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ABSTRACT
Data stream research has grown rapidly over the last decade.
Two major features distinguish data stream from batch learn-
ing: stream data are generated on the fly, possibly in a fast
and variable rate; and the underlying data distribution can
be non-stationary, leading to a phenomenon known as con-
cept drift. Therefore, most of the research on data stream
classification focuses on proposing efficient models that can
adapt to concept drifts and maintain a stable performance
over time. However, specifically for the classification task,
the majority of such methods rely on the instantaneous avail-
ability of true labels for all already classified instances. This
is a strong assumption that is rarely fulfilled in practical
applications. Hence there is a clear need for efficient meth-
ods that can detect concept drifts in an unsupervised way.
One possibility is the well-known Kolmogorov-Smirnov test,
a statistical hypothesis test that checks whether two sam-
ples differ. This work has two main contributions. The first
one is the Incremental Kolmogorov-Smirnov algorithm that
allows performing the Kolmogorov-Smirnov hypothesis test
instantly using two samples that change over time, where
the change is an insertion and/or removal of an observation.
Our algorithm employs a randomized tree and is able to per-
form the insertion and removal operations in O(logN) with
high probability and calculate the Kolmogorov-Smirnov test
in O(1), where N is the number of sample observations. This
is a significant speed-up compared to the O(N logN) cost of
the non-incremental implementation. The second contribu-
tion is the use of the Incremental Kolmogorov-Smirnov test
to detect concept drifts without true labels. Classification
algorithms adapted to use the test rely on a limited portion
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of those labels just to update the classification model after
a concept drift is detected.
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1. INTRODUCTION
In the last decade, there was a tremendous increase of in-

terest in algorithms that can learn from data streams. Data
streams are fast and potentially infinite sequences of data
records in which the underlying distribution can change over
time. Therefore, data stream mining requires efficient algo-
rithms in terms of memory and processing time to detect
and adapt to concept changes, also known as concept drifts.

Such an increase of interest has lead to the proposal of a
large number of learning algorithms for diverse tasks such as
classification, clustering and anomaly detection [14, 15, 18].
In particular, for classification, these proposals have been
mostly evaluated and compared assuming that true labels
are readily available as soon as predictions are issued [14, 7,
24, 5, 6]. The availability of all true labels seems unfeasible
for most applications, since it may involve annotating data
by expensive means in terms of costs and labor time, such as
a hired domain expert. Therefore, minimizing the amount
of necessary true labels and delaying their requisition are
desirable perks for practical solutions.

The first main contribution of this work is the Incremental
Kolmogorov-Smirnov (IKS) algorithm. Kolmogorov-Smirnov
(KS) is a non-parametric hypothesis test that is used to
check whether two samples originate from the same distri-
bution. Applying KS on a pair of samples takes O(N logN)
time, where N is the total number of sample observations.
This performance poses a limitation on data stream algo-
rithms that require the test to be executed repeatedly with
always-growing samples or with sliding windows. IKS, on
the other hand, produces the exact same results as KS while
enabling the samples to change over time at a cost ofO(logN)
for insertion/removal of observations and O(1) for comput-
ing the p-value for the test. This contribution may be use-



ful across a wide variety of applications yet to come in data
stream research and practice.

The second main contribution is a direct application of
IKS in data stream classification. We use IKS to identify
detectable concept drifts online, using only data of the fea-
ture space. Thus, the detection is affected neither by delayed
true labeling nor by label scarcity. Additionally, it fits any
base classifier. We propose actions that could be taken to
update the classification model once a change is detected,
using only a limited amount of data. We show that the
overall performance, in terms of accuracy, is only slightly
affected, while the number of true labels that are required
to keep the model updated decreases considerably.

This paper is organized as follows. Section 2 presents an
overview of the literature; Section 3 details the IKS algo-
rithm; Section 4 presents our proposals regarding drift de-
tection; Section 5 explains our experimental setup; Section 6
shows our experimental results; finally, Section 7 presents
our conclusions and directions for future work.

2. RELATED WORK
Verification latency, or delay, is the period between the

availability of an unlabeled (test) instance and the availabil-
ity of its true label. Such period of time depends on the
application domain. For instance, in applications for pre-
dicting the tendency of a stock price or electrical demand,
the verification latency is the forecasting window, i.e., the
amount of time ahead of the prediction. In this case, the
verification latency is fixed for all predictions. In other ap-
plications, verification latency can be variable, as in the case
of sensors that classify events originated by external condi-
tions such as the environment [4].

The Null-latency scenarios are rare in practice, although
they are common in research benchmark evaluation. They
are rare because most of the real-world applications require a
certain amount of time between prediction and actual event
occurrence. Such time is used for taking the required actions
for the prediction. For instance, in the electrical demand
application, a reasonable period of time, say 30 minutes, is
necessary for executing a plan to adapt the energy genera-
tion to the predicted demand.

Different papers address the issue of availability of label
information by considering different settings. One setting is
known as extreme verification latency and considers that no
true labels are available after a fixed time of the data stream,
while all true labels previous to this point are known [26, 12].
Another setting assumes that only a portion of true labels
becomes available along the time. In particular, for semi-
supervised learning, it is common to assume that a small
part of the labels becomes available with null verification
latency, while the majority has infinite (extreme) verification
latency [22].

Similarly to the semi-supervised setting, active learning
also assumes that just part of the data is labeled. The crit-
ical difference between these setting is that in the active
learning setting, the algorithm can choose which examples
will be labeled by an oracle. Our proposal is, in essence, an
active learning algorithm. The labels are required to learn
the classification model, as expected for a supervised task.
The stream is monitored in an unsupervised way and no ad-
ditional labels are required if no concept drift is detected.
In the case of a concept drift, the algorithm asks for a set of
labeled data so the model can be updated.

In the literature, the most related work to ours was re-
cently proposed by Zliobaite [28]. She showed that some
types of concept drifts become undetectable when no true
labels are provided. She proposed a method to identify de-
tectable drifts without label information. Two consecutive,
non-intersecting, sliding windows of equal size slide through
the stream. The windows can contain either information
from the feature space, or information from the classifier’s
output. At each time, i.e. one instance, a hypothesis test
is performed to check whether the sliding windows have ob-
servations generated by the same distribution. If this is not
the case, a drift is detected.

In the case of using information from the feature space,
Zliobaite suggests using entire examples as multivariate ran-
dom variables, or mapping them to univariate variables.
However, no experiments were performed on either setting.
In the case of use of information from the classifier’s output,
Zliobaite suggests using the estimated probabilities of the
labeled instances, if the classifier is capable of offering such
information, or only the labels, otherwise.

Three hypothesis tests were applied in the experimental
setup. Among them, the use of the standard Kolmogorov-
Smirnov test [21] was advocated since it is non-parametric
and computationally efficient – when compared to the other
options. The non-parametric tests suit better the data stream
mixture of distributions due to existence of different classes
and also regions of concept transition. While [28] offers re-
sults regarding drift detection, no results are reported re-
garding the impact in classification in terms of accuracy or
in number of required labels.

Haque et al. [17] proposed an algorithm that does not
use labels to identify the optimal size of a dynamically sized
sliding window that is supposed to contain instances belong-
ing to the same concept. Once a drift is detected and the
window is shrank in order to keep only the instances of the
newest concept, the algorithm assumes the instantaneous
availability of 99.7% of the true labels.

Masud et al. [22] presented an algorithm that is both capa-
ble of dealing with delayed labeling and identifying novelty,
i.e., new classes during the stream. However, apart from the
specific assumptions regarding the feature space, it also as-
sumes that, once an instance is observed, the classifier puts
it aside for a prolonged period of time before needing to pro-
vide a classification, creating a slightly different scenario for
the problem of delayed labeling.

Although Kuncheva et al. [20] and Amir and Toshniwal [2]
introduced methods to directly tackle delayed labels, they
target problems with stationary distributions, i.e., problems
without concept drift. Kuncheva proposes different varia-
tions of the Nearest Neighbor Classifier (NNC) for online
learning. In all of them, the reference set grows incremen-
tally over time, with unlabeled instances being added when
they are classified with low confidence. In this case, the
predicted labels are employed as if they were correct, until
they are revised later, when the true labels become avail-
able. Amir’s proposal is a follow-up of Kuncheva’s work.
The extension is the use of emerging patterns in order to se-
lect which instances should be added to the NNC’s reference
set.

Other papers have dealt with the problem of extreme ver-
ification latency, i.e., no labels are available during the clas-
sification phase of the data stream. Extreme verification
latency methods require only an initial amount of labeled



data, that must be located at the beginning of the stream
and, then, no labeled data is requested anymore.

Dyer et al. [12] and Souza et al. [26] aim at addressing
exclusively the infinite delay problem. Both of them make
assumptions regarding the shape of the data in the feature
space and assume an incremental nature of the drifts. Dyer’s
proposal applies semi-supervised classification on batches of
unlabeled data, considering the predicted labels of the previ-
ously classified instances as correct. Souza’s approach clus-
ters the data from time to time and checks for spatial sim-
ilarity between the clusters to assume a movement of the
data.

The literature has also dealt with the problem of label
scarcity and delayed labeling using semi-supervised learning.

Pozzolo [8] directly tackled verification delay in the credit
card fraud detection task. The proposal assumes that, while
a greater portion of the data is affected by delay, the true la-
bels are instantly available for a much smaller portion. The
results suggest that combining a model built on the instan-
taneously labeled data and a different model built on labeled
data that was affected by delay provides better results than
using only one model induced upon all the data.

Masud et al. [23] addressed a problem where only a portion
of the true labels is delivered. The labeled instances, among
a supposed larger number of unlabeled instances, are used in
a semi-supervised approach to classify future unlabeled data.
The main difference of this approach is that, although only
few true labels become available, they are provided without
delay.

Wu et al. [27] introduced another semi-supervised approach
to deal with scarce labeled data in streams. It is based on a
decision tree that grows incrementally and holds clusters in
its leaves to detect concept drifts.

3. INCREMENTAL KS
In this section, we first briefly review the standard Kolmo-

gorov-Smirnov test [21] and how to apply it. Later, we in-
troduce the required operations for the incremental version
of the test.

3.1 Kolmogorov-Smirnov Test
Suppose we have two samples A and B containing univari-

ate observations. We would like to know, with a significance
level of α, whether we can reject the null hypothesis that the
observations in A and B originate from the same probability
distribution.

If no information is available regarding the data distribu-
tion, but it is safe to assume that the drawn observations
are i.i.d., we can use the rank-based Kolmogorov-Smirnov
(KS) test to verify the proposed hypothesis. According to
it, we can reject the null hypothesis at level α if the following
inequality is satisfied:

D
?
> c(α)

√
n+m

nm

where the value of c(α) can be retrieved from a known table,
n is the number of observations in A and m is the number
of observations in B. The right side of the inequality is the
target p-value. D is the Kolmogorov-Smirnov statistic, i.e.,
the obtained p-value, and is defined as follows:

D = sup
x
|FA(x)− FB(x)|

where

FC(x) =
1

|C|
∑

c∈C,c≤x

1

We note that D can actually be computed as follows:

D = max
x∈A∪B

|FA(x)− FB(x)|

The incremental variant assumes that A and B can change
over time. Precisely, we assume an abstract data type (ADT)
with the following operations: a) insert new observation into
A; b) insert new observation into B; c) remove observation
from A; d) remove observation from B; e) apply KS test.

In the next section we introduce an algorithm that allows
us to perform the first four operations in logarithmic time
with high probability according to the total number of ob-
servations, and the last operation in constant time.

3.2 Incremental Variant
In this section, we introduce our proposal of an algorithm

to fast compute the operations of the incremental version
of the KS test. Before that, we need to clarify two points
regarding our approach:

1. We created a distinction between |A| and n and, equiv-
alently, |B| and m. |A| and |B| are the numbers of
observations of A and B, respectively, inserted into a
data structure and n and m are the actual numbers of
elements in these samples. In principle, |A| and n and
|B| and m should have the same values. However, we
can manipulate the number of observations inserted
into the data structure to circumvent a constraint of
our implementation explained next;

2. We will assume that we are interested in effectively
computing D when |A| = r|B|, where r ∈ R is a pa-
rameter that remains constant during the entire stream.
At a first glance, this seems to be a very restrictive
constraint. However, we notice that a common use of
the incremental KS test in a data stream setting is to
compare the content of two sliding windows of fixed
and equal sizes, so that r = 1. We can handle other
cases by replicating the elements inserted into the data
structure, as Section 3.4 discusses in detail.

With the constraint that |A| = r|B|, we can rewrite D as

D =
1

|A| max
x∈A∪B

|F ′A(x)− F ′B(x)|

where F ′A is defined as a sum of ones

F ′A(x) =
∑

a∈A,a≤x

1

and F ′B is now defined as a sum of r’s

F ′B(x) =
∑

b∈B,b≤x

r

Moreover, if we define G(x) = F ′A(x) − F ′B(x), then we
have that



D =
1

|A| max

{(
max

x∈A∪B
G(x)

)
,−
(

min
x∈A∪B

G(x)

)}
(1)

Let us assume the existence of an array in which we have
all the observations oi ∈ A∪B sorted so that oi ≤ oi+1 and,
for each observation, we also have a corresponding value
gi = G(oi). Table 1 illustrates such a data structure.

Table 1: G(x) for each observation x ∈ A ∪ B. The
table represents a sorted array so that oi ≤ oi+1

Index 1 2 . . . |A|+ |B| − 1 |A|+ |B|
oi o1 o2 . . . o|A|+|B|−1 o|A|+|B|

G(oi) g1 g2 . . . g|A|+|B|−1 g|A|+|B|

Let us also assume that, when inserting a new observation
oj into the structure, we obey the following order oj−1 <
oj ≤ oj+1. In other words, all older observations with the
same or higher value are kept on the right side of the new
observation, and consequently have higher indexes. As a
result, we note that gj = gj−1 + v, where v = 1 if oj ∈ A or
v = −r if oj ∈ B. In addition, after the insertion, all gi with
i < j remain the same, while all gi with i > j are increased
by v . Similarly, the removal of such an observation decreases
all gi with i > j by v.

We can insert/remove a new observation oj into/from the
structure, virtually add/subtract a constant value to/from
all gi with i > j in O(log |A| + |B|) with high probability.
We can also compute the maximum and the minimum val-
ues of gi in O(1) using a randomized tree called Treap (or
Cartesian Tree) [3, 25] with bulk operation and lazy propa-
gation. Therefore, it is possible to exactly compute D when-
ever |A| = r|B| in O(1) and incrementally modify |A| or |B|
with expected complexity of O(log |A|+ |B|).

Appendix A is dedicated to explain the Treap with lazy
propagation. The next section explains how it is employed
in the Incremental Kolmogorov-Smirnov algorithm. A full
implementation of the Incremental Kolmogorov-Smirnov is
freely available as supplementary material [11].

3.3 IKS Algorithm Description
We implement the structure presented in Table 1 as a

Treap with bulk operations (minimum, maximum and in-
crease by) and lazy propagation. The values are the gi, the
BST keys are the observations from a feature in the data
stream and the priorities are random values. The final so-
lution follows from Equation 1. The following algorithm
describes the implementation of the five operations that we
need in the Incremental Kolmogorov Smirnov: inserting ob-
servation into A, inserting observation into B, removing ob-
servation fromA, removing observation fromB and applying
the KS test. The last operation requires |A| = r|B|.

1: function AddObservationFromA(Treap, Observation)
2: Left, Right ← Split(Treap, Observation)
3: Left, Temp ← SplitLast(Left)
4: if Temp is NIL then
5: InitialValue ← 0
6: else
7: InitialValue ← Temp.Value
8: end if
9: Left ← Merge(Left, Temp)
10: Priority ← DrawRandomValue()
11: NewNode← NewTreeNode(Priority, Observation, InitialValue)
12: Right ← Merge(NewNode, Right)
13: IncreaseBy(Right, 1)

14: return Merge(Left, Right)
15: end function
16:
17: function AddObservationFromB(Treap, Observation)
18: . Same initial steps as AddObservationFromA
19: IncreaseBy(Right, −r)
20: return Merge(Left, Right)
21: end function
22:
23: function RemoveObservationFromA(Treap, Observation)
24: Left, Right ← Split(Treap, Observation)
25: Ignore, Right ← SplitFirst(Right)
26: IncreaseBy(Right, −1)
27: return Merge(Left, Right)
28: end function
29:
30: function RemoveObservationFromB(Treap, Observation)
31: . Same initial steps as RemoveObservationFromA
32: IncreaseBy(Right, r)
33: return Merge(Left, Right)
34: end function
35:
36: function KolmogorovSmirnovTest(Treap, |A|, |B|, n, m, α)
37: D ← max{Treap.Max,−Treap.Min}/|A|
38: p-value ← c(α)

√
n+m
n∗m

39: if D > p-value then
40: Reject null-hypothesis
41: else
42: Do not reject null-hypothesis
43: end if
44: end function

3.4 Limitations and Workarounds
The only constraint in the Incremental Kolmogorov-Smir-

nov test over its original version is that |A| = r|B|, where
r is a parameter that remains constant across the stream.
Although it seems to be a restrictive limitation, in practice
it is not.

If both samples have fixed size and the changes are only
due to replacement of observations, i.e., pairs of insertions
and removals, the constraint is fulfilled regardless the size of
the samples. In addition, if both samples always have the
same size, r = 1 and the constraint is fulfilled no matter the
size of the samples.

Otherwise, we suggest that r should be chosen as 1 by de-
fault and, in case of disparity among |A| and |B|, resampling
should be performed. In such case, the m and n should be
used to compute the target p-value.

We note that, for instance, if m = 2n and we insert all
observations from A twice, so that |A| = |B|, both D and
target p-value are exactly the same as the obtained by per-
forming the standard version of Kolmogorov-Smirnov. In
fact, if A has fixed size while B grows indefinitely, it is pos-
sible to keep exact equivalence between the Incremental KS
and the Standard KS every time that m = kn, k ∈ N. Differ-
ences in the Incremental KS and the Standard KS between
consecutive values of k also become increasingly smaller.

4. DRIFT DETECTION AND ADAPTATION
This section explains how we applied the IKS algorithm

in order to detect concept drift without the true label infor-
mation and adapt the classification models.

For each feature of the feature space, we keep two samples
of the same size W . The first of them, called reference set,
stores the attribute values of the instances that were used
to induce the classification model. Therefore, this sample
is fixed. The second sample, called current set, is a sliding
window that stores the attribute values of the last W in-
stances of the stream. After each instance is classified, for



each feature, the current set is updated and a KS test is
performed between the current set and the reference set. If
the KS rejects the null hypothesis from both samples coming
from the same distribution, a drift is detected.

When a classifier outputs probability estimates, we can
also perform the test as described with some minor changes.
The current set contains probability estimates for the clas-
sification labels that were output by the classifier (acting as
confidence levels). The reference set contains probability es-
timates for the labels obtained in a leave one out procedure
with the training data.

Our proposal differs from [28] in two ways. First, we opted
to keep one of the windows fixed, rather than maintaining
two consecutive sliding windows. The rationale behind this
decision is straightforward: the need of detecting drifts is ac-
knowledging that the classification model is outdated. Thus,
it is more practical to simply use the data that are in the
training set of the classification model rather than assuming
it is outdated indirectly.

The second difference is that, when we use the attribute
space to detect drift, we apply the test for each attribute
individually rather than using a multivariate test or a map
function to transform the examples into a single univariate
value. Both options would require larger samples and, as
we note, a change in a single attribute already is a concept
drift. The downside of our decision is that if a concept drift
in a specific attribute is undetectable [28], it could possibly
be detected when applying a multivariate test.

We propose three reactions for the system to perform once
a drift is detected. They follow:

• Model replacement (MR): once a drift is detected,
the system requests the true labels of the instances in
the current set, trains a new classifier with these data
and updates the reference set accordingly, no matter
what attribute was responsible for the drift to happen;

• α/β transformation (AB): for the attribute that
caused the drift, the system translates and stretches
the reference set values so their mean and standard
deviation meet the ones in the current set. If the trans-
formed reference set and the current set come from the
same distribution, according to the KS test, then the
classification model is retrained with the transformed
reference set data. Notice that transforming the refer-
ence set does not require additional true labels. If the
KS test fails, we perform the MR;

• Adaptree (AT): it is a modified decision tree. Once
a drift is detected, the system requests only the true
labels of the instances that reach the nodes of the tree
with a decision based on the drifted attribute. The ref-
erence set for that attribute is updated to keep data of
the current set, while the reference sets for attributes of
ancestor/prime nodes are kept unchanged. This means
that, in practice, we keep multiple reference sets: one
for each attribute.

The next section explains how we evaluated our approaches.

5. EXPERIMENTAL SETUP
Our experimental setup has two parts. In the first one,

we evaluate the Incremental Kolmogorov-Smirnov’s perfor-
mance in seconds against the successive application of the

standard KS and a slightly optimized version for data streams.
This particular version, called Optimized KS, computes the
KS statistic in linear time for consecutive samples that dif-
fer due the increment or replacement of one observation, by
performing linear sorted insertion/remotion of observations
and not re-sorting the sample later. For this purpose, we
ran two experiments. First, we tested the performance for
always growing samples. The second test evaluates the time
necessary to perform the KS test using two fixed size slid-
ing windows. All the experiments were run in an i7 4790k
@3.6Ghz, 16GB DDR3 RAM @1600Mhz.

In the second part, we evaluate our proposals for drift
detection and adaptation in a classification context. We
measure the accuracy and number of required true labels
on different datasets. Since the classes are balanced, the
accuracy is a good indicator of prediction quality.

We compare the results with two baselines and a topline.
The first baseline (BL1) is a classifier that never adapts to
drift. The second (BL2) is a classifier that randomly adapts
to drift by retraining the classification model at random mo-
ments. The number of adaptations of BL2 is the same as
of MR. Due to its random nature, we averaged the results
of BL2 in 100 runs. The topline is a classifier always re-
trained upon the last W instances, where W is the size of
the sliding window. The initial training size is also W , for
all methods. Additionally, we compare our proposal with
a classifier that detects drift using one of the methods pro-
posed by Zliobaite [28] – specifically, two consecutive sliding
windows with probability estimates. From now on, we will
refer to Model Replacement with this method of detection
as Consecutive Sliding Windows Detection (CD).

The classifiers in our experiments are Nearest Neighbor,
Decision Tree and Naive Bayes. Baselines 1 and 2 (BL1
and BL2), Topline (TL) and Model Replacement (MR) re-
sults are computed for all of them. Particularly, we apply
MR with Näıve Bayes for probability estimates (MRP) and
feature space (MR), since Näıve Bayes is the only accessed
classifier that directly provides probability estimates. 1NN
is also tested with α/β transformation, DT is also tested
with Adaptree and CD is also tested with Näıve Bayes. For
the methods that use decision trees, we only detect drifts of
features that are decision nodes inside the tree.

All pairwise comparisons of the second part are based on
Wilcoxon Signed Rank Test for statistical validity with a
significance level of 0.05. The following section lists the
datasets that were used in our experiments.

5.1 Datasets
We used 6 real datasets in our experiments. Three of

them have artificially introduced drift. We explain each of
the datasets below.

(A) Arabic [16] contains audio features of 88 people pro-
nouncing Arabic digits between 0 and 9. 44 are fe-
males and 44 are males. The task is to predict which
digit was pronounced. The dataset is originally i.i.d.
To artificially introduce drift, we separated the data
stream in 4 parts of equal size. These parts alternate
between male and female voices. The stream has 8800
instances;

(B) Posture [19] contains data from a sensor that is car-
ried by 5 different people. The task is to predict which
movement is performed, among 11 possibilities. This is



the only dataset that is not balanced across all classes,
thus we note that the proportion of the majority class
is 33%. There are 164860 instances. The dataset
is originally i.i.d. To artificially introduce drift, the
stream has segments of data that were produced by
the same person;

(C) Bike [13] contains hourly count of rental bikes between
years 2011 and 2012 in a bikeshare system with the
corresponding weather and seasonal information. The
task is to predict whether there is a high or low de-
mand. We expect concept drift due to seasonality. It
contains 17379 instances;

(D) Keystroke [26] contains features from five people typ-
ing the same password many times along the stream.
The task is to predict who is typing the password. We
expect concept drift since a person may type a pass-
word faster once they get used to it; there are 1600
instances;

(E) Insects [9] contains features from a laser sensor. The
task is to identify the specimen of flying insect that is
passing through the laser in a controlled environment,
among 5 possibilities. Preliminary analysis showed
that there is no drift in the feature space, however
the prior distribution of the classes changes gradually
over time. There are 5325 instances;

(F) Abrupt Insects is a modified version of the Insects
dataset. We shuffled the data to eliminate prior dis-
tribution changes. After, we split the stream into 3
segments. In the middle one, we shuffled all the fea-
tures to introduce abrupt drift in the feature space,
without inserting additional artifacts in the data.

The exact datasets that were used in our experiments are
freely available to the community [11].

All algorithms apply KS with a significance level of 0.001
to detect concept drift. The reasoning behind this decision is
that, with a higher significance, we can avoid detecting drifts
during periods when the sliding window is still transitioning
between two concepts. The size of the sliding windows is 100
instances for all datasets but Arabic and Posture. As they
are bigger and have a greater number of classes, we opted
for sliding windows of 500 instances for them. Next section
presents our results and analysis.

6. EXPERIMENTAL RESULTS
We have split the experimental results into two parts.

We first tackle only the time efficiency of the Incremental
Kolmogorov-Smirnov. Later, we show our results for the
data stream classification.

6.1 IKS Performance
In the first experiment, we evaluate the performance of

IKS test for always growing samples. The two samples, ini-
tially with 1 observation, increase their size by one at each
time step and then the KS test is performed. We increased
the size of the samples up to 5000 observations. The re-
ported results are the average of 30 repetitions and the val-
ues are generated at random.

Figure 1 shows the accumulated time by the samples’ size
throughout the complete experiment. Although the confi-
dence intervals were plotted, they are so tight that they have

became indistinguishable from their corresponding curves.
For instance, for a sample that grows up to 5000 observa-
tions, Incremental KS took an average of 0.0491 seconds to
complete the experiment. Optimized KS took 1.0297 sec-
onds and Standard KS took 12.7645 seconds on average. In
summary, IKS was one order of magnitude faster than OKS
and two orders of magnitude faster than standard KS.
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Figure 1: Averaged accumulated time for always
growing sample.

The second test evaluates the time necessary to perform
the KS test using two fixed size sliding windows through
two parallel streams of observations: at each time step, one
observation is removed from each sample and one is included.
The stream has 10000 random observations and we vary the
size of the window from 100 to 1000, increasing 100 at a
time.

The stream experiment is more realistic and meaningful
for the purpose of this work, since it meets our proposals
for drift detection and classification. Figure 2 shows the
time necessary to scan the whole streams by the size of the
sliding windows that were in use. Again, confidence intervals
were plotted, but they are too tight to be distinguishable
from their correspondent curves. For instance, for a sliding
window of size 1000 observations, Incremental KS took an
average over 30 repetitions of 0.0410 seconds. Optimized KS
took 0.9605 seconds and Standard KS took 5.326 seconds.
Again, IKS was one order of magnitude faster than OKS
and two orders of magnitude faster than standard KS.

6.2 Data Stream Classification
Tables 2 and 3 summarize our experimental results for ac-

curacy and percentage of requested true labels, respectively.
For all classifiers, Model Replacement statistically produced
greater accuracy than the correspondent baselines and re-
quested less true labels than the corresponding topline. Al-
though the accuracy of the Model Replacement was sta-
tistically smaller than the accuracy of the topline for all
classifiers, Model Replacement lost by a very small margin.
On average, the Model Replacement accuracy was 99.39%,
94.31% and 93.69% of the Topline accuracy, for the Nearest
Neighbor, Näıve Bayes and Decision Tree classifiers, respec-
tively. Conversely, Model Replacement requested, on aver-
age, 47.59% for Nearest Neighbor and Näıve Bayes classifiers
and 42.17% for Decision Tree classifier of the true labels.
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Figure 2: Averaged time for scanning a stream with
different sliding window sizes.

All the remaining methods led to significantly smaller
number of requested labels. However, the classification per-
formance is usually reduced as well. A notable exception is
Adaptree that obtained performance similar to Model Re-
placement for decision trees, but using significantly fewer
labels (42.17% for MR and 35.62% for Adaptree). Unfortu-
nately, decision tree classifiers did not perform as well as the
Nearest Neighbor classifiers.

The α/β Transformation statistically reduced the portion
of true labels that were required if compared to Model Re-
placement (16.89%, on average, for α/β). However, this par-
ticular transformation is sensitive to the nature of the drift
since it assumes a monotonic drift [1]. If the assumption
does not hold, even if the drift is detectable, it may cause
lower accuracy. In our tests, the accuracy produced by this
method was statistically smaller than Model Replacement
alone. On average, α/β obtained 92.75% of the Topline ac-
curacy.

Finally, using a fixed sample (reference set) was consis-
tently more accurate than Consecutive Sliding Windows De-
tection (82.15% of Topline accuracy for CD), while the lat-
ter consistently consumed a smaller number of true labels
(16.37% on average). We also note that detecting drifts
based on the probability estimates led to more similar accu-
racy rates than the ones obtained by detecting drifts based
on the feature space, yet consistently requiring fewer labels.
Thus, using probability estimates is a promising approach
for high dimensional data, if the classifier at hand is com-
patible. Additionally, mixing values from the feature space,
probability estimates and outputted labels together is a pos-
sible alternative approach.

7. CONCLUSIONS
This work presented the Incremental Kolmogorov-Smirnov

algorithm, a much faster method of recomputing the KS
statistic for samples that change gradually over time. We
evaluated the proposed test in data stream classification sce-
nario, supporting a fast mechanism of concept drift detec-
tion. The classifiers were able to identify concept drifts with-
out true label information and request only a portion of the
true labels to adapt the models to new concepts. The use-
fulness of the Incremental Kolmogorov-Smirnov algorithm

is not limited to this case study. We hope it to be widely
applied in the future to empower different approaches for
streaming problems, where a fast non-parametric hypothe-
sis test may be needed.

As future work, we intend to develop new and more robust
approaches to deal with detected concept drifts, such as the
use of ensembles of previous models for recurrent concepts.
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APPENDIX
A. TREAP WITH LAZY PROPAGATION

A Cartesian Tree is defined as binary tree which has the
following properties:

1. It has the heap ordering property, i.e. a non-leaf node
has higher priority than its children;

2. It is built upon a sequence of numbers and the in-order
traverse of the tree results in the same original sequence
of numbers. In other words, the elements in the left
subtree of a node are values that appeared earlier in
the sequence than the root. The values in the right
subtree appeared later than the root.

We can define a merge operation between two already ex-
isting Cartesian Trees. One of them is called the left tree
and the other one cthe right tree. Such merge can be used
to build a Cartesian Tree from scratch, simply considering
that the right tree is a single node with the next observa-
tion from the sequence. After the merging, the following
constraints must hold: the resultant tree still has the heap
ordering property and an in-order traverse in it is equiva-
lent to an in-order traverse in the left tree, followed by an
in-order traverse in the right tree.

Such merge operation is achieved recursively. Let L be the
left tree and R be the right tree. If L’s root has a greater
priority than R’s root, then L’s root is the resultant tree’s
root Z. Z’s left subtree is L’s left subtree, preserving the in-
order traverse to the left and the heap priority property. Z’s
right subtree is a recursive merge between L’s right subtree
– as left tree – and R – as right tree. If the priority of R’s
root is greater than the priority of L’s root, the solution
is analogous. The process is summarized by the following
algorithm.

1: function Merge(NIL, NIL)
2: return NIL
3: end function
4:
5: function Merge(LeftTree, NIL)
6: return LeftTree



7: end function
8:
9: function Merge(NIL, RightTree)
10: return RightTree
11: end function
12:
13: function Merge(LeftTree, RightTree)
14: if LeftTree.RootPriority > RightTree.RootPriority then
15: LeftTree.RightSubtree←Merge(LeftTree.RightSubtree, Right-

Tree)
16: return LeftTree
17: else
18: RightTree.LeftSubtree ← Merge(LeftTree,
19: RightTree.LeftSubtree)
20: return RightTree
21: end if
22: end function

A Treap is a special case of Cartesian Tree where each
node has, apart from the heap priority value, an additional
key. From the perspective of the priority, the tree is a heap,
but from the perspective of the additional key (BST key),
it is a binary search tree. A tree that meets both criteria is
possible for any set of priority values and BST keys. The
node with highest priority will be the root of the tree. The
root of the left subtree will be composed by nodes with BST
key smaller than the root’s BST key, and the right subtree
with BST keys greater than or equal to the root’s BST key.
The same idea recursively applies to the remainder of the
tree.

The Treap is easily achieved by construction, using the
merge algorithm defined for Cartesian Trees. In a merge
operation, if the left and the right trees are both Treaps and
all BST keys from the left tree are less or equal than the
BST keys from the right tree, then the resultant tree is also
a Treap. Figure 3 illustrates the merge operation of two
Treaps.
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Figure 3: Merge operation between two treaps. The
left tree is red and on the left side of the dashed ver-
tical line. The right tree is blue and on the right side
of the dashed vertical line. The arrows correspond
to father–children relationships. The result tree’s
new relationships are green and removed relation-
ships are dashed.

Inserting a new pair (priority value, BST key) into an al-
ready existing Treap may require a split operation. The fol-
lowing algorithm describes how this operation can be achieved.
The input is a Treap and a BST key k. Two Treaps are the
output. The first (left tree) contains all the elements from

the original Treap that have lower BST keys than k. The
second (right tree) contains the remaining elements, includ-
ing the ones which have the same BST keys as the one that
was applied in the query.

1: function Split(NIL, ?)
2: return NIL, NIL
3: end function
4:
5: function Split(Tree, Key)
6: if Key ≤ Tree.BSTKey then
7: Left, Tree.RightSubtree ← Split(Tree.LeftSubtree, Key)
8: Right ← Tree
9: else
10: Tree.RightSubtree, Right← Split(Tree.RightSubtree, Key)
11: Left ← Tree
12: end if
13: return Left, Right
14: end function

Finally, with both Merge and Split operations, we can
insert new elements to an already existing Treap by splitting
it and re-merging it adequately. The following algorithm
describes this process.

1: function Insert(Tree, Priority, Key)
2: TrivialTree ← NewTreeNode(Priority, Key)
3: Left, Right ← Split(Tree, Key)
4: return Merge(Merge(Left, TrivialTree), Right)
5: end function

The time complexity for both Merge and Split depends
linearly on the depth of the Treap. For a list of pairs of
unique keys and unique priorities, there is only one possible
Treap, as the in-order traverse is locked by keys and the bal-
ance – i.e. the father-children relationships – is locked by the
ranking of the priorities. In other words, the resulting Treap
after the insertion of all the elements of such list, in any or-
der, is always the same. The probability distribution of the
priorities is not a matter of concern, provided that they are
unique, since the Treap only uses their ranks. Specifically,
the ranking of the priorities is analogous to the order of the
elements when constructing a basic binary search tree at
once. Figure 3 illustrates this fact by plotting a Cartesian
Tree on a Cartesian Plane, where the priority corresponds
to the y-axis and the key corresponds to the x-axis. Each
node is father of both the topmost node to its left and the
topmost node to its right. If we insert all the keys from this
figure using only basic binary search tree insertion, from top
to bottom, we obtain exactly the same tree. Therefore, if
the priorities are chosen at random, the Treap inherits a
common property of randomized binary search trees that
are constructed at once: the height of the tree grows loga-
rithmic with high probability [10]. Consequently, Merging
and Splitting a Treap and inserting and removing elements,
logarithmic in time, according to the total number of ele-
ments. Figure 4 empirically shows the logarithmic growth
of the Treap.

As the priorities are fixed, if a node is predecessor of an-
other one, it will never become the other way around. This
property can be exploited so that we can easily put summary
information about a subtree in its root and keep this infor-
mation up to date, without interfering in the complexity of
the operations that were presented so far. As an example,
let us say that now each node of the tree has an additional
and arbitrary value. The following algorithm makes changes
in the previous operations in order to also efficiently com-
pute the minimum and maximum values for each complete
subtree.
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Figure 4: Height growth of a treap. The curve is an
average of the heights of 30 cartesian trees and the
shaded band indicates 95% confidence intervals.

1: function Update(Tree)
2: Tree.Max ← max{ Tree.Value, Tree.LeftSubtree.Max,
3: RightSubtree.Max}
4: Tree.Min ← min{ Tree.Value, Tree.LeftSubtree.Min,
5: RightSubtree.Min}
6: end function
7:
8: function Merge(LeftTree, RightTree)
9: if LeftTree.RootPriority > RightTree.RootPriority then
10: LeftTree.RightSubtree←Merge(LeftTree.RightSubtree, Right-

Tree)
11: Tree ← LeftTree
12: else
13: RightTree.LeftSubtree ← Merge(LeftTree,
14: RightTree.LeftSubtree)
15: Tree ← RightTree
16: end if
17: Update(Tree)
18: return Tree
19: end function
20:
21: function Split(Tree, Key)
22: if Key ≤ Tree.BSTKey then
23: Left, Tree.RightSubtree ← Split(Tree.LeftSubtree, key)
24: Right ← Tree
25: else
26: Tree.RightSubtree, Right← Split(Tree.RightSubtree, key)
27: Left ← Tree
28: end if
29: Update(Left)
30: Update(Right)
31: return Left, Right
32: end function

Similarly, we can also efficiently perform bulk operations
that change all values in a tree, if these operations are suit-
able. An operation is suitable if its resulting summaries for
the whole tree can be computed using only the already ex-
isting summaries and without accessing the subtrees. The
procedure of propagating a bulk operation from a root to
its subtress only when it is strictly necessary is known as
lazy propagation. It should be performed in the same time
complexity as the complexity of applying the bulk operation
in the root, usually O(1). The following algorithm presents
the needed modifications to obtain a new operation to our
tree, IncreaseBy, which adds a constant to all values of the
tree. This new operation is O(1) and it does not change the
complexity of the other operations.

1: function IncreaseBy(Tree, Constant)
2: Tree.Value ← Tree.Value + Constant
3: Tree.Max ← Tree.Max + Constant
4: Tree.Min ← Tree.Min + Constant
5: Tree.Lazy ← Tree.Lazy + Constant
6: . Tree.Lazy is initially 0
7: end function

8:
9: function Unlazy(Tree)
10: IncreaseBy(Tree.LeftSubtree, Tree.Lazy)
11: IncreaseBy(Tree.RightSubtree, Tree.Lazy)
12: Tree.Lazy ← 0
13: end function
14:
15: function Update(Tree)
16: Unlazy(Tree)
17: Tree.Max ← max{ Tree.Value, Tree.LeftSubtree.Max,
18: RightSubtree.Max}
19: Tree.Min ← min{ Tree.Value, Tree.LeftSubtree.Min,
20: RightSubtree.Min}
21: end function
22:
23: function Merge(LeftTree, RightTree)
24: if LeftTree.RootPriority > RightTree.RootPriority then
25: Unlazy(LeftTree)
26: LeftTree.RightSubtree←Merge(LeftTree.RightSubtree, Right-

Tree)
27: Tree ← LeftTree
28: else
29: Unlazy(RightTree)
30: RightTree.LeftSubtree ← Merge(LeftTree,
31: RightTree.LeftSubtree)
32: Tree ← RightTree
33: end if
34: Update(Tree)
35: return Tree
36: end function
37:
38: function Split(Tree, Key)
39: Unlazy(Tree)
40: if Key ≤ Tree.BSTKey then
41: Left, Tree.RightSubtree ← Split(Tree.LeftSubtree, key)
42: Right ← Tree
43: else
44: Tree.RightSubtree, Right← Split(Tree.RightSubtree, key)
45: Left ← Tree
46: end if
47: Update(Left)
48: Update(Right)
49: return Left, Right
50: end function

A new version of the Split operation is needed in order to
remove an element (given a key) from the Treap. We call
it SplitFirst. After applying this operation, we obtain a left
tree with one element that contains the smallest key in the
original tree, and a right tree with the remaining elements.
The following algorithm describes it. Additionally, it de-
scribes the SplitLast method, which produces a right tree
with the element that has the greatest key and a left tree
with the remaining elements.

1: function SplitFirst(Tree)
2: if Tree is NIL then return NIL, NIL
3: end if
4: Unlazy(Tree)
5: if Tree.LeftSubtree is not NIL then
6: Left, Tree.LeftSubtree ← SplitFirst(Tree.LeftSubtree)
7: Right ← Tree
8: else
9: Right ← Tree.RightSubtree
10: Tree.RightSubtree ← NIL
11: Left ← Tree
12: end if
13: Update(Left)
14: Update(Right)
15: return Left, Right
16: end function
17:
18: function SplitLast(Tree)
19: if Tree is NIL then return NIL, NIL
20: end if
21: Unlazy(Tree)
22: if Tree.RightSubtree is not NIL then
23: Tree.RightSubtree, Right ← SplitLast(Tree.LeftSubtree)
24: Left ← Tree
25: else



26: Left ← Tree.LeftSubtree
27: Tree.LeftSubtree ← NIL
28: Right ← Tree
29: end if
30: Update(Left), Update(Right)
31: return Left, Right
32: end function


