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Modular Analytical Solutions for Foundation 1 

Damping in Soil-Structure Interaction 2 

Applications 3 

Michael J. Givens,a) M.EERI, George Mylonakis,b) c) M.EERI and Jonathan P. 4 
Stewartc) M.EERI 5 

Foundation damping incorporates combined effects of energy loss from waves 6 

propagating away from a vibrating foundation (radiation damping) and hysteretic 7 

action in supporting soil (material damping). Foundation damping appears in 8 

analysis and design guidelines for force- and displacement-based analysis of 9 

seismic building response (ASCE-7, ASCE-41), typically in graphical form 10 

(without predictive equations). We derive closed-form expressions for foundation 11 

damping of a flexible-based single degree-of-freedom oscillator from first 12 

principles. The expressions are modular in that structure and foundation stiffness 13 

terms, along with radiation and hysteretic damping ratios, appear as variables. 14 

Assumptions inherent to our derivation have been employed previously, but the 15 

present results are differentiated by: (1) the modular nature of the expressions; (2) 16 

clearly articulated differences regarding alternate bases for the derivations and their 17 

effects on computed damping; and (3) completeness of the derivations. Resulting 18 

expressions indicate well-known dependencies of foundation damping on soil-to-19 

structure stiffness ratio, structure aspect ratio, and soil damping. We recommend a 20 

preferred expression based on the relative rigor of its derivation. 21 

INTRODUCTION 22 

Following early work by Parmelee (1967), foundation damping as a distinct component of 23 

structural system damping was introduced as part of Bielak’s (1971) derivation of the 24 

replacement (flexible-base) single-degree-of-freedom (SDOF) system and was later refined by 25 

Veletsos and Nair (1975), Roesset (1980) and others. The work was predicated on the need to 26 

evaluate the effects of soil-structure interaction (SSI) on the seismic response of nuclear power 27 
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plant reactor containment structures, later extended to buildings and similar systems with more 28 

significant higher mode effects (e.g., Crouse and McGuire, 2001). Based on that need, and 29 

following work by Luco and Westmann (1971), alternative sets of equations were developed 30 

to predict foundation damping of a rigid circular foundation resting on a uniform elastic 31 

halfspace. 32 

Due in part to the convenience of its application in evaluating seismic demands, foundation 33 

damping appears in several seismic design guidelines for buildings (e.g., ASCE-7; ASCE-41; 34 

NIST, 2012). In both force-based procedures (ASCE-7) and displacement-based procedures 35 

(ASCE-41), foundation damping affects the damping ratio used to compute ordinates on the 36 

pseudo-spectral acceleration spectrum representing seismic demands. Early versions of ASCE-37 

7 and ASCE-41 utilized graphical solutions for foundation damping that required specific 38 

assumptions of foundation geometry; this has been replaced with equation-based methods that 39 

appeared first in NIST (2012). We developed the expressions in the NIST report, which are 40 

derived, extended, and more fully explained only in this manuscript. Further details on the 41 

effects of foundation damping within seismic design guidelines are given in NIST (2012) and 42 

Appendix A of this article. 43 

The principal objective of this paper is to present derivations of foundation damping based 44 

on alternative approaches for matching the response of a SDOF equivalent fixed-base oscillator 45 

with that of an oscillator founded on a compliant medium. Unlike some prior models, our 46 

equations are not specific to particular impedance function equations, but rather are modular 47 

in the sense that any appropriate set of impedance functions (analytically or numerically-48 

derived) can be utilized (Modularity in this work implies a system constructed of standard 49 

components). Our results show some differences from classical solutions, which we re-derive 50 

using the underlying assumptions inherent to those models and express in a similarly modular 51 

form. Important distinctions between the current and prior models are related to the present use 52 

of a generalized damping formulation that allows for both hysteretic and viscous components, 53 

increased transparency regarding assumptions made in the derivation and their effects, and the 54 

aforementioned modular nature of the resulting equations. This modularity allows the functions 55 

to be readily adapted for various practical conditions not considered in classical solutions such 56 

as arbitrary foundation shapes, embedded foundations, and non-uniform soil conditions. 57 

Following this introduction, we: present notation related to impedance and oscillators that 58 

are used to develop the theory; derive modular equations for foundation damping based on 59 



 

alternate approaches for the matching of flexible-base oscillator response to an equivalent 60 

fixed-base response; and compare our results to solutions derived in accordance with classical 61 

models from the literature. We conclude with an example and recommendations on the use of 62 

the derived equations in engineering practice. Two appendices to this manuscript explain the 63 

use of foundation damping in seismic design guidelines and describe the significance of using 64 

a generalized damping formulation (as employed here) versus perfectly viscous damping 65 

(employed in classical solutions). 66 

PROBLEM DEFINITION AND NOTATION 67 

The concept of foundation damping arises from the analogy of a SDOF oscillator of mass 68 

m, height h, stiffness k , period ෨ܶ , and adjusted damping ratio 0 (Figure 1a), which replaces 69 

an otherwise similar oscillator with structural stiffness  2
2k m T  and damping i that is 70 

supported by translational and rotational springs (Figure 1b). Period T and damping i are 71 

oscillator properties for fixed-base conditions in which the base springs have infinite stiffness. 72 

 73 
Figure 1. (a) Replacement oscillator used to represent flexible-base system, having stiffness k% . (b) 74 
Flexible-base system with horizontal, vertical, and rotational foundation springs (kx, kz, and kyy, 75 
respectively) having deflections of uf (horizontal) and f (rotation) – the structural elements have 76 
stiffness and damping of k and i, respectively. Both systems have identical fundamental-mode lateral 77 
periods of T%  and damping of 0. 78 

The distinction between fixed- and flexible-base oscillator properties are evaluated from 79 

period lengthening (T T% ) and foundation damping (f) as follows (Veletsos and Meek, 1974): 80 



 

 
yyx k

kh

k

k

T

T 2

1
~

 , (1) 81 

 
 

1
f o in

T T
   

%
 (2) 82 

where kx and kyy represent foundation spring stiffnesses for horizontal translation and rotational 83 

vibration modes, and n is an exponent that should be taken as 2 when the damping is of a 84 

general frequency-dependent form and not necessarily perfectly viscous (details in Appendix 85 

B). We assume throughout this paper that horizontal translation is along the x-axis (x) and 86 

rotation is in the x-z plane, as indicated by the axes in Figure 1.   87 

Whereas the analysis of period lengthening is relatively straightforward (Eq. 1), 88 

formulating an analytical solution for foundation damping is more complex, as it requires 89 

assessing the relative contributions of hysteretic and radiation damping in multiple modes of 90 

foundation vibration. Essential to this process is the parameterization of foundation stiffness 91 

and damping using complex-valued impedance functions ( jk ), for which we adopt the 92 

following notation (consistent with NIST, 2012): 93 

 j j jk k i c   (3) 94 

where kj=frequency-dependent foundation stiffness, cj=dashpot coefficient, ߱=circular 95 

frequency (rad/s), and subscript j denotes either the translational (x) or rotational (yy) vibration 96 

mode. Imaginary unit i indicates a 90 degree phase difference between the viscous component 97 

(cj) and the elastic one (kj) (the same applies to forces derived from complex stiffnesses).  98 

An alternative form for Eq. (3) is 99 

  (4) 100 
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Dimensionless number j can be interpreted as a percentage of critical damping in the classical 103 

sense at resonance of the system in Figure 1 (Clough and Penzien, 1993). Stiffness coefficient 104 

(kj) is a function of the soil shear modulus (G), Poisson’s ratio (), dynamic stiffness modifier 105 

(j) and foundation dimensions: 106 

 1 2j j jk k i 
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where Kj is the static foundation stiffness at zero frequency for mode j, a0 is dimensionless 111 

frequency, exponent m is 1 for translation (x) and 3 for rotation (yy), and B and L are foundation 112 

plan half-dimensions, as indicated in Figure 2. The aforementioned equations are described for 113 

rectangular foundations; the notation for circular foundations is identical except that radius r 114 

is substituted for half-width B in Eqs. (7) and (9) and B/L = 1. 115 

 116 
Figure 2. Geometry of rectangular foundations adopted for impedance function equations (L ≥ B). 117 

Approximate impedance equations for rigid circular foundations resting on a visco-elastic 118 

halfspace were presented by Veletsos and Verbic (1973), which were based on earlier solutions 119 

by Veletsos and Wei (1971). Solutions for rectangular foundations by Pais and Kausel (1988) 120 

and Mylonakis et al (2006) form the basis for recommendations presented in Tables 2.2 to 2.3 121 

in NIST (2012). The modular nature of the foundation damping solutions in this paper allow 122 

these or any other impedance solutions to be used to represent soil-foundation interaction.  123 

The formulation of the foundation impedance in Eq. (3) to (8) does not explicitly include 124 

coupling terms between translational and rotational vibration modes, which are important for 125 

embedded foundations (e.g., Assimaki and Gazetas, 2009). However, the present formulation 126 

without coupling terms can be readily adapted to embedded foundations through the use of an 127 

eccentricity (computed from the ratio of coupling/translational stiffness) that is added to the 128 

structural height, as described by Maravas et al. (2014). 129 

jjj Kk 
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FOUNDATION DAMPING DERIVATIONS 130 

As shown in Figure 1, the stiffness of the replacement oscillator k  can be related to the 131 

stiffness of the individual components of the SSI system as: 132 
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In this section we present derivations for foundation damping that begin with a more general 134 

form of Eq. (10), in which each term is generalized for dynamic loading by introducing 135 

complex-valued stiffnesses (indicated by an overbar) as follows: 136 
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 	(11) 137 

We present two approaches for using Eq. (11) to derive expressions for foundation 138 

damping. The first approach, which is similar in some respects to prior work by Bielak (1971), 139 

Roesset (1980), and Wolf (1985), separates Eq. (11) into its real and complex parts, then 140 

operates exclusively on the imaginary part to evaluate the effective damping of the replacement 141 

oscillator. The foundation damping is then readily derived from the system damping. The 142 

second approach, which is similar in some respect to prior work by Veletsos and Nair (1975) 143 

and Maravas et al. (2014), retains both the real and complex parts of Eq. (11) in the evaluation 144 

of the dynamic properties of the replacement oscillator. Subsequent sections describe 145 

differences between foundation damping derived from the two approaches and compare the 146 

present solutions to prior results. 147 

DERIVATION FROM IMAGINARY COMPONENT 148 

The first approach proceeds from Eq. (11) by expanding each complex stiffness term 149 

according to Eq. (4): 150 
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Note that hysteretic soil damping effects are not considered at this stage, but are accounted for 152 

subsequently. Multiplying and dividing each term by its complex conjugate, neglecting the 153 

higher-order damping terms (i.e., 2 0 : ), and multiplying both sides by k, we obtain: 154 
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The equality in Eq. (13) requires that both the real and imaginary parts of the expressions on 156 

the right and left sides of the equal sign be equal. In this section, we consider the equality of 157 

the imaginary parts as follows: 158 
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 	(14) 159 

Eq. (14) is convenient because the flexible-base system damping components are proportional 160 

to the stiffness ratio for flexible-base and fixed-base oscillators ( k k% ), which can be related to 161 

the period lengthening (Eq. 1) as follows when foundation mass and rotational moments of 162 

inertia in the foundation and superstructure are ignored: 163 

 
 

2

2 2

1n

n

k k m

k m k T T




   
% % %

%
 	(15) 164 

Using Eq. (15), the flexible-base system damping in Eq. (14) can be presented as a function of 165 

period lengthening: 166 
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 	(16) 167 

Eq. (16) was developed based on the general impedance functions (Eq. 3-4) that consider 168 

the damping terms to be non-viscous. Frequency-independent (i.e., hysteretic) soil damping 169 

(s) can be included in the system by simply adding it to the translational and rotational 170 

damping terms (Roesset, 1980, and Wolf, 1985). When applied to the damping formulation in 171 

Eq. (16), and upon re-arrangement, we obtain: 172 
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 	(17) 173 

We remove the stiffness ratios before the x and yy terms by introducing fictitious vibration 174 

periods for foundation vibration (these would represent actual system period if the 175 

superstructure were rigid and the respective foundation vibrations were the only available 176 

degree of freedom of a fictitious SDOF system): 177 
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We remove the stiffness ratio before s by recognizing from Eq. (1) that it is equivalent to179 

 2
1T T % . Moreover, using Eq. (18) and recalling 2T m k , term k/kx=(Tx/T)2  and 180 

kh2/kyy=(Tyy/T)2, Eq. (17) can be written as: 181 
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Per Eq. (2) with exponent n=2, the foundation damping becomes 183 
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The advantage of Eqs. (19) and (20) over earlier formulations lies in the nature of the 185 

dimensionless multipliers of damping terms, which can be interpreted as weight factors. The 186 

sum of the two factors multiplying i and s terms is unity. Eq. (20) was developed by the 187 

authors for NIST (2012), although the derivation appears here for the first time. Previous 188 

solutions developed using a comparable set of assumptions to those applied here are described 189 

further in subsections below detailing the approaches of Bielak (1971), Roesset (1980), and 190 

Wolf (1985). 191 

DERIVATION FROM COMPLEX-VALUED IMPEDANCE EXPRESSIONS 192 

Our second derivation of foundation damping retains the complex-valued form of Eq. (11), 193 

but enforces equality of both the real and imaginary parts. Equality of the real-valued terms is 194 

given in Eq. (10). We re-arrange Eqs. (10-11) to isolate foundation stiffnesses on the right side 195 

as: 196 
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Note that the second equation is exact, while the first is approximate for conditions other than 199 

static, since higher-order damping terms have been neglected. The left-side of Eq. (22) can be 200 



 

expanded to include the real and imaginary terms (per Eq. 4), and then multiplied by the 201 

complex conjugate, to produce: 202 

 01 1 1 2 1 2 ii i
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in which higher-order damping terms have been omitted. Eq. (23) is re-written by isolating the 204 

complex terms on the right side and using the relations in Eq. (21-22) as: 205 
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Reducing the right side of Eq. (24) for common denominators provides: 207 
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 	(25) 208 

The right side of Eq. (25) can be re-written by expanding the complex-valued impedance terms 209 

in the numerator to include their real and complex parts per Eq. (4) as: 210 
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 	(26) 211 

Equating the left side of Eq. (24) to the right side of Eq. (26) produces: 212 
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Dividing through by -2i, multiplying through by k% , and moving the i term to the right side 214 

produces:  215 
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We note that Eq. (28) is impossible, because by definition 0 is real-valued while the right-217 

hand side is complex-valued. As shown subsequently, this is a result of having ignored 2 218 



 

damping terms in various places. We explain below alternative ways of overcoming this 219 

problem.  220 

Recalling the relationship between k k%  and  2
T T%  in Eq. (15), we obtain:  221 
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Eq. (29) matches Eq. (16) with the exception of the horizontal and rotational impedance terms 223 

within the brackets having gone from real- to complex-valued. As before, we introduce soil 224 

hysteretic damping at this stage to obtain: 225 
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As before, soil hysteretic damping can be approximately accounted for by adding s to the 227 

respective radiation damping ratios x and yy. This addition should also be performed within 228 

the imaginary term of the complex-valued impedance functions as follows: 229 

  1 2j j j sk k i        	(31) 230 

We introduce fictitious vibration periods, now complex-valued, which can be understood as 231 

phase differences in damped natural periods for the hypothetical fixed superstructure (Veletsos 232 

and Ventura, 1986):  233 
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In an analogous manner to the previous section (below Eq. 18), the stiffness ratios on the right 235 

side of Eqs. (29-30) can be written as  2

x xk k T T  and  22
yy yykh k T T . With these 236 

substitutions, Eq. (30) becomes:  237 
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To avoid the use of complex numbers, and to balance the error associated with ignoring 2 239 

terms, we replace jk  with its amplitude in Eq. (32), with the resulting periods denoted xT  and 240 



 

yyT , which are real-valued. A general expression for foundation damping can then be written 241 

as: 242 

 
 

 
 

 2 2

1 1
f x s yy s

x yyT T T T
       

% %
 	(34) 243 

Other ways of avoiding the use of complex numbers are to take the absolute value of the right-244 

side of Eq. (33) or of the right-side minus the i term. We have investigated these options and 245 

found no significant difference; the approach in Eq. (34) is adopted due to its ease of 246 

application (minimizing the manipulation of complex numbers in the calculations). In a 247 

subsection below entitled Veletsos and Nair (1975) Solution, we show that their solution was 248 

developed using a similar set of assumptions. From results presented thus far, it is clear that 249 

when higher-order damping terms are omitted, there is no unique solution for foundation 250 

damping.  251 

COMPARISON OF ALTERNATE SOLUTIONS FOR FOUNDATION DAMPING 252 

On theoretical grounds, there is no clear preference for one of the aforementioned 253 

foundation damping solutions over the other (both were derived using certain approximations, 254 

so neither is exact). The two expressions for foundation damping are given in Eqs. (20) and 255 

(34). A practical benefit of the first solution is that it is expressed entirely in terms of real-256 

valued variables, whereas the second includes complex variables that produce a complex-257 

valued foundation damping that is difficult to understand. 258 

In Figure 3, we plot foundation damping derived from the two solutions against the ratio 259 

h/(VST) (h and T are height and fixed-base period of SDOF structure in Figure 1, VS is soil 260 

shear-wave velocity), which is often called the wave parameter (Veletsos, 1977). The wave 261 

parameter represents a structure-to-soil stiffness ratio, because h/T quantifies the stiffness of a 262 

structure’s lateral force resisting system in velocity units whereas VS is related to the soil shear 263 

stiffness. For nonlinear problems, the value of VS should be reduced in an equivalent-linear 264 

sense (details in NIST, 2012). In Figure 3, foundation damping solutions are given for square 265 

foundations and various structure height aspect ratios (h/B) for the case of radiation damping 266 

only (Figure 3a) and s = 0.1 (Figure 3b). Pais and Kausel (1988) fitted impedance functions 267 

were used in the calculations. The calculations were performed using a ratio of structure mass 268 

to mass of soil in the volume 24B h  of 0.15 (which is a typical value, per Veletsos 1977).  269 



 

The solution from the first approach produces higher damping, particularly for small height 270 

aspect ratios. These damping differences result from the dropping of 2 terms in the derivations, 271 

the effects of which differ somewhat due to the different assumptions in the two derivations. 272 

Otherwise, the solutions show well-known patterns of behavior, in particular: 273 

 As h/(VsT) increases, the significance of inertial SSI increases, causing increased 274 

foundation damping; 275 

 As h/B increases, rotational modes of foundation vibration become more dominant, 276 

which reduces foundation damping because foundation rotation produces less 277 

radiation damping than foundation translation; 278 

 The effects of hysteretic soil damping scale with the significance of inertial SSI, as 279 

measured for example by h/(VsT). For low h/(VsT), hysteretic damping has little 280 

effect (zero at h/(VsT) = 0), whereas at high h/(VsT) the foundation damping is nearly 281 

the sum of foundation damping from radiation damping and s. 282 

 283 
Figure 3. Comparison of foundation damping solutions based on Approaches 1 and 2, plotted against 284 
structure-to-soil stiffness ratio h/(VST) [h/(VST) = 0 to 0.4 encompasses the range of practical conditions 285 
typically encountered for building structures; Stewart et al., 1999]. Conditions for the plots are a rigid, 286 
massless, square foundation supported on an homogeneous isotropic halfspace with Poisson’s ratio  = 287 
0.33 and hysteretic soil damping of (a) s = 0% and (b) s = 10%. Impedance functions from Pais and 288 
Kausel (1988) used to derive the foundation damping. Per text, structure to soil mass ratio is 0.15.  289 



 

COMPARISON TO FOUNDATION DAMPING SOLUTIONS IN LITERATURE 290 

In this section we compare results from the expressions derived above to previous solutions 291 

for foundation damping of circular foundations by Veletsos and Nair (1975), Bielak (1971), 292 

Roesset (1980), Wolf (1985), and Maravas et al. (2014). The original expressions for circular 293 

foundations are re-derived here in a more general form.  294 

BIELAK (1971) SOLUTION 295 

Bielak (1971) (also Jennings and Bielak 1973 and Bielak 1975) derived an expression for 296 

foundation damping by identifying the dynamic properties of a replacement fixed-based 297 

oscillator to match those of a flexible-base oscillator (Figure 1b). In the derivation, the 298 

foundation mass and mass moment of inertia were taken as negligible (as above), the structural 299 

damping was taken as viscous, impedance functions for circular foundations were used, and 300 

higher-order damping terms were neglected. The viscous damping assumption for the structure 301 

was motivated by computational efficiency. 302 

Bielak’s damping derivation is similar to the approach presented in the section entitled 303 

Derivation from Imaginary Component in which the imaginary parts of stiffness terms in the 304 

replacement oscillator and flexible-base system are equated. The present derivation mirrors the 305 

prior one up to Eq. (16). However, the assumption of viscous structural damping requires 306 

modification of the structural damping ratio as described in Appendix B (Eq. B.5-B.6). With 307 

the substitution of vis
i  for i  in Eq. (16), we obtain: 308 

 
   

2

0 3 2

1 1vis
i x yy

x yy

k kh

k kT T T T
   

 
    

 % %
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Note that the period lengthening term before the viscous structural damping now has an 310 

exponent of 3. Eq. (35) matches Eq. (3.66c) in Bielak (1971), except the nomenclature has 311 

been adapted to be consistent with this paper and periods instead of frequencies are used. Per 312 

Eq. (2), foundation damping f is the second term in the sum in Eq. (35). To the extent that 313 

actual structural damping is not purely viscous, the expression in Eq. (35) is an approximation 314 

to the actual flexible-base system damping. 315 

VELETSOS AND NAIR (1975) SOLUTION 316 

Veletsos and Nair (1975) derived an expression for foundation damping by equating 317 

amplitudes of responses between the real parts of the flexible-base system and those of the 318 



 

replacement oscillator. Their derivation utilized the full complex form of stiffness terms in 319 

equating the stiffness of the replacement oscillator to that of the flexible-base oscillator, which 320 

is similar to the second approach described above in the section entitled Derivation from 321 

Complex-Valued Impedance Expressions. Assumptions made regarding the properties of the 322 

replacement oscillator include viscous damping and the presence or absence of foundation 323 

mass. The Veletsos and Nair damping terms can be derived using a process matching that used 324 

in Approach 2 with two exceptions. 325 

The first exception is that Veletsos and Nair (1975) used viscous structural damping. As in 326 

the previous section, in the equation of system damping (e.g. Eq. 35), this converts to 3 the 327 

exponent on the period lengthening applied to structural damping. 328 

The second exception concerns the incorporation of hysteretic soil damping into the 329 

solution. The simple addition of s to radiation damping terms applied in the derivations for 330 

Approaches 1 and 2 represents an approximate solution to the mathematically complex 331 

problem of how these damping terms interact. For example, a numerical solution (integral 332 

equation approach) to this problem is provided by Apsel and Luco (1987). Veletsos and Nair 333 

(1975) use an approximate solution to this problem by Veletsos and Verbic (1973) (the 334 

approximation is in the fitting of the dynamic impedance coefficients for the case of zero soil 335 

damping with simple closed-form expressions, along with an assumption of real-valued 336 

Poisson’s ratio). In the Veletsos and Verbic solution, the soil damping appears as a term in a 337 

series of equations used to derive dynamic modifiers in the general equations for foundation 338 

impedance (j and j in Eq. 6 and 5, respectively). 339 

These two deviations have little impact on the damping solution from Approach 2, and the 340 

derived system damping, given below, is very similar to that in Eq. (29): 341 
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 	(36) 342 

The only differences between Eq. (36) and Eq. (29) are in the structural damping terms (due to 343 

the use of viscous damping), the form of impedance function terms xk  and yyk  (which Veletsos 344 

and Nair wrote for circular foundations), and in application of absolute values on the right side 345 

to avoid complex-valued foundation damping (matching the approach of Veletsos and Nair). 346 

Note that Eq. (36) is used with or without soil damping; as discussed in the section entitled 347 



 

Derivation from Imaginary Component, the effect of s can be introduced by simple addition 348 

to the radiation damping terms that are also contained within the complex-valued impedance 349 

terms.   350 

In Figure 4 we show the effect of the different approaches for incorporating s into the 351 

solution. As a baseline case, we show the predicted foundation damping for s = 0.1 using 352 

Approach 2 (Eq. 34). In this calculation, we use radiation damping terms computed from 353 

closed-form expressions by Veletsos and Verbic (1973) for the elastic medium (i.e., radiation 354 

damping only, or s = 0). Also shown in Figure 4 is foundation damping from Eq. (36) (second 355 

term to the right of equal sign), using the same Veletsos and Verbic (1973) impedance solution. 356 

The two sets of results are similar, diverging only slightly as h/(VST) increases for h/r < 5. 357 

 358 
Figure 4. Comparison of foundation damping models (Eq. 34 and Eq. 36) accounting for hysteretic soil 359 
damping differently, plotted against structure-to-soil stiffness ratio h/(VST). Conditions for the plot are 360 
a rigid, massless, circular disc supported on an elastic homogeneous isotropic halfspace with hysteretic 361 
soil damping s=0.1 and  = 0.33. Impedance functions are from Veletsos and Verbic (1973). Eq. (34) 362 
used Veletsos and Verbic (1973) elastic impedance solution with additive soil damping; Eq. (36) uses 363 
similar solution from Veletsos and Nair 1975 (VN75) in which soil damping for a visco-elastic medium 364 
is incorporated into the impedance function. Structure to soil mass ratio is 0.15.  365 

ROESSET (1980) AND WOLF (1985) SOLUTIONS 366 

Roesset (1980) presented a foundation damping solution in which the imaginary 367 

component of the replacement oscillator stiffness is matched to that of the flexible-base system. 368 



 

He also used a general (non-viscous) damping formulation for the structural stiffness and 369 

similar assumptions to other investigators, so the derivation matches that of Approach 1. Using 370 

our nomenclature, Roesset’s expression for foundation damping was given as: 371 
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 	(37) 372 

This expression essentially matches Eq. (20) except that the scaling terms in front of the 373 

radiation damping coefficients remain as stiffnesses and have not been converted to periods. 374 

Wolf (1985) presented a solution that essentially matches that of Roesset (1980), except 375 

that the fictitious vibration periods given in Eq. (18) are introduced to re-write the foundation 376 

damping in the form given in Eq. (20). 377 

MARAVAS ET AL. (2014) SOLUTION 378 

Recognizing the previous solutions as approximate, Maravas et al. (2014) built upon 379 

previous work by Avilés and Pérez-Rocha (1996) to develop an exact solution for damping of 380 

rigid circular foundations. The derivation begins with Eq. (12), which includes the complex-381 

valued stiffnesses of each element in the SSI system. Multiplying each term by the complex-382 

conjugate, without ignoring the higher-order damping terms, results in: 383 
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 	(38) 384 

Eq. (38) can be separated into real and imaginary parts as follows: 385 
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Recognizing that the term  2
041

~ k  exists in both the real and imaginary part of the solution, 388 

the system damping can be established by first rearranging the real part (Eq. 39) as 389 
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Secondly, both sides of the imaginary part (Eq. 40) are multiplied by  2
041

~ k  to obtain an 391 

expression for the flexible-base system damping: 392 
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The flexible-base system damping is then formulated by inserting the right side of Eq. (41) into 394 

Eq. (42) and multiplying the numerator and denominator by k: 395 

 
     

     2

2

22

2

2

22

0

41

1

41

1

41

1

414141

yyyyxxi

yy

yy

yyx

x

xi

i

k

kh

k

k

k

kh

k

k
































  	(43) 396 

The exact expression in Eq. (43) can be reduced by simultaneously substituting 397 

   2 2ˆ 1 4 1 4j j j ik k      (where j = x or yy) for kx and kyy and multiplying both the numerator 398 

and denominator terms by  21 4 i . It should be noted that ˆ
j jk k  for the common case of 399 

j terms being larger than i. With the substitutions, we obtain:  400 
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 	(44) 401 

It should be noted that soil hysteretic damping s can be directly added into the radiation 402 

damping terms x and yy in Eqs. (43) or (44). Foundation damping can be back-calculated 403 

from the system damping (using Eqs. 43 or 44) by setting i = 0 in the numerator, while 404 

maintaining as finite these terms in the denominator of Eq. (43) or in the ˆ
jk  terms of Eq. (44). 405 

Unlike Approaches 1 and 2, Eqs. (43 and 44) involves weight factors that include squared 406 

damping terms from all oscillation modes. These more complex solutions reveal foundation 407 

damping to arise from nonlinear coupling of damping resulting from linear material behavior 408 



 

in both the soil and structure. Moreover, as mentioned above, this result shows foundation 409 

damping to depend on structural damping, which is unique to the present solution.  410 

Interestingly, Eqs. (43 or 44) reduces to Eq. (16) if 2 terms are ignored (or if all damping 411 

terms are equivalent, which causes ˆ
j jk k ). Hence, despite the fact that real and complex parts 412 

are included in the derivation, which would seem to make the Maravas et al. (2014) solution 413 

conceptually similar to Approach 2, it nonetheless matches the solution from Approach 1 if 2 414 

terms are set to zero or if they are all equal. For this reason, the need to use absolute values in 415 

the Approach 2 solution equations is caused by ignoring 2 terms in the derivation. As shown 416 

by Givens (2013), foundation damping results obtained using the Maravas et al. (2014) 417 

approach are nearly identical to those from Approach 2 over the range of wave parameter 418 

h/(VST) = 0  0.3 (Approach 2 produces slightly larger damping for h/(VST) > 0.3, as required 419 

by the inequality ˆ
j jk k ). That similarity suggests that taking the absolute value of the 420 

complex-valued impedance terms as in Eq. (34) largely compensates for the error associated 421 

with ignoring 2 terms in Approach 2.  422 

Although an exact solution such as Eqs. (43) or (44) could be coded into spreadsheets and 423 

applied, we do not recommend it for routine application because (1) its complex form (Eq. 43) 424 

or unfamiliar nomenclature (e.g. ˆ
jk  terms in Eq. 44) convey less clearly the physical sources 425 

of foundation damping than do Approaches 1 and 2, and (2) the aforementioned negligible 426 

differences from the recommended equations for practical situations (the differences only 427 

become appreciable when radiation damping is exceptionally high, such as squat structures on 428 

uniform soils subjected to very high frequency excitation, which are rarely encountered 429 

conditions).   430 

SUMMARY OF PRIOR WORK AND ITS RELATION TO PRESENT RESULTS 431 

Both Approaches 1 and 2 for computation of foundation damping f utilize logical 432 

progressions in the derivation process that have been employed previously, as explained 433 

earlier. The main disadvantages of the prior derivations, that we sought to address here, are: 434 

1. In their originally published form, foundation damping was not expressed in a 435 

modular form allowing any impedance formulation to be used, but were connected 436 

with equations for the impedance for a particular (usually circular) foundation shape 437 



 

and were available only in graphical form. Accordingly, the present expressions 438 

(Eq. 20 and 34) are more amenable to practical application. 439 

2. Individual prior studies take one of the fundamental approaches described here, and 440 

the similarities and differences of results obtained using alternate approaches are 441 

not illustrated. The present approach illustrates directly these differences. 442 

3. The documents presenting the original equations or graphical representations are, 443 

in most cases, incomplete with respect to explaining the steps and logic of the 444 

derivation process. We derived Eq. (20) and (34) from first principles and explain 445 

the logic of the solution process. 446 

EXAMPLE APPLICATION 447 

As an example application, we evaluate foundation damping for the Garner Valley, 448 

California test site (nees.ucsb.edu/facilities/gvda) using a hypothetical 1050 m surface 449 

foundation. Figures 5a-b shows the soil shear wave velocity profile (from measurements, as 450 

compiled by Star et al., 2015) and foundation geometry. The foundation geometry selected for 451 

analysis does not match the dimensions of an actual foundation at the site. The analyzed 452 

foundation has a higher aspect ratio (in plan view) for compatibility with plane strain analysis 453 

and larger dimensions than actual foundation systems at the site to mobilize responses of 454 

relatively deep portions of the profile to enhance effects of soil heterogeneity. Hence, we seek 455 

to illustrate through this example how a site-specific impedance function can be employed with 456 

the modular foundation damping solutions developed in this paper, and to do so for a case 457 

where site-specific complexities in the soil layering would be expected to significantly 458 

influence the impedance functions and hence potentially the foundation damping.  459 

 460 



 

 461 

Figure 5. Conditions employed for example computations of foundation damping. (a) VS profile, reflecting actual conditions at the Garner Valley, CA test 462 
site (nees.ucsb.edu/facilities/gvda); (b) plan view of assumed foundation geometry; (c) frequency-dependent foundation stiffnesses for translation (ky), 463 
rotation (kxx), and associated radiation damping terms (y and xx) for y-component excitation. Foundation stiffness and damping results are shown for finite 464 
element simulations using zero soil hysteretic damping (FEM) and Poisson’s ratio = 0.45 and from closed form expressions for a soil halfspace adapted to 465 
the present conditions following guidelines in NIST (2012). 466 



 

Using a methodology for plane-strain finite element analysis of foundation-soil systems 467 

(Esmaeilzadeh et al., 2015), E. Esmaeilzadeh (personal communication, June, 2015) evaluated 468 

frequency-dependent and complex-valued impedances for y-component translation and xx-469 

component rotation of the foundation-soil system, with the results shown in Figure 5c. The soil 470 

was modelled as elastic (no hysteretic damping) and meshing procedures given in 471 

Esmaeilzadeh et al. (2015) were adhered to. The impedance ordinates were obtained from the 472 

software by applying unit-amplitude cyclic displacements or rotations, computing the resulting 473 

nodal forces on the foundation that develop, and integrating those nodal forces into shear forces 474 

and moments at the foundation centroid (which comprise the desired impedance quantities). 475 

The plane strain analyses are for excitation in the y-direction; both the real and complex parts 476 

were multiplied by 2L to obtain the results in Figure 5c labelled as ‘FEM’. Radiation damping 477 

coefficients were computed from the ratio of complex/real components using Eq. (5) (the 478 

derivations earlier in this paper were for x-component translation and yy-component rotation, 479 

they can be applied to the present case by simply changing subscripts x to y and yy to xx in the 480 

equations). Also shown in Figure 5c are stiffness and damping predictions using Pais and 481 

Kausel (1988) halfspace equations adapted for non-uniform soil profiles following 482 

recommendations in NIST (2012). 483 

Using the impedance ordinates in Figure 5c, we compute foundation damping using 484 

Approach 2 (Eq. 34) for three fixed-base structure periods (T=0.1, 0.2, and 0.4 sec), a single 485 

structure height h=5 m (h/B = 1), and excitation in the y-direction. We use a structure mass m 486 

of 6.9105 kg (15% of the soil mass in a volume equivalent to the foundation footprint times 487 

structure height). The computation process proceeds as follows: 488 

1. Preliminary estimates of foundation stiffnesses ky and kxx are obtained by entering 489 

Figure 5c at f=1/T. Calculations are performed using both sets of impedance 490 

ordinates.  491 

2. The lengthened building period T%  is computed using Eq. (1). 492 

3. Updated foundation stiffnesses are obtained using 1f T% %. Lengthened period is 493 

computed again and the process continues until period lengthening is no longer 494 

changing between iterations (usually 2-3 are sufficient). 495 

4. Radiation damping coefficients y and xx are obtained by entering Figure 5c at 496 

1f T% %. 497 



 

5. Fictitious periods are computed using Eq. (32) with the amplitude of the 498 

corresponding complex-valued stiffness from Eq. (31) (i.e., for the y-direction, yk  499 

is used in the expression for yT ). 500 

6. Foundation damping is computed using Eq. (34), with the results in Table 1 (the 501 

tabulated results are derived from the site-specific impedance ordinates). 502 

Table 1. Results of example foundation damping computations for site and foundation conditions 503 
shown in Figure 5 with structure height h=B=5m and fixed-base periods indicated below. Results are 504 
shown for the case of site-specific impedance from FEM.  505 

T 
(sec) 

h/(VST) T T%  f%  
(Hz) 

ky 
(kN/m) 

y kxx (kN-
m) 

xx yT  (sec) xxT  (sec) f 

0.1 0.25 1.36 7.4 6.1106 0.58 1.7108 0.30 0.054 0.059 0.16 
0.2 0.13 1.09 4.6 6.5106 0.54 1.9108 0.02 0.053 0.060 0.036 
0.4 0.06 1.03 2.4 4.4106 0.16 2.4108 0 0.077 0.054 0.007 

 506 

As expected, foundation damping varies strongly with wave parameter h/(VST), as shown 507 

previously in Figures 3 and 4. For comparison, the foundation damping results obtained using 508 

the equivalent-halfspace impedance solutions (NIST, 2012) are 0.14, 0.038, and 0.007 (for T 509 

= 0.1, 0.2, and 0.4 sec, respectively). For these calculations, the equivalent halfspace velocity 510 

was taken as 198 m/s based on the ratio of effective depth of influence below foundation (7.5 511 

m) to shear wave travel time as given in NIST (2012). These results are close to those obtained 512 

using the site-specific impedance ordinates in Figure 5. 513 

CONCLUSIONS 514 

We initially presented the first of our modular equations for foundation damping (from 515 

Approach 1) in NIST (2012), to overcome limitations of graphical methods for evaluating 516 

foundation damping that appeared in earlier seismic analysis and design guidelines documents 517 

(ASCE-7, 2010; ASCE-41, 2006). Those guidelines have since been updated using our 518 

solutions as presented in NIST (2012). In this paper, we have presented the basis for Approach 519 

1 and extended the derivation using a different set of assumptions for matching the real and 520 

complex parts of the response of an equivalent fixed-based oscillator to that of a flexible-base 521 

oscillator (Approach 2). The underlying assumptions and logic behind Approaches 1 and 2 are 522 

not original, but the derivations here have unique and useful elements relative to prior work as 523 

explained in the section entitled Summary of Prior Work and its Relation to Present Results. 524 



 

Given the presence of two sets of equations for foundation damping, a natural question is 525 

which solution is preferred for application? As illustrated in Figure 3, the two solutions are not 526 

significantly different and other factors (such as the modeling of heterogeneous soil conditions 527 

in the impedance) are likely to exert more influence on results than the choice of equations. 528 

Nonetheless, our view at the present time is that Approach 2 is preferred, principally because 529 

it is more complete in its assessment of the equivalent oscillator response (by considering real 530 

and complex parts). The foundation damping from Approach 2 is given by Eq. (34) and an 531 

example application is given in the previous section. Because the foundation damping 532 

expressions are derived to match SDOF oscillator responses, they are applicable strictly to 533 

analysis of SSI effects on the first-mode response of structures. 534 
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