times-
tamps, as introduced in Section V-A.

For the FVC test, the estimated main effort scaling factor
ξ′me was computed as

ξ′me = ξkme 3 k = arg min
j∈[1..nFS ]

{∣∣F testme − F jme
∣∣}, (16)

where F testme denotes the main effort curve similarity measure
extracted from the test Kinect volume-time curve in (15), F jme
is the same measure for the jth training Kinect volume-time
curve, j denotes different trials,

{
ξ`me
}nFS

`=1
states the training

main effort scaling factors, and nFS is the total number of
training FVC and SVC trials for this subject. Since Vital
Capacity,

∣∣Vs(tA)− Vs(tB)
∣∣, is equal for FVC and SVC tests

(notwithstanding the reproducibility measurement error), we
also used training SVC trials to estimate the best matching
scaling factors for the FVC test trial. As no measure is
computed from the tidal volume section in FVC tests, Ftv
was not extracted and therefore, ξ′tv was not computed.

Similarly, for the SVC test, the estimated tidal volume
scaling factor ξ′tv and the estimated main effort scaling factor
and offset (ξ′me, ψ

′
me), were computed as

ξ′tv = ξktv 3 k = arg min
j∈[1..nS ]

{∣∣F testtv − F jtv
∣∣}, (17)

(ξ′me, ψ
′
me) = (ξkme, ψ

k
me) 3 k = arg min

j∈[1..nFS ]

{∣∣F testme − F jme
∣∣},

(18)
where nS is the total number of only SVC training trials.
We do not use the tidal volume section of the FVC volume-
time curves in the estimation of ξ′tv because the tidal volume
breathing cycles are too short in FVC tests and are not reliable
for computing Ftv and consequently the tidal volume scaling
factor. Note that in all FVC and SVC tests, ψ′tv ≈ 0.

After calibrating the Kinect volume-time curve of the test
trial using the estimated tidal volume and main effort scaling

factors and offsets, PFT clinical measures were computed from
the calibrated Kinect volume-time curve.

The proposed scaling factor generalization was evaluated
using leave-one-out cross-validation, which repeatedly takes
one trial as the test and the rest as the training data. Leave-
one-out is a more suitable approach, instead of k-fold cross-
validation or other conventional validation methods, due to the
limited number of FVC and SVC trials for each subject.

VIII. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. System Configuration and Data Acquisition

In each acquisition, the subject was asked to sit-up straight
on a chair without armrests, facing the Kinect placed at a
distance of 1.5m away from the subject and at a height of
0.6m (Fig. 13). This distance was chosen based on our study
in Section IV. The subject was asked to put on a reasonably
tight T-shirt to help improve the tracking accuracy of chest
motion. Although putting subjects in supine position would
have restricted their body movement during the Kinect test,
we preferred to perform the test in the sitting position to
simulate the spirometry setup. Moreover, it was difficult for
fragile COPD patients to accomplish the main effort part of
the test correctly in supine position.

The instruments used in our experiments were the Kinect V2
Microsoft depth sensor and the ‘HDpft 1000 High Definition’
spirometer, which provides raw volume-time and flow-time
data at 200Hz for FVC and 50Hz for SVC. For validating
the proposed method we compared our results with measures
taken from the spirometer software.

Following ethical approval, we collected 529 Kinect and
spirometry sequences on 85 patients attending respiratory
clinic at Southmead Hospital in Bristol with a range of lung
pathologies as they underwent their routine spirometry tests.
The collection spanned several months between March and
July of 2015. For each subject at least three FVC and three
SVC efforts were recorded. The 36 male and 49 female
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TABLE I
INTRA-TEST CORRELATION COEFFICIENT, MEAN AND STANDARD

DEVIATION OF L2 ERROR, AND RATIO OF EACH MEASURE’S L2 ERROR
TO THE MEAN VALUE OF THAT MEASURE FOR FVC MEASURES.

3D-chest-model Chest-averaging Soleimani et al. [5]
λv µv σv Ωv λm µm σm Ωm λp µp σp Ωp

FVC 0.999 0.006 0.041 0.002 0.999 0.005 0.039 0.002 0.999 0.029 0.049 0.009

FEV1 0.929 0.285 0.241 0.137 0.940 0.266 0.217 0.127 0.947 0.284 0.220 0.127

PEF 0.756 1.685 1.284 0.490 0.774 1.618 1.259 0.464 0.805 2.008 1.325 0.613

FEF25% 0.701 1.696 1.282 0.597 0.719 1.650 1.246 0.572 – – – –

FEF50% 0.687 0.931 0.916 0.375 0.729 0.877 0.830 0.340 – – – –

FEF75% 0.577 0.576 0.637 0.559 0.595 0.528 0.576 0.554 – – – –

FEF25-75% 0.719 0.757 0.676 0.414 0.728 0.737 0.665 0.409 0.790 0.642 0.539 0.333

TABLE II
INTRA-TEST CORRELATION COEFFICIENT, MEAN AND STANDARD

DEVIATION OF L2 ERROR, AND RATIO OF EACH MEASURE’S L2 ERROR
TO THE MEAN VALUE OF THAT MEASURE FOR SVC MEASURES.

3D-chest-model Chest-averaging Soleimani et al. [5]
λv µv σv Ωv λm µm σm Ωm λp µp σp Ωp

VC 0.999 0.011 0.043 0.004 0.999 0.011 0.045 0.004 0.999 0.009 0.039 0.003

IC 0.998 0.045 0.040 0.019 0.998 0.043 0.040 0.019 0.997 0.048 0.047 0.020

TV 0.973 0.066 0.066 0.072 0.976 0.059 0.065 0.065 0.962 0.074 0.088 0.087

ERV 0.991 0.049 0.048 0.105 0.992 0.046 0.046 0.098 0.994 0.046 0.045 0.091

patients were aged between 24-83 years old (mean of 61.7),
height of between 147.9-191.2cm (mean of 166.2cm), weight
of 19.1-146.8kg (mean of 77.9kg), and BMI of between 6.9-
45.7kg/cm2 (mean of 28.1).

B. Intra-test Results

Tables I and II report the 3D-chest-model and the chest-
averaging correlation coefficients (λv & λm) between the
Kinect and the spirometer for all FVC and SVC test measures,
along with the mean (µv & µm) and standard deviation (σv
& σm) of the L2 error for all 85 subjects (529 sequences).
For each measure, we also report the ratio of the mean of
the L2 error to the mean value of that measure (Ωv & Ωm).
These tables also present our previous results from [5] on 40
subjects (247 sequences). We note that the quality of the data
for the first 40 subjects was very similar to the next 45 subjects
(we verified this by observing the similarity of the correlation
results for the two sets). This was expected as all the data
were captured under similar conditions in the same clinic.

(a) (b)

Fig. 13. (a) The proposed setup showing the Kinect in front and the spirometer
mouthpiece (when used) on the subject, (b) A typical Kinect depth image.

TABLE III
INTRA-SUBJECT CORRELATION COEFFICIENT, MEAN AND STANDARD

DEVIATION OF L2 ERROR, AND RATIO OF EACH MEASURE’S L2 ERROR
TO THE MEAN VALUE OF THAT MEASURE FOR FVC MEASURES.

3D-chest-model Chest-averaging
λ′

v µ′
v σ′

v Ω′
v λ′

m µ′
m σ′

m Ω′
m

FVC 0.968 0.213 0.215 0.074 0.975 0.200 0.186 0.071

FEV1 0.906 0.332 0.280 0.163 0.927 0.299 0.243 0.146

PEF 0.753 1.756 1.301 0.523 0.769 1.717 1.286 0.508

FEF25% 0.703 1.757 1.272 0.633 0.715 1.735 1.254 0.621

FEF50% 0.682 0.933 0.910 0.385 0.715 0.882 0.822 0.354

FEF75% 0.585 0.570 0.606 0.564 0.603 0.509 0.540 0.553

FEF25-75% 0.717 0.758 0.662 0.425 0.721 0.727 0.670 0.417

TABLE IV
INTRA-SUBJECT CORRELATION COEFFICIENT, MEAN AND STANDARD

DEVIATION OF L2 ERROR, AND RATIO OF EACH MEASURE’S L2 ERROR
TO THE MEAN VALUE OF THAT MEASURE FOR SVC MEASURES.

3D-chest-model Chest-averaging
λ′

v µ′
v σ′

v Ω′
v λ′

m µ′
m σ′

m Ω′
m

VC 0.956 0.237 0.239 0.084 0.963 0.214 0.248 0.075

IC 0.915 0.269 0.269 0.116 0.919 0.279 0.271 0.119

TV 0.888 0.118 0.137 0.129 0.924 0.098 0.110 0.107

ERV 0.737 0.297 0.310 0.592 0.750 0.280 0.300 0.561

The results show that the Kinect and the spirometer correlate
well for the FEV1 measure in the FVC tests and across all
the SVC measures. The correlation amongst the other FVC
measures is less strong due to the potential issues described
later in subsection VIII-E. The results from both volume
estimation methods are very close, with those from the chest-
averaging based method just edging ahead. This confirms that
the 3D-chest-model volume estimation method, with its greater
space requirements and time complexity, does not necessarily
obtain better results than the simple and fast chest-averaging
approach. The FVC and VC results (gray background rows)
are highly correlated due to the rescaling of the y-axis in the
volume-time curves using their respective keypoints (A & B).

In comparison to our previous work [5], where we per-
formed only intra-tests for 40 patients, the proposed method
achieved extremely similar, if not better, results. For example,
we obtained reduced mean error (in µm) for all measures
except VC and FEF25−75% and improvement in TV measure
correlation coefficient (λv & λm) and mean error (µv & µm)
- across 85 patients including the same 40 from [5].

C. Intra-subject Results

Generalizing the scaling factor to compute intra-subject
FVC and SVC measures is one of the major extensions in this
study compared to our previous work [5]. Tables III and IV
present the correlation coefficients (λ′v & λ′m), and the mean
(µ′v & µ′m) and standard deviation (σ′v & σ′m) of L2 error for
FVC and SVC computed measures for all 85 subjects. It also
reports the ratio of mean of the L2 error to the mean value of
that measure (Ω′v & Ω′m). Similar to the intra-test results, the
chest-averaging based method provides slightly better results.

The FVC test results in Table III, λ′v & λ′m indicate strong
correlation of the FVC and FEV1 measures against the spirom-
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Fig. 14. (a) Performance analysis of intra-subject tidal volume similarity measure, i.e. Ftv (14), (b) Performance analysis of intra-subject main effort similarity
measure, i.e. Fme (15), (c) Intra-subject tidal volume scaling factors error analysis, (d) Intra-subject main effort scaling factors error analysis.

eter, with the other five measures correlating reasonably well
at a minimum of 0.603 for FEF75% in the Chest-averaging
model. Furthermore, good correlation can be seen between the
intra-subject and intra-test FVC measures (Tables I and III).

The SVC results λ′v & λ′m in Table IV also show strong
correlation against the spirometer for VC, IC, and TV mea-
sures and good correlation for ERV. However, the differences
between intra-subject mean (µ′v & µ′m) and standard deviation
(σ′v & σ′m) of errors (Table IV) and their intra-test counterparts
(µv & µm and σv & σm from Table II) are higher than these
differences in FVC test. This is because SVC requires two
scaling factors for the tidal volume and main effort parts of
the curve, in addition to estimating the offset ψ′me.

D. Statistical Analysis of Intra-subject Scaling Factors

The Tidal volume and main effort test trials are calibrated
using intra-subject scaling factors ξ′tv & ξ′me, which are chosen
from the training sets

{
ξ`tv
}nS

`=1
&
{
ξ`me
}nFS

`=1
, respectively,

using (16), (17), and (18) based on the similarity measures in
(14) and (15). The performance of the similarity measures, in
terms of choosing the best intra-subject scaling factors from
the training set, is evaluated by computing the normalised L2

error:

Ecξ′tv =

√
(ξ′tv − ξctv)2

ξctv
, (19)

Ecξ′me
=

√
(ξ′me − ξcme)2

ξcme
, (20)

where ξctv & ξcme are the closest scaling factors in the training
set to the original scaling factors of the test trial ξotv &
ξome. The original scaling factors were computed using the
corresponding spirometer data as explained in Sections V-B
and V-C.

Figs. 14a and 14b report the distribution of these errors
for all tidal volume and main effort trials, respectively, in the
range 0−30% at 5% interval and then in the entire 30−100%
range. As can be seen, ∼83% of tidal volume scaling factors
and ∼83% of main effort scaling factors are within an error
of less than 10%. Only ∼2% of tidal volume scaling factors
and ∼1% of main effort scaling factors have errors of greater
than 30%.

Further, for each test trial, to compare the estimated intra-
subject tidal volume and main effort scaling factors ξ′tv & ξ′me

to the original scaling factors ξotv & ξome, their normalised
L2 error is computed similar to (19) and (20). As seen in
Figs. 14c and 14d, which present the distribution of errors for
all tidal volume and main effort trials, ∼81% of tidal volume
scaling factors and ∼87% of main effort trials have an error of
less than 15%. Only ∼4% of tidal volume scaling factors and
∼2% of main effort scaling factors have an error of greater
than 30%.

We also analysed the correlation between the tidal volume
and main effort scaling factor normalized L2 errors Eoξ′tv
& Eoξ′me

, and error of FVC and SVC computed measures.
Figs. 15a and 15b, present this correlation for FVC and TV
measures. As can be seen, there is a high correlation between
the FVC measure error and the main effort scaling factor error
across all trials. This correlation is less strong for the TV
measure error and tidal volume scaling factor error. The reason
for this is, tidal volume scaling factors are computed using all
data points of tidal volume part of volume-time curve, and
TV measure itself is computed using group keypoints F & G
(12). However, FVC measure and main effort scaling factors
are both computed using the same keypoints A & B. Thus,
they are better correlated (15a) than the TV measure error and
the tidal volume scaling factor error (15b).

E. Measurement Stability

It is important to note that even spirometer readings differ
between multiple consecutive trials for the same subject, thus
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Fig. 15. (a) Correlation between the FVC measure error and the main
effort intra-subject scaling factor error Eo

ξ′me
, (b) Correlation between the TV

measure error and the tidal volume intra-subject scaling factor error Eo
ξ′
tv

.
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Fig. 16. (a)-(d) Comparison of spirometer provided PFT measures (FVC, FEF25%, PEF and TV) to the computed ones from the Kinect for 4 trials of a
sample patient, (e)-(h) Regression of standard deviation of spirometer provided measures (FVC, FEF25%, PEF and TV) in all trials for each patient (85
subjects in total) and standard deviation of those measures error computed by the proposed method.
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Fig. 17. An example of how body movement can affect the computation of
the FEF25−75% measure.

requiring at least three trials with similar readings before a
clinician considers the results. This is illustrated in Figs. 16(a)-
16(d) which present some examples measures (FVC, FEF25%,
PEF, and TV), provided by the spirometer and the proposed
method for one subject from four consecutive trials.

To find out the correlation between spirometry reproducibil-
ity and the proposed method’s error in computation of mea-
sures, we obtained the standard deviation of each measure and
its corresponding error in all repeated trials for each patient.
Figs. 16(e)-16(h) show the computed correlation for FVC,
FEF25%, PEF, and TV measures. These results indicate that
when the measures provided by the spirometer are less con-
sistent, the error between measures obtained by the proposed
method and the spirometer increases.
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Fig. 18. The proposed method’s error increases due to a subject’s inevitable
trunk movement while they blow harder and faster into the spirometer to
achieve higher (better) PEF and FEF25% measures.

The subject’s body movement during a test is a primary
reason for poor correlation and this is more evident in main
effort measures. A specific example of how body movement
(due to expiration pressure) can affect the FEF25−75% measure
is in Fig. 17, where the estimation of 0.75FVC is sometimes
compromised. In another observation, illustrated in Fig. 18, we
found that as the FEF25% and PEF readings from the spirom-
eter increases, our proposed method’s error also increases. To
the best of our knowledge, this happens as subjects try to
attain better lung function measures by blowing faster into the
spirometer which inevitably results in more trunk movement.

PEF and FEF25% are more affected by the patient’s trunk
translation because (a) they are calculated using flow data
which is the first derivative of the volume over time and so
is sensitive to displacements, and (b) PFT and FEF25% are
located at the beginning of main effort section (Fig. 19), which
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Fig. 19. Although the spirometer and the Kinect volume-time curves are very similar in main effort in (a), the corresponding flow-volume loop is different
at the beginning of exhalation in (b).

is more affected by the movement. Even subtle movements
caused by leaning forward, due to forcible expiration, affects
keypoint positions of these measures. In Fig. 19a, although the
main effort parts of the curves match very well, their flow-
volume loop is considerably different in Fig. 19b between the
start of exhalation and the location of the FEF50% point.

IX. CONCLUSION AND FUTURE WORK

We proposed a remote, non-invasive depth-based approach
for Pulmonary Function Testing. The proposed system gen-
erates Kinect-based volume-time and flow-time curves, and
by locating several keypoints automatically, we computed
several FVC and SVC measures which we compared against
a spirometer, and evaluated their reproducibility. We analysed
the subject’s trunk motion pattern to generalize scaling factors
to be able to compute intra-subject PFT measures for each
subject, without having to use a spirometer to calibrate against
for each trial. We validated our system in a clinical environ-
ment with 85 actual patients and achieved high intra-test and
intra-subject correlation against the spirometer.

This work is a considerable step forward in the development
of remote non-contact monitoring of patients with respiratory
disease. This ’real world’ clinical data, collected from a large
group of patients with a wide range of lung function is unique.
We are able to accurately obtain respiratory measures remotely
which has potential clinical applications for monitoring of
patients in the home, gating (timing) of thoracic imaging and
synchronisation with ventilatory support. In summary, in this
work we have taken a vital step towards the aim of applying
the Kinect as an independent surrogate for spirometry by only
needing the spirometer one time for each patient to obtain a
personalised scaling factor.

In our future work, we plan to use two Kinects to decouple
body motion and chest motion to increase the accuracy of
our PFT measures. We also plan to use machine learning

techniques to generalize the scaling factors by introducing
parameters such as height, weight and age in the estimation
and remove the need for subject specific spirometry.

APPENDIX

Table V presents list of abbreviations, corresponding terms,
and their brief description.
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