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Abstract

We can regard the wider incentive structures that operate across science, such as the prior-

ity given to novel findings, as an ecosystem within which scientists strive to maximise their

fitness (i.e., publication record and career success). Here, we develop an optimality model

that predicts the most rational research strategy, in terms of the proportion of research effort

spent on seeking novel results rather than on confirmatory studies, and the amount of

research effort per exploratory study. We show that, for parameter values derived from the

scientific literature, researchers acting to maximise their fitness should spend most of their

effort seeking novel results and conduct small studies that have only 10%–40% statistical

power. As a result, half of the studies they publish will report erroneous conclusions. Current

incentive structures are in conflict with maximising the scientific value of research; we sug-

gest ways that the scientific ecosystem could be improved.

The career progression of researchers is strongly influenced by their publication record [1], but

there is growing evidence that many published studies across a number of disciplines may be

underpowered and report erroneous conclusions [2–4]. In 2005, Ioannidis argued that most

published research is false [5] and that this stems in part from a reliance on null hypothesis sig-

nificance testing and in particular from a dichotomous interpretation of p-values as “significant”

or “nonsignificant,” whereas the positive predictive value (PPV) of a study (i.e., the poststudy

probability that the finding is correct) is a better measure of the scientific value of a study. In

particular, the prestudy odds (R) that a hypothesis is correct are rarely considered when inter-

preting the results of individual studies, yet this can have a dramatic impact on the PPV. Explor-

atory studies (i.e., those with low R) are much less likely to be true than confirmatory studies

(i.e., those with high R) even if the p-value generated is the same, but arguably, current incentive

studies reward novel (i.e., exploratory) findings over replication (i.e., confirmatory) studies.

Scientists are trained to be objective and to pursue the discovery of knowledge, through

both exploratory work that generates novel lines of enquiry and confirmatory work that

assesses the robustness of previous novel findings. However, scientists are also human and
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work within incentive structures that may shape their behaviours, consciously or uncon-

sciously. For example, publication in a journal with a high (Thomson-Reuters) Impact Factor

can accelerate career advancement [1], enhancing prestige and both personal and grant

income. There also appears to be an increasing focus on novel findings: since the 1980s, there

has been a disproportionate increase in studies that include “novel” in their title [6–9]. At the

same time, only a small number of key publications may count towards career advancement:

recruitment panels and research assessment exercises, such as the United Kingdom Research

Excellence Framework (REF) [9] and the Australian Excellence in Research exercise [10],

often require researchers to submit for assessment a small number (currently four in the REF)

of their “best” outputs. We can regard these incentive structures as an ecosystem within which

scientists strive to maximise their fitness (i.e., publication record) and therefore might expect

that individual scientists would strategically adapt—consciously or unconsciously—to these

pressures, adjusting their research strategy to boost their career success. Understanding

research ecosystems is critical if we are to align scientific value and career benefits, in order to

maximise the efficiency of scientific research.

Theoretical models of adaptive behaviour are common in evolutionary biology: natural

selection should find, or an animal should choose, the behavioural strategy (a set of context-

dependent choices) that maximises naturally selected "fitness," or "reproductive value" [11].

Possible strategies available to natural selection or in decision making can be thought of as

lying in multidimensional space with a peak at maximum fitness. We can regard the wider

incentive structures that operate across science as the characteristics of an ecosystem, within

which scientists strive to maximise their “fitness” by optimising their behaviour and, by exten-

sion, their research strategy. We were interested in whether the optimal research strategy for

individual scientists aligns with the optimal conditions for the advancement of knowledge.

We used optimality theory [12] to predict the rational strategy of a scientist possessing finite

resources who seeks to maximise the career value of his or her publications. The model is

described in brief in Box 1. Full details of all methods used are provided in S1 Text, and the

Matlab code used to complete the analyses is provided in S2 Text. We considered that

researchers must choose how to divide their resources between exploratory studies that seek to

identify new phenomena and confirmatory studies that attempt to verify previous findings

and that they must decide the amount of resources to invest per study. We characterised the

possible strategies as lying in a two-dimensional “fitness” landscape (Fig 1) in which the two

dimensions are (1) the proportion of research effort spent on exploratory studies that seek

novel results (θ) and (2) the amount of research effort (e.g., sample size) per exploratory study

(SE). For instance, we might assume that collecting one data point has a fixed monetary cost or

takes a certain amount of time to collect. For simplicity, we assume that exploratory studies are

published only if they obtain a statistically significant result (i.e., p< 0.05) and that confirma-

tory studies are large (i.e., have a large sample size), have high power, and therefore have a

high probability of being accepted for publication even if they obtain a nonsignificant result.

We also assume that the peer review process means that the likelihood of acceptance for publi-

cation increases with sample size, since larger studies are generally considered informative and

authoritative, irrespective of whether the result is statistically significant or not.

The results (Fig 2A) of our model (Box 1) indicate that more exploratory work will be car-

ried out if (1) more weight is given to novel findings (γ, shown on the x-axis), (2) real effects

are more common (xE, compare dotted and solid lines), and (3) the typical effect size is larger

(rC, rE, compare dashed and solid lines). There is an optimal sample size (SE
�) that maximises

the number of published novel findings per unit of resource spent on exploratory studies. SE
�

decreases as θ increases (Fig 2B), because it becomes more important to avoid committing

false positives as they will reduce the number of confirmatory studies that find a significant
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Box 1. Modelling the Rational Strategy of a Scientist

The researcher optimises the payoff that results from deciding the proportion of total

sampling to spend on exploratory studies (θ) and the sample size of each exploratory

study (SE). SE determines the statistical power of each study, namely the probability of

detecting an effect (WE), which in turn controls the probability of Type II errors (1 −
WE). The probability of a Type I error (α) is the critical p-value within a null hypothesis

significance testing framework; we assume α = 0.05. Power depends on the population

variance (σ2) and the effect size for exploratory or confirmatory studies (rE, rC). The val-

ues we use are in the middle of the range of effect sizes observed in meta-analyses across

a number of biomedical research domains (range r ~ 0.15 to 0.50) [13]. All studies that

find significant results are published, and the high statistical power of confirmatory stud-

ies means that the results are informative regardless of statistical significance, so nonsig-

nificant confirmatory studies are published with probability ψ, subject to an

independent effect of sample size on the likelihood of acceptance by a journal editor

(before consideration of the effects themselves) according to the function:

A ¼ 1 �
m
Si
; ðB1Þ

where m is a positive constant (see S1 Fig).

The number of publications from exploratory studies (NE) is the product of the total

effort put into exploratory studies divided by the sampling effort of each study, the prob-

ability of acceptance given the sample size A, and the probability of getting a statistically

significant result:

NE ¼
yT

kþ 2SE
A½WEfE þ að1 � fEÞ�; ðB2Þ

where fE is the probability that an effect is real, T is the total number of samples that can

be collected (i.e., total resources), and k is the setup cost for any study. The first term in

the squared brackets is the probability of a true-positive result, while the second is the

probability of a false-positive result. Since confirmatory studies will build on the findings

of exploratory studies, the probability that a confirmatory study is looking at a real effect

(fC) is equal to the probability that a published exploratory study is correct (PF,E). The

number of confirmatory studies that are published (NC) is the sampling effort put into

all confirmatory studies divided by the sampling effort of each study multiplied by the

probability they are accepted:

NC ¼
ð1 � yÞT
kþ 2SC

½ð1 � PF;EÞWC þ PF;Eaþ cfCð1 � aÞ þ cð1 � PF;EÞð1 � WCÞ�: ðB3Þ

The terms in the squared brackets are, respectively, the probability of true positive,

false positive, true negative, and false negative.

We assume that the number of confirmatory studies per exploratory study is limited

to ρ (ρ = 10), by calculating the number of valuable confirmatory studies bN C (see S1

Text).

The total fitness (VR) of the researcher is assumed to depend on total number of pub-

lications with diminishing returns, with an additional bonus for exploratory studies.

Incentive Structures and Reproducibility
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result. The total number of publications declines as the weight given to novel findings (γ)

increases (Fig 2C). In part, this is because most exploratory studies are not published, as they

have low statistical power and therefore often do not obtain statistically significant results.

However, the proportion of confirmatory studies also declines (Fig 2D) because of the greatly

increased exploratory effort. The optimal statistical power is low (Fig 2E), especially if the typi-

cal effect size is small, since it is better from an individual career perspective to run many

exploratory studies (and for a high proportion of statistically significant findings to be Type I

errors [2]) than to run a smaller number of well-powered studies (see S4 Fig for an intuitive

illustration). As the weight given to novel findings increases, and so the investment in explor-

atory studies increases, the proportion of papers that draw erroneous conclusions increases to

over 50% (Fig 2F). The proportion of false positive studies at optimal behaviour is similar to

the proportion incorrect, since false negatives are rare for confirmatory studies because they

have high statistical power and false negative exploratory studies tend to remain unpublished.

We next used our model to predict how characteristics of the current scientific ecosystem,

such as incentives to publish novel, exciting results, influence the total scientific value of

research VS (see Box 1). Current incentive structures (e.g., recruitment processes and research

assessment exercises) place substantial weight on findings published in journals with a high

Impact Factor and may consider only the “best” few publications of any individual. These con-

ditions correspond to a situation with a strong weighting given to novel findings (large γ) and

quickly diminishing value of additional publications (high ϕ). Our model shows that the scien-

tific value of research (VS) is not maximised at these values (top right of Fig 3A) when scientists

are behaving rationally to maximise their own success within this ecosystem. If a small number

of novel findings counts heavily towards career progression, this encourages scientists to focus

One implementation of this is as follows:

VR ¼ gNE þ 1 � e� φðNEþ
^N̂ CÞ: ðB4Þ

In Eq (B4), ϕ controls how quickly the value of the total number of publications

diminishes, and γ controls the extra weighting given to published exploratory studies.

The dependence of equation (B4) on the number of published exploratory and confir-

matory studies is shown in S2 Fig for representative values of γ and ϕ.

Given these assumptions, we identified the optimal research strategy for an individual

scientist, which is the combination of θ and NE for which the career value of publications

(VR) is maximised (i.e., the location of the peak in the fitness landscape, Fig 1). See S2

Text for the Matlab code.

A reasonable function describing the scientific value of research (VS) is the product of

(1) the number of published exploratory studies, (2) the number of published confirma-

tory studies, and (3) the proportion of published studies that are correct: VS = NCNE(1

−PF). This reflects our assumptions that novel findings (from exploratory work) and

confirmatory work are equally important for the advancement of knowledge, provided

they arrive at correct conclusions, and that an absence of either of them would be very

bad for science. That is, we assume that a balance of exploratory and confirmatory work

is ideal, so that for any number of publications the scientific value is maximised when

half are exploratory and half are confirmatory (see S3A Fig). We also considered other

reasonable functions, and these provided the same conclusions (see S3 Fig and S5–S9

Figs). Baseline parameter values are given in S1 Table.

Incentive Structures and Reproducibility
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Fig 1. Fitness landscape for an individual researcher. An individual researcher is able to choose the

parameters θ (y-axis) and SE; the x-axis shows the resultant power of exploratory studies, WE. White

indicates high fitness, black low fitness. For small values of SE, few papers are accepted, while for high values

of SE, few studies are carried out. For low values of θ, few novel studies are carried out. (A) γ = 0.09, ϕ = 0.9.

The optimal strategy that maximises individual fitness is therefore to carry out many small exploratory studies

Incentive Structures and Reproducibility
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almost all of their research effort on underpowered exploratory work. Furthermore, they

should carry out lots of underpowered small studies to maximise their number of publications,

even though this means around half will be false positives (Fig 2E and S4 Fig).

Critically, our model suggests ways in which incentive structures could be redesigned so

that the optimal strategy for individual scientists aligns with the optimal conditions for the

advancement of knowledge. A small reduction in both the weight given to novel findings (γ)

and how quickly the value of the total number of publications diminishes (ϕ) would shift indi-

vidual incentives away from a dominant focus on exploratory work, meaning that more confir-

matory work is carried out, thereby increasing the total scientific value of research (Fig 3A).

Sensitivity analyses (S5–S9 Figs) indicate that a reduction in both ϕ and γ increases VS for all

reasonable values of the other parameters (i.e., setup cost, k; probability effect is real, fE; effect

size in exploratory studies, rE; effect size in confirmatory studies, rC; standard deviation of the

data, σ; and proportion of nonsignificant confirmatory studies published, ψ). This suggests

that the optimal strategy for individual scientists and the optimal conditions for the advance-

ment of knowledge do not currently align even if our estimates of parameter values are incor-

rect. The equation for VS assumes that there is a place for both exploratory and confirmatory

research and that correct findings are more valuable than incorrect findings. How these ele-

ments should be weighted is obviously an important question, but our results indicate that our

conclusions are unchanged for various possible functions for VS (see S5–S9 Figs).

Our metric reflecting the scientific value of research (VS) is related to both the dependence

of acceptance on sample size (m) and the Type I error rate (α) (Fig 4). As the dependence of

acceptance on sample size increases (i.e., journal editors are more stringent), so does statistical

power, meaning that the proportion of studies that are correct increases, tending to 100% (Fig

4A). More confirmatory studies are carried out, so the number of studies that get published

increases (Fig 4C). However, when the sample size required for publication is very large, the

number of exploratory studies approaches zero, so that the total scientific value of research

declines (Fig 4E). This analysis predicts that the value of m that maximises the scientific value

of research is quite high, meaning that journals should be more stringent about required statis-

tical power and sample size. Increasing m alters the position of the ridge in (γ, ϕ) space, such

that total scientific value of research is greatest at larger values of γ and ϕ (Fig 3B).

Our model indicates that, at conventional levels of statistical significance (i.e., α = 0.05, Fig

4B), only around 50% of published findings are likely to be correct, close to the ~40% observed

by the Open Science Collaboration [4] and the pharmaceutical industry [15]. With increasing

statistical stringency (i.e., lower α), the proportion of published findings that are correct

increases (Fig 4B) because more confirmatory studies are carried out and exploratory studies

are more powerful because it is optimal to have a larger sample size in order to increase the

chance of detecting an effect. This, along with an increase in the number of published studies,

means that VS increases (Fig 4D). However, at small values of α almost all published papers are

confirmatory, and a single novel result would greatly increase VR, so SE increases as α decreases

to maintain the chance of a statistically significant result. However, at very high levels of statis-

tical stringency (i.e., very low α) fewer novel findings are published and so the total scientific

value of research declines. In a similar way to the result for m above, this analysis suggests that

the total scientific value of research would be greater given a smaller Type I error rate (α) than

is currently conventional (Fig 4F). Decreasing α would mean that higher values of γ and ϕ
would maximise the total scientific value of research (Fig 3C)—in other words, the research

with a power of around 15%. (B) γ = 0.055, ϕ = 0.55. A mixture of exploratory and confirmatory work should be

carried out with slightly higher power (20%).

doi:10.1371/journal.pbio.2000995.g001
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Fig 2. Effect of varying the weighting given to published exploratory studies (γ). Parameter γ reflects the relative importance of

published exploratory studies. The lines show predictions for two values of the probability that an effect is real (fE) and two values of the

effect sizes rC and rE (solid: fE = 0.2, rC = rE = 0.21; dotted: fE = 0.3, rC = rE = 0.21; dashed: fE = 0.2, rC = rE = 0.32). The panels show (A)

the optimal proportion of total sampling to spend on exploratory studies θ*, (B) the optimal sample size of exploratory studies SE*, (C)

the resultant total number of published studies NE + NC, (D) the proportion of published studies that are confirmatory NC / (NE + NC), (E)

the statistical power of exploratory studies WE, and (F) the proportion of published studies that draw incorrect conclusions (PF). Other

Incentive Structures and Reproducibility
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strategy encouraged by current incentives (top right of Fig 3C) would be closer to that which

maximises the scientific value of research. The problem with this solution is that the overall

value of the science might be reduced (the maximum VS is smaller in Fig 3C than in Fig 3A).

Current incentive structures in science, combined with existing conventions such as a sig-

nificance level of 5%, encourage rational scientists to adopt a research strategy that is to the

detriment of the advancement of scientific knowledge. Given finite resources, the importance

placed on novel findings, and the emphasis on a relatively small number of publications, scien-

tists wishing to accelerate their career progression should conduct a large number of explor-

atory studies, each of which will have low statistical power. Since the conclusions of

underpowered studies are highly likely to be erroneous [2], this means that most published

findings are likely to be false [5]. The results of our model support this conclusion. Indeed,

given evidence that with sufficient analytical flexibility (known as p-hacking) almost any data-

set can produce a statistically significant (and therefore publishable) finding [16], our results

are likely to be conservative. There is therefore evidence from both simulations and empirical

studies that current research practices may not be optimal for the advancement of knowledge,

at least in the biomedical sciences.

Ioannidis [5] concluded—on the basis of simulations of the impact of varying types of

bias—that most published research findings are false. Button and colleagues [2] showed that

the average statistical power of studies in neuroscience is likely to be very low, and there is evi-

dence that this problem exists across different domains of biomedical science [3]. Recently, the

values: SC = 120, T = 2,000, k = 20, α = 0.05, σ2 = 1, m = 3, and ϕ = 0.8. The chosen values for rC = rE reflect data reported by Richard

and colleagues [14], where a correlation coefficient mode of 0.09 and a mean of 0.21 were observed. These values are in the middle of

the range of effect sizes observed in meta-analyses across a number of biomedical research domains (range r ~ 0.15 to 0.50) [13].

doi:10.1371/journal.pbio.2000995.g002

Fig 3. Effect of γ and ϕ on a hypothetical measure of the total scientific value of research (VS). The figure shows the product of the number of published

confirmatory studies, the number of published exploratory studies, and the proportion of published studies that are correct (red = high, blue = low). This

measure is calculated for when all researchers are following the rational strategy given the values of γ and ϕ. The current emphasis on a small number of

publications that report novel findings is characterised by high γ and high ϕ (top right). To improve scientific output according to this measure, we could reduce

ϕ (i.e., make more published studies count for researchers’ careers) or reduce γ (i.e., reduce weighting of published exploratory studies). Interestingly, the

ridge is flat, so any point along it has equal fitness. Therefore, a pragmatic compromise would be to reduce both γ and ϕ by a lesser amount. The panels show

the VT for two values of the dependence of acceptance on sample size m and the Type I error rate α: (A) α = 0.05, m = 3, colour range: 2.0–3.18; (B) α = 0.05,

m = 6, colour range: 2.0–2.82; (C) α = 0.03, m = 6, colour range: 2.0–2.065. Other values: SC = 120, T = 2000, k = 20, fE = 0.2, rC = rE = 0.21, and σ2 = 1.

doi:10.1371/journal.pbio.2000995.g003

Incentive Structures and Reproducibility
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Fig 4. Effect of editorial stringency on total scientific output for current incentive structures. The figure shows the

proportion of published findings that are correct 1-PF (A, B), the total number of published studies NC + NC (C, D), and the total

scientific value of research VT (E, F). We varied the following parameters: the probability of a Type I error α (A, C, E), and the

Incentive Structures and Reproducibility
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Open Science Collaboration [4] reported that of 100 psychology studies selected from leading

journals, only a minority of findings (approximately 40%) could be replicated. Similar results

have been obtained by the pharmaceutical industry attempting to reproduce “landmark” find-

ings from the published academic literature [15]. A survey of early career researchers indicated

that “survival mentoring” (i.e., guidance on how to survive in the profession) is associated with

increased odds of questionable behaviour in methods (e.g., withholding details of methodology

or results), use of funds (e.g., use of funds from one project on another project), and peer

review (e.g., providing an overly positive or negative recommendation) [17]. Our results align

with those of empirical studies indicating that the use of several small underpowered samples

represents a more efficient research strategy (in terms of simply publishing papers, irrespective

of whether the findings are correct) than does the use of one large powerful sample [18]. This

is presumably why most studies have low statistical power [2], which is predicted under the

rational strategy for individual scientists identified by our analysis. They are also consistent

with the results of models of scientific communities, which indicate that selection for high out-

put leads to poorer methods and increasingly high false discovery rates [19].

Current incentive structures would only be appropriate if editorial and peer review prac-

tices were much more stringent regarding the sample size and statistical power, as well as the

strength of statistical evidence required of studies (Fig 4C). Critically, our model indicates how

altering incentive structures, by considering more of a researcher’s output (reducing ϕ) and

giving less weight to strikingly novel findings (reducing γ) when making appointment and

promotion decisions, would encourage a change in researcher behaviour that improves the sci-

entific value of research. Such a change would mean that parameters reflecting current edito-

rial and peer review practices actually do optimise the scientific value of research (Fig 5).

Effecting this change would require action by research funders and institutions. Alternatively,

journals and journals editors may strive to increase the stringency of the editorial and peer

review process, for example, by requiring larger sample sizes (i.e., larger m, generating higher

statistical power) and greater statistical stringency (i.e., smaller α, increasing the proportion of

significant results that are correct). Similar changes have been suggested previously [18], and

some research fields have successfully implemented cultural changes—in genomics, the use of

highly stringent α levels and large sample sizes is now standard practice (in part as a result of

the multiple testing burden associated with genome-wide association studies) [20], while parti-

cle physics has adopted a “5 sigma” rule for declaring discovery [21]. However, our analysis is

the first to show the likely impact of these strategies on the scientific value of research and how

they may be complemented by top-down change to current incentive structures initiated by

funders and institutions. Our model predicts that the changes to incentive structures will

increase the amount of confirmatory work dramatically, but the increase in the statistical

power of exploratory studies would be small (peak in Fig 1B). However, we note that the “land-

scape” would become less steep around the optimum (cf. Fig 1B and Fig 1A), especially in the

direction of higher power (left–right). Therefore, such changes may create conditions in which

it is easier to nudge researchers to do higher (> 80%) powered studies, because the (potential)

cost to their individual fitness would be small.

Perversely, current incentive structures may promote low-quality science, because the

research strategy they encourage is more likely to produce striking (but erroneous) findings—

dependence of acceptance on sample size m (B, D, F). The lines show predictions for two values of the probability that an

effect is real (fE) and two values of the effect size (solid: fE = 0.2, rC = rE = 0.21; dotted: fE = 0.3, rC = rE = 0.21; and dashed: fE =

0.2, rC = rE = 0.32). Other values: NC = 120, T = 2,000, k = 20, α = 0.05, σ2 = 1, m = 3, ϕ = 0.9, and γ = 0.09. The steps occur

where there is discontinuity in the effect of α on SE*.

doi:10.1371/journal.pbio.2000995.g004
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Fig 5. Effect of editorial stringency on total scientific output for ideal incentive structures. The figure shows the

proportion of published studies that are correct 1 − PT (A, B), the total number of published studies NC + NC (C, D), and the

total scientific value of research VS (E, F). We varied the following parameters: the probability of a Type I error α (A, C, E), and

the dependence of acceptance on sample size m (B, D, F). The lines show predictions for two values of the probability that an

effect is real (fE) and two values of the effect size (solid: fE = 0.2, rC = rE = 0.21; dotted: fE = 0.3, rC = rE = 0.21; dashed: fE = 0.2,

rC = rE = 0.32). Other values: NC = 120, T = 2,000, k = 20, α = 0.05, σ2 = 1, m = 3, ϕ = 0.55, and γ = 0.055.

doi:10.1371/journal.pbio.2000995.g005
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publications from institutions that performed well in a recent research evaluation exercise

report fewer measures of study quality (e.g., experimenter blinding, randomisation, etc.) than

studies selected randomly from the wider literature [22]. Competition for funding and prestige

may contribute to strategic-game playing [23], and it is plausible that this competition may be

most pronounced at the most prestigious institutions. Current incentives that encourage scien-

tists to build momentum around a single research focus may also be problematic, if they dis-

courage scientists from abandoning an existing research focus (for example, because initial

findings fail to replicate) and switching to a potentially more fruitful research area [24]. It is

important to note that we will never attain a situation in which 100% of findings are true—

indeed, this would be undesirable, as it would require us to only pursue questions with very

high prestudy odds and invest considerable resources into each study to achieve near-100%

statistical power. This would obviously be at the expense of novelty and discovery. Some bal-

ance is necessary. Understanding the ecosystem that gives rise to behaviours that undermine

the scientific value of research is the first step towards addressing them and developing a sys-

tem that strikes the optimal balance between exploratory and confirmatory research.

Supporting Information

S1 Fig. Effect of the value of m (shown on lines) on the function A. Larger values of m imply

that larger sample sizes are required for publication in journals.

(TIF)

S2 Fig. Assumptions about individual researcher fitness VR. Individual researcher fitness VR

(orange = high, black = low) as a function of the number of exploratory and confirmatory

papers published for 3 values of γ (rows) and 3 values of ϕ (columns). The values capture a

range that we consider reasonable. When ϕ = 0, for example, there is no diminishing return on

additional papers, whereas when ϕ = 1 a single paper is valued equally to 1,000 papers. When γ
= 0.0, novel findings are given equal weight to confirmatory findings, whereas when γ = 0.1

only novel findings are worth publishing because they are weighted so much more than confir-

matory papers. If both are small (bottom-left) then the effect of number of both papers is lin-

ear. If γ is large and ϕ is small (top-left) then fitness is almost completely determined by the

number of exploratory. If γ is small and ϕ is large (bottom-right) then fitness asymptotes at a

small total number of each. If both are large (top-right) then fitness depends on both but only

gets very high at a large number of exploratory.

(TIF)

S3 Fig. The various possible scientific value VS explored. To show the value equation we

assume that individual researchers publish four studies and a proportion of them are explor-

atory (shown on x-axis). The value of the science may also depend on the proportion of studies

that are wrong PF (shown on lines). In the text we assume that the total value of science follows

the equation shown in panel A, but other functions are possible. In the sensitivity analysis (S5

Fig, S6 Fig, S7 Fig, S8 Fig, S9 Fig) we show that our results are not qualitatively altered by a dif-

ferent choice of function.

(TIF)

S4 Fig. Mechanism of the low power of exploratory studies. The optimal sample size is low

because false positives can be published as exploratory studies. (A) The power of studies (blue

dashed line); the number of studies that are carried out (green dotted line); the number of pub-

lished articles if all studies found significant results (red solid line). (B) The number of true

positives (blue dashed line); false positives (green dotted line); total articles (red solid line).

The optimal sample size is at the peak total number of articles. (C) The proportion of studies
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that are false (blue dashed line); published (green solid line). If false positive results did not

count towards researcher value, the optimal sample size would quadruple.

(TIF)

S5 Fig. Sensitivity analysis for parameter values. All panels show the total value of science VS

[VS = (NC + NE)(1 − PF)] given the optimal strategy of researchers, for four values of γ and ϕ
shown in the legend. The x-axes show different variables. In almost all the ranges of all param-

eters, a reduction in either ϕ or γ would improve VS, and reducing both gives the highest VS.

(TIF)

S6 Fig. Sensitivity analysis for different scientific value function. As S5 Fig but for VS =

NCNE; conclusions are unchanged.

(TIF)

S7 Fig. Sensitivity analysis for different scientific value function. As S5 Fig but for

VS ¼ ð1 � PFÞ
NCNE

3
þ NE

� �
; conclusions are unchanged.

(TIF)

S8 Fig. Sensitivity analysis for different scientific value function. As S5 Fig but for

VS ¼ ð1 � PFÞ
NCNE

3
þ NC

� �
; conclusions are unchanged.

(TIF)

S9 Fig. Sensitivity analysis for different scientific value function. As S5 Fig but for

VS ¼ ð1 � PFÞ
NCNE

3
þ

NCþNE
2

� �
; conclusions are unchanged.

(TIF)

S1 Table. Parameters in the model and their default values.

(DOCX)

S1 Text. Methods.

(DOCX)

S2 Text. Matlab Code.

(DOCX)
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