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Running title: Extrapolation cancer survival curves using external information  

Abstract 

Background: Estimates of life-expectancy are a key input to cost-effectiveness analysis (CEA) models 

for cancer treatments. Due to limited follow-up in Randomized Controlled Trials (RCTs), parametric 

models are frequently used to extrapolate survival outcomes beyond the RCT period. However, different 

parametric models that fit the RCT data equally well may generate highly divergent predictions of 

treatment-related gain in life expectancy. Objectives: We investigate the use of information external to 

the RCT data to inform model choice and estimation of life-expectancy. Methods: We used Bayesian 

multi-parameter evidence synthesis to combine the RCT data with external information on general 

population survival, conditional survival from cancer registry databases, and expert opinion on the time 

course of the treatment effect. We illustrate with a 5 year follow-up RCT of cetuximab plus radiotherapy 

versus radiotherapy alone for head and neck cancer. Results: Standard survival time distributions were 

insufficiently flexible to simultaneously fit both the RCT data and external data on general population 

survival. Using spline models we were able to estimate a model that was consistent with the trial data 

and all external data. A model integrating all sources of internal and external evidence achieved an 

adequate fit and predicted a 4.7 months (95% CrL: 0.4; 9.1) gain in life expectancy due to Cetuximab. 

Conclusions: Long-term extrapolation using parametric models based on RCT data alone is highly 

unreliable and these models are unlikely to be consistent with external data. External data can be 

integrated with RCT data using spline models to enable long-term extrapolation. Conditional survival 

data could be used for many cancers and general population survival may have a role in other 

conditions. The use of external data should be guided by knowledge of natural history and treatment 

mechanisms. 

<285 words> 
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Introduction 

In randomized controlled trials (RCTs) reporting survival outcomes, progression-free survival and 

overall survival are generally graphically displayed with the Kaplan-Meier method (KM) (1) and analyzed 

by Cox Regression (2).  However, neither method is sufficient for the purposes of Cost Effectiveness 

Analysis (CEA) because they do not provide a model which can be extrapolated beyond the RCT period. 

Instead, parametric survival models are required to estimate expected survival (3). Models most often 

used in submissions to the National Institute for Health and Care Excellence (NICE) have a parametric 

model, such as Exponential, Weibull, Log-logistic, or Log-normal (4-5) distributions, for the control arm 

and a constant hazard ratio (proportional hazards) to predict the treatment arm (3). Parametric 

distributions differ in their flexibility: the exponential requires a constant hazard, the Weibull has 

monotonically increasing or decreasing hazards, while the log-normal and log-logistic allow for “bowl” 

or “hat” shaped hazards (1). Sometimes the proportional hazard assumption is relaxed by fitting an 

accelerated failure time (AFT) model, or by fitting unrelated models to each arm, also known as Fitted 

Separately to Each Arm (FSEA) (3). Model selection is not straightforward, and models which fit equally 

well to the observed RCT data may give very different estimated mean survival gains (6). This is due 

to mean survival being very sensitive to the tails of the survival distribution, which are usually not 

captured within RCT follow-up periods.  

There is a well-recognized need to improve extrapolation of survival data for use in the context of cost-

effectiveness analysis (7), and there have been several attempts to do this using data external to the 

trial. One approach has been to use external data to inform the choice of parametric model to 

extrapolate the trial data (8-11). Other investigators have replaced the control arm by external data, 

with (12-14) or without (15-17) adjustment, while maintaining the treatment effect from the trial. Most 

methods using data external to the trial require a process of matching the trial and external populations 

(18), but investigators have differed in the relative weight given to each, and in how uncertainty in each 

source of information is reflected in the final model.   

This paper presents a method for using external information to extrapolate survival curves in the specific 

area of cancer trials. Cancer is an interesting and important area in this respect for several reasons. 

Firstly there is a wealth of information about long term survival from cancer registries. Second, the 
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difficulties in choosing parametric models for extrapolation is well-understood (4), and in the UK these 

have contributed to a series of controversies in decisions as to which new cancer treatments should be 

used in the National Health Service (19-21).  

A trial comparing radiotherapy plus cetuximab (Erbitux) (22) to radiotherapy alone for head and neck 

cancer patients is used to illustrate our approach. We consider two types of external information to 

inform extrapolation of the control arm: population data on overall survival of an age- and sex-matched 

cohort, and cancer registry information on conditional survival of a matched cohort of head and neck 

cancer patients. A third external source is information on the relative treatment effect, derived from an 

analysis of the literature and treatment mechanisms. 

We begin with a description of the illustrative dataset and, to motivate the paper, we compare the 

performance of a series of standard parametric survival models on goodness of fit and predicted gain 

in life expectancy. We then briefly review what is known about the clinical epidemiology of head and 

neck cancer and the mechanisms underlying treatment with radiotherapy and cetuximab, and provide 

some preliminary analyses of data from cancer registries and recent meta-analyses, which justify our 

use of conditional survival data and the external information on treatment effect. The statistical methods 

are presented in outline, with further details and WinBUGS code appearing in a Web appendix. In the 

discussion section we consider the general properties of our approach compared to previous uses of 

external data in the literature, and consider the generalizability of the methods to other cancers, and to 

extrapolation of survival curves more widely.  

 

Motivating example 

Bonner et al (2006) (22) conducted an RCT to compare radiotherapy plus cetuximab versus 

radiotherapy alone, with overall survival recorded over a 5-year follow-up period. We have used a 

method (23) that accurately reconstructs the life-table data from the Kaplan-Meier curves published in 

that paper. These data are used throughout the paper and are shown in the Web appendix.   

In the analyses that follow we consider how to extrapolate both arms in order to inform a potential CEA 

of cetuximab, aimed at a target population represented by the Bonner trial. The trial was carried out 
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between 1999 and 2002 on treatment-naïve patients in several countries. The patient sample was 80% 

male with median age of 57 years, range 34 to 83. The most common site of primary tumors was 

oropharynx (59.5%), followed by larynx (25.5%) and hypopharynx (15%). All patients were classified as 

stage III or IV.  Other factors of potential clinical and cost-effectiveness relevance are the EGFR 

(Epidermal Growth Factor Receptor) status (22), the performance status, Karnofsky or ECOG (Eastern 

Cooperative Oncology Group), and the severity of comorbidities (24-25). 

Results with standard survival models without external data 

Table 1 shows Deviance Information Criteria (DIC) (26), posterior mean deviance, D , and gain in life 

expectancy predicted by 12 commonly used parametric survival models. D  measures overall model 

fit, whereas the DIC is a composite measure of fit and complexity useful to identify the most 

parsimonious model, trading off fit and complexity. Models with lower D  and DIC are preferred 

although differences less than 3 (or even 5) (27) are not considered important. Models with similar 

goodness of fit generate very different estimates of life expectancy gain (Table 1). Visually, the AFT 

and FSEA Log-normal models have an almost identical fit to the KM curves (Figure 1) and similar DIC 

(Table 1), but the predicted gain in life expectancy due to cetuximab is 80.4 months for the FSEA and 

only 32.3 for AFT. Similarly, the Generalised Gamma (28) AFT gives similar DIC to the Log-normal 

FSEA, however the predicted survival gain is only 13.9 months, nearly 6 times lower. The log-normal 

and Generalised Gamma models present the best fit to the data according to the D  and DIC values. 

Clinical epidemiology of head and neck cancer and mechanism of treatments 

Head and neck cancer usually displays a rapidly increasing mortality over the first 36 months from 

diagnosis, which then levels off (29). Survival rates differ markedly according to the site of the cancer. 

Cancer of the larynx is typically diagnosed earlier than cancers of the hypopharynx and oropharynx, 

and patients usually have a better chance of surviving their cancer (24-25, 29). Longer-term registry-

based studies from the US and Netherlands (30, 31) show that relative survival of head and neck cancer 

stabilizes after 5 or 6 years. Hence, UK guidance advises regular examination of the neck during the 

first two years after treatment, and discharge from routine follow-up after five years (32). Subsequently, 

patients can be considered as essentially “cured” from their head and neck cancer; although they 

continue to experience excess mortality due to risk factors associated with head and neck cancer such 
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as alcohol abuse, tobacco and Human Papillomavirus (HPV) (33, 34). According to the above registry 

studies this excess mortality persists for at least 15 years. 

To confirm the relevance of these results in the present context, we constructed a cohort of cancer 

patients matched to the Bonner trial population for age-, gender-, - cancer site and date of diagnosis 

(35) using registry data from the Surveillance Epidemiology and End Results (SEER) database (36). 

One-year conditional survival in this cohort is shown alongside conditional survival in the trial (Figure 

2A). The results accord closely with previous work reported above, and show the close agreement of 

trial and SEER data. Also shown is the conditional survival of an age- and sex- matched general 

population cohort based on US survival statistics (37). (See Web Appendix A and B details of how these 

matched cohorts were constructed). This confirms that conditional relative survival remains 

approximately constant and less than one for at least 20 years after the initial 5 years from diagnosis. 

Cetuximab is administered over a single 8-week period concurrently with radiotherapy. Its mode of 

action is to enhance the effect of radiotherapy (38), by increasing the proportion of cancer cells that are 

sensitive to radiotherapy.  For this reason, the time course of the effect of cetuximab can be expected 

to be the same as the time course of the effect of radiotherapy. Similarly, we would expect that the 

effect of both therapies in reducing head and neck cancer mortality should be limited to the initial 5 or 

6 years during which mortality due to the head and neck cancer predominantly occurs.  

To further check our interpretation of the clinical literature on head and neck cancer, we undertook 

additional analyses of data incorporated in the Pignon (2009) meta-analysis comparing loco-regional 

treatment (radiotherapy and surgery plus postoperative radiotherapy) versus the same loco-regional 

treatment plus chemotherapy (39-40).  5-year overall survival rates in the meta-analysis control arm 

and the Bonner control arm were very close (p=0.74), in spite of some differences in stage distribution 

and site. Further, this independent source of data confirms the same pattern of conditional mortality as 

previous literature (Figure 2B): a rising conditional mortality over the first 5 years, reflecting an 

increasing proportion of deaths from causes other than head and neck cancer, followed by stable 

conditional mortality in years 6-8.  
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Also, confirming our understanding of the treatment mechanisms, the advantage of chemotherapy in 

conditional survival can be seen over years 1-5, but disappears after that. To our knowledge, there is 

currently no evidence associating cetuximab with benefits, or toxicities, after five years.  

Based on these findings, we make the following three assumptions 

1. General population survival. Survival in the control arm of the trial will remain less than survival in 

the matched general population cohort over the entire time horizon of the CEA model.  

2. Conditional survival:  One-year conditional survival in the trial control arm will converge to that of a 

matched cancer cohort, five or six years after diagnosis. 

3. Relative Treatment effect: The hazard ratio changes over time as a smooth function with one turning 

point (expected to decrease initially and then increase). The hazard ratio is assumed to begin at one 

when treatment begins, and return to unity by 6 years.  

Statistical Methods  

We begin by illustrating the impact of incorporating external data constraints on parametric survival 

models. We present results for the AFT Log-normal and the FSEA Generalised Gamma models. These 

were chosen as the most compatible with the RCT data, as indicated by DIC and D  (Table 1), and 

because they varied in flexibility (number of parameters). Similar issues arose with all of the parametric 

survival models. 

As a more flexible alternative, cubic spline functions were chosen to model the relationship between log 

cumulative hazards and log-time (41). These are cubic polynomials fitted to successive sets of two 

points, or internal knots, in a way that guarantees they are continuously differentiable. Further details 

are given in Web appendix C. Two spline models were created on the log cumulative hazard scale, one 

for the control arm and one for the additional relative effect of treatment.  

Boundary knots were placed at the extreme ends of the data. We also specified one internal knot in the 

RCT segment of the data, and another internal knot in the period between the end of the trial (5 years) 

and the end of the external data (40 years). The knots were placed in the mid-point on the log-time 

scale. 
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External information was added incrementally: data on general population and the SEER database for 

the control arm were first included separately, then together, and finally information was also added on 

the hazard ratio.   

External information is introduced by specifying the relationship between the parameters estimated by 

the external information, and the parameters of the survival distributions, whether these are parametric 

or spline functions. This is implemented by writing the likelihoods for the external data in terms of the 

parameters of the (extrapolated) survival model that also gives the likelihood for the trial data. In this 

way a single survival model is estimated from all sources of data (RCT and external) simultaneously.  

Estimation  

Estimation was carried out by Bayesian Markov Chain Monte Carlo (MCMC) simulation using WinBUGS 

(42) and WBDev (43). Observed and fitted survival, conditional survival and relative hazard ratio were 

visually compared.  D and DIC statistics were computed within the MCMC simulation and transformed 

using a constant to the scale of the parametric models to allow comparisons (10). These statistics were 

recorded, separately for the RCT data and each type of external data. This allows us to compare model 

fit to the different data types. The threshold for choosing one model over another was a 5 point 

difference in the DIC (27) on the RCT data.  Details regarding choice of initial values, convergence 

checks, burn-in period, and posterior sampling are given in Web appendix D.  

Introducing external data on absolute survival in the general population  

The age- and gender-matched general population is expected to have overall survival, )(tSGP , that is 

no lower than survival 
0, ( )RCTS t  in the RCT control arm at any time t . We cannot put constraints directly 

on 
0, ( )RCTS t , because this is a complex function of the survival model parameters. Instead we introduce 

the external data in a way that imposes the constraint on the extrapolated curves. We do this at a single 

time point at 40 years, when the matched cohort had 660,1)40( GPr  survivors out of a denominator 

of 858,158)40( GPn  persons in the matched cohort at time 0 (see Web Appendix A), corresponding 

to 40-year survival 1.045%  [95CrL: 1.036; 1.054]. Assuming a binomial distribution for this data, we 

implement the belief that survival in the control arm of the RCT at 40 years, 
0, (40)RCTS , is no better 
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than that in the matched general population, )40()40(,0 GPRCT SS  , by giving a Binomial likelihood for 

the general population data:  

   

GP

GP 0,

0,

(40)~ (S (40), (40))

where S (40) is constrained to be greater than (40) so that

(40) (40) ,    0

GP GP

RCT

GP RCT

r Binomial n

S

S S    

                                       (1) 

Additional constraints are required to ensure that (40)GPS lies in the interval 0,1. 

Introducing external data from SEER on conditional survival  

We assumed that the RCT control arm population 1-year conditional survival at time t conditional on 

being alive at time (t-1), )1(,0 ttCS RCT
, is no different to the matched SEER population conditional 

survival, )1( ttCSSEER
, from 6 years onwards until 26 years (last timepoint available in the SEER 

database). The methods for calculating the numbers of person alive and at risk in the SEER population 

between time t and t-1, respectively )1( ttrSEER
 and )1( ttnSEER

, are shown in the Web appendix B, 

along with the data itself. Assuming a binomial likelihood for 1-year conditional survival probabilities 

from the SEER population, we implement this by specifying:  

SEER

0,

0,

( 1)~ (CS ( 1), ( 1))

where ( 1) is contrained to be equal to ( 1) so that 

( 1) ( 1),     6 26

SEER SEER

SEER RCT

SEER RCT

r t t Binomial t t n t t

CS t t CS t t

CS t t CS t t t years

  

 

    

                          (2) 

Introducing both general population survival data and conditional survival data 

When adding the SEER data on conditional survival (Equation [2]), we observed that the 1-year 

conditional estimated survival curve for the RCT population crossed that from the general population at 

33 years. To avoid conflict between the two sources of external data, we assumed that 1-year 

conditional survival in the control arm of the RCT was no different to that in the general population at 

one time point. In addition to equation (2) we therefore specify: 
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GP

0,

0,

(35 34)~ (CS (35 34), (35 34))

where (35 | 34) is contrained to be equal to (35 34) so that

(35 34) (35 34)

GP GP

GP RCT

GP RCT

r Binomial n

CS CS

CS CS

                                 (3)                    

Introducing external data on the relative treatment effect 

We expect that the hazard ratio is a smooth function with a monotonic decrease followed by a monotonic 

increase over years 0-5. This is captured by having a single knot in this interval. To reflect that there is 

some uncertainty about whether the hazard ratio returns exactly to 1, we introduce external data on the 

hazard ratio taking the value of 1 at time points 6...35t years each with standard error 0.1. This is 

achieved using a normal likelihood: 
1, 2

0,

( )
(t)~N , 0.1 ,    6...35

( )

RCT

RCT

h t
HR t years

h t

 
  

 
                                                      

                            (4) 

where 
0, ( )RCTh t  and 

1, ( )RCTh t are the hazards on the control and treatment arms of the RCT 

population, respectively.  

Winbugs code and data are presented in Appendix D.   

 

Results 

Parametric models with external data on general population survival 

Figure 3A shows estimated curves from an AFT 2-parameter Log-normal model for (i) the unconstrained 

model with no external information, (ii) the model constrained by overall survival in the general 

population (Equation [1]), together with the KM-curves. It is evident that the external data is very far 

from being compatible with the trial data under this model. The fit of the trial data deteriorates markedly 

with the inclusion of external data, with a DIC increasing from 2,316 to 2,329 and a D from 2,313 to 

2,327 (Table 1). Similar results were obtained with the FSEA Generalised Gamma (Figure 3B). Neither 

of these distributions is sufficiently flexible to comply with both the RCT and the general population data 

(Equation [1]). The same problem arose with all of the parametric models reported in Table 1. Further 



11 
 

external data cannot improve the flexibility of the parametric models, and so we do not present results 

including further external data.  

Spline models  

With restricted cubic splines with 2 internal knots, DIC results for the unconstrained model were 

between 2,304 and 2,306, depending on the sets of initial values. When the data on general population 

survival was added, DIC was 2,304 (Table 2). Convergence of the MCMC simulations was not 

satisfactory for all parameters in the model, due to the lack of data between the end of the trial and year 

40, making it impossible to identify spline parameters (see Web appendix E). These numerical problems 

were overcome when further external constraints were incorporated.   

When the external data on conditional survival was incorporated, the DIC value for the RCT data from 

the spline model was found equal to 2,307, very close to DIC without external data (Table 2). After the 

RCT period, the extrapolated trial curves were visually close to the SEER data (DIC value of 98). The 

SEER data fully identify the extrapolated control arm survival curve. The spline model therefore 

produces a survival estimates that are consistent with both RCT and all external evidence sources.  

When conditional survival in the general population (Equation [3]) and SEER data (Equation [2]) are 

both applied, DIC for the RCT and the SEER data barely changed (Table 2). The survival curves 

estimated from the RCT and the general population now cross at 35 years after the start of the RCT. 

We could have extended this general population constraint by adding time-points between 36 and 60 

years. However, considering the low percentage of patients still alive 35 years after the start of the RCT 

(median age at randomization was 57 years), we did not try to incorporate more general population 

data.  

When the data on the hazard ratio was also added (Equation [4]), DIC for trial, SEER, and general 

population data again barely change (Table 2). Figure 4 suggests a visually good fit of the spline models 

to each source of data. The estimates comply with the RCT data during the RCT period and with SEER, 

general population and expert data after the end of the RCT. Using the flexible spline models, we have 

therefore managed to incorporate all external data, without deterioration in model fit for any of the 

different evidence sources.  
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The life-expectancy gain when all external data sources were incorporated was 4.7 months [95%CrL: 

0.4; 9.1] (Table 1).  

Discussion 

We begin this concluding section by reviewing the choice of survival function (splines, parametric 

models, and other options). We then compare our use of external data to previous work in the literature 

from a technical point of view, with a particular focus on uncertainty propagation. Third, we consider the 

modeling choices facing investigators using external data, and suggest extensions and sensitivity 

analyses that could be used in practical applications. Finally, we consider the particular type of external 

information used here, and what this implies about the generalizability of the methods to other cancers 

and other conditions. 

Survival models 

The study adds to a growing literature on the difficulties associated with extrapolation of survival curves 

using standard parametric models (3, 6). Even the models that fitted the RCT data best without external 

data fitted the trial quite poorly compared to spline models with external data. Indeed, although it seems 

a weak requirement that the extrapolated survival in a cancer trial control arm must be less than would 

be observed in the general population, for this dataset it was easily strong enough to rule out the 

standard parametric curves. These distributions do not provide the possibility of “local” parameters: the 

behavior of the tails is strongly determined by data fit at the very beginning, and vice versa. It remains 

to be seen whether other flexible distributions such as fractional polynomials (43), mixture distributions 

(44-46), or join-point techniques could represent valid alternatives to the splines, which we found gave 

rise to numerical problems in some contexts (see Web appendix). 

Uncertainty propagation 

There are many examples of the use of external data on the general population (9, 11, 13) and also 

use of registries, meta-analyses or prospective observational studies of cancer cohorts (8, 10, 12-13, 

15-17, 47). Many applications are tailored to specific circumstances and it is difficult to give an overall 

review. There are, however, marked differences in the way uncertainty is propagated. Our approach to 

the combination of trial and external data is an example of Bayesian multiple parameter evidence 
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synthesis (MPES) (48). Typically, vague priors are assigned to the basic parameters (49) and 

information on parameters or functions of parameters is introduced by the data likelihoods. 

Simultaneous estimation from all these data sources ensures a coherent model that is consistent with 

all the evidence included, and that fully reflects the statistical uncertainty in the evidence for propagation 

into a cost-effectiveness model. We would also claim that by using the highly flexible cubic splines we 

have also appropriately accounted for uncertainty in choice of survival model, conditional of course on 

our assumptions about the number of inflexions implied by the number of internal knots. 

In terms of uncertainty propagation, we therefore believe our general approach has some clear technical 

advantages over other ways of using external data. For example, use of external data to choose a 

parametric model (8-9) fails to account for uncertainty in model choice. Methods that “import” an 

estimate of the relative effect from the trial and overlay this on a model of the control arm, will mis-

represent the uncertainty in the treatment effect estimate, because it was generated from a different 

model of the control arm. In our approach we advocate all parameters are estimated simultaneously, 

using combined data from the RCT, the general population survival data, conditional survival data, and 

information on the relative treatment effect.  

The main difficulty with importing a treatment effect estimate from a different model is that in virtually 

every case, investigators have relied on a proportional hazard assumption. Based on a logical 

consideration of how treatments work, our view is that the proportional hazards assumption is highly 

implausible in many cancer treatment trials. Instead, the effect of a treatment on mortality risk can be 

expected to accelerate over an initial period, and then decelerate as non-cancer causes of death begin 

to predominate. Although we have made quite strong assumptions about the relative treatment effect, 

they are reasonably well-grounded in evidence and in theory, and far weaker than the routinely 

accepted proportional hazards assumption. 

In view of the wild variation in estimated life expectancy gain between parametric models (Table 1), it 

is interesting to observe that the relative uncertainty in our final estimate of mean survival gain from the 

spline model with all sources of external data (4.7 months with 95%CrI 0.4 to 9.1 month), is 

commensurate with the log hazard ratio in the original Bonner trial (22): -0.30 (-0.56 to -0.03). Both 

estimates exclude the null effect by a narrow margin, and have a similar coefficient of variation (standard 
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error divided by mean), based on the 95% intervals: 0.47 from the present study compared to 0.45 from 

the trial. 

An earlier attempt to extrapolate survival in the Bonner trial appeared in the manufacturer’s submission 

to NICE (47). A cure model with a logistic link was used to model the survival of head and neck cancer 

patients. For the non-cured patients, a Log-Normal distribution was chosen. The non-cured fraction was 

extrapolated for both control and treated group, while subsequent mortality in the cured fraction was 

based on UK population data adjusted down using a hazard ratio derived from the Pignon meta-analysis 

(40). This generated an expected gain of 10.6 months. A credible interval was not published. This 

approach has several similarities to what we are advocating here, in assuming a time-limited treatment 

effect and stable conditional survival subsequently, but it relies on a specific parametric form for the 

cured fraction and fails to incorporate uncertainty in model choice. 

Modeling choices and sensitivity analyses 

In constructing what is primarily a methodological exercise to demonstrate the feasibility of a method in 

principle, we have the luxury of not having to face the modelling choices that investigators in a real 

decision making context must confront. In this section we consider how the present methods could be 

varied or extended to different target populations, and what kinds of sensitivity analyses might be 

required in practice. 

While we believe our approach appropriately reflects statistical uncertainty in the combined data, as 

well as uncertainty in model choice, it cannot in itself propagate uncertainty about the relevance or 

applicability of the external evidence to the target population. Bayesian theory distinguishes strictly 

between the “subjective” prior and the “objective” data likelihood, but this overlooks the subjectivity in 

the interpretation of the data – specifically the assumption that the data are providing unbiased 

estimates of the target parameters. For example we assume that conditional survival is exactly the 

same in the target (trial) population as in the matched SEER cohort. Further analyses of SEER and 

other registries, such as those shown in Figure 2A, can be used to show how sensitive conditional 

survival might be to imbalances in cancer site mix, age, and date of diagnosis and  Karnofsy score.  

We used the US SEER data and hence US population data to supply external data on survival and 

conditional survival because of the comprehensiveness of this database. Decision makers in other 
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jurisdictions would preferentially use locally relevant population and cancer registration data. If this was 

unavailable, or partially available, it might be still be possible to use SEER data, perhaps making 

suitable adjustments. Note however that conditional survival or relative conditional survival is more likely 

to generalize across jurisdictions than overall survival. Alternatively, the similarity of SEER and other 

national cancer registries could be investigated to inform sensitivity analysis. Similarly, we assumed 

that the target population was identical to the trial population, which is frequently done in Health 

Technology Assessments, rather than replacing the control arm with appropriately matched external 

data that precisely represents the chosen target population. In this case, unless the external data is 

drawn from a cancer registry, it may still be necessary to use conditional survival register data in the 

way we have to extrapolate lifetime survival. Note that the same flexible spline approach we have 

proposed for the time course of the relative treatment effect can still be applied, whether the control arm 

is constructed from extrapolated trial data or based entirely on external data. 

In a practical application, investigators would carry out a series of sensitivity analyses. Placement and 

number of internal knots in the spline function might seem obvious candidates, but general experience 

with splines is that the location of knots has little impact on estimates, whereas too few or too many 

knots may degrade the goodness-of-fit (41, 50). The strategy we have followed has been to place 

internal knots in the middle of the (log) range, to use the same points in all models, and to have just a 

single knot for each segment of data. These modeling choices avoid post-hoc trawling, and are a priori 

the most easily defended. The choice of a single internal knot in the trial period is informed by our 

assumption that the hazard ratio would fall monotonically then rise, and that changes in conditional 

relative survival over time would be smooth. In a practical application, however, some sensitivity 

analysis around the placement of knots would be expected. One would also expect a sensitivity analysis 

around the assumption that the time at which the hazard ratio is assumed to return to unity.  

The present analysis relied on a period-analysis (35) of survival and conditional survival. This only partly 

allows for improvements over time in cancer survival. Another form of sensitivity analysis, or perhaps 

an extension to our approach, might consider a more sophisticated model of the registry data that 

allowed for the continual improvement in cancer survival rates into the future. A further issue is the time 

between diagnosis and randomization. Patients in the Bonner trial would have been recruited soon after 

diagnosis, but the methods could be modified to allow for other scenarios. 
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More broadly, our construction of “external information” on the relative treatment effect is based on a 

whole series of assumptions about head and neck cancer and treatment mechanisms. This should not 

be regarded as a weakness of the analysis: similar assumptions would have to be made in any decision 

analysis concerned with cancer treatments. Investigators need to be explicit about their choice of 

external data and their interpretation of it, backing this up if possible with supporting analyses, such as 

those illustrated in Figure 2. The assumptions must be open to examination, debate, and sensitivity 

analyses, as in any other analysis of clinical or cost effectiveness.  

Limitations and generalizability to other cancers and conditions 

Any use of data to make predictions requires subjective judgment about the relevance and applicability 

of the data, but among the limitations of the method is the degree of reliance on subjective judgment 

about the clinical epidemiology of the condition and the treatment effect.  “Uncertainty” regarding what 

are in effect structural assumptions is difficult to express. Another limitation is the technical difficulty in 

fitting spline models, particularly in evidence-sparse situations. We have experienced this problem 

mainly when fitting models incrementally: the problem is much less acute when all sources of external 

data are included. A great deal could be learned from applying these methods to extrapolate a range 

of survival curves in other cancers. 

Besides the uncertainty propagation properties of the method, which could be applied very generally, a 

more substantive contribution of the paper is the suggestion that relative conditional survival, based on 

cancer registers or meta-analyses of cancer trials, provides a relatively accurate way of extrapolating 

cancer trials. Studies of registry data from many countries shows that, while conditional survival is 

sensitive to age at diagnosis and stage at diagnosis, for many cancers it tends to stabilize 5 to 8 years 

after diagnosis (51-54).  

We do not expect all cancers and all treatments to behave in precisely the same way as head and neck 

cancer.  An examination of the available literature and registry data guided by clinical experts, alongside 

preliminary analyses such as Figure 2, is a procedure that could be adopted in other circumstances. 

For example, cetuximab is usually administered in a single relatively brief course: treatments involving 

a longer course, several courses, and other modes of treatment like surgery or radiotherapy might 
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require a somewhat different approach. Similarly, if there was a suspicion of later toxicity, a sensitivity 

analysis could be readily constructed to allow for this. 

In the present case, external data on general population survival did not represent much of a constraint 

on extrapolation, although it served to rule out a large number of commonly used models quite 

decisively. In the UK, where manufacturers submit evidence to NICE to obtain approval for the use of 

drugs in the NHS, uncertainty about which parametric model to apply when extrapolating cancer survival 

curves has, on several occasions, contributed to controversy that lead eventually to an appeal process 

(18-20). The use of external information, in the way suggested above, both for extrapolating the control 

arm and the treatment effect, would contribute to obtaining better evidence-based estimates of gain in 

life-expectancy. 

< 5353 words> 
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Table 1. Model fit statistics (posterior mean deviance, D , and Deviance Information Criteria, 

DIC) and estimated differences in life expectancy between the 2 arms of Bonner 2006 RCT for 

different survival models, with and without external data 

  

Total  

D  

 

Total  

DIC 

Gain in life expectancy due to 

cetuximab  (months) 

Point 

estimate 

95% Cr I 

Standard parametric models, no external data 

2-parameter Gamma FSEA 2,343 2,345 21.0 [2.6; 44.5] 

2-parameter Gamma AFT 2,342 2,345 18.0 [1.7; 36.9] 

Weibull FSEA 2,341 2,344 23.3 [0.7; 54.5] 

Weibull PH 2,341 2,343 19.4 [1.6; 40.9] 

Exponential FSEA 2,342 2,342 17.0 [2.1; 33.4] 

Exponential PH 2,342 2,343 17.0 [2.0; 33.4] 

Log-logistic FSEA 2,322 2,325 195.5 [-6895.0; 

6860.0] 

Log-logistic AFT 2,322 2,325 82.5 [-5.7; 487.8] 

Log-normal FSEA 2,311 2,314 80.4 [2.0; 237.0] 

Log-normal AFT 2,313 2,316 32.3 [-3.1; 78.6] 

Generalised Gamma FSEA 2,308 2,313 50.9 [-19.2; 179.4] 

Generalised Gamma AFT 2,310 2,313 13.9 [-4.3; 48.2] 

Standard parametric models with external data 

Log-normal AFT, with general population 

data 
2,327 

2,329 32.4 

[14.11 ; 55.73] 

Generalised Gamma FSEA with general 

population data 

2,317 2,322 31.7 [-26.4; 162.3] 

Spline model with external data 

Splines with general population survival, 
conditional and relative treatment effect 

2,303 2,306 4.7 [0.4; 9.1] 

 

CrI: Credible Interval; DIC: Deviance Information Criterion; FSEA: Fitted Separately to Each Arm; PH: 

Proportional Hazards; AFT: Accelerated Failure Time.  

For each parameter, or log parameter if the parameter was required by definition to be positive, the 

prior was assumed to follow a normal distribution with a mean of 0 and a variance of 1000. 
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Table 2. Global goodness of fit statistics (posterior mean deviance, D , and Deviance 

Information Criteria, DIC) for the internal and external data elements. 

 RCT data SEER data 

 

General 

population 

data 

Relative 

treatment 

effect 

 D  DIC D  DIC D  DIC D  DIC 

Log logistic AFT using 

Equation [1] 

2,327 2,329 NA NA 10 11 NA NA 

Gen Gamma FSEA using 

Equation [1] 

2,317 2,322 NA NA 10 11 NA NA 

Splines, no external data 

used 

2,300 2,307 NA NA NA NA NA NA 

Splines using Equation [1] 2,300 2,307 NA NA 10 11 NA NA 

Splines using Equation [2] 2,302 2,307 96 98 NA NA NA NA 

Splines using Equation [2] 

and Equation [3] 

2,302 2,307 

 

96 97 11 12 NA NA 

Splines using Equation [2], 

Equation [3] and 

Equation[4] 

2,303 2,306 97 98 11 12 -62 -60 
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Figure 1. FSEA and AFT Log-normal models compared with Kaplan-Meier curves 

KM: Kaplan-Meier; FSEA: Fitted Separately to Each Arm; PH: Proportional Hazards; AFT: 

Accelerated Failure Time. 
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Figure 2. 1-year conditional survival predicted in Bonner 2006 and in the Surveillance, 

Epidemiology, and End Results (SEER) database (A). 1-year conditional survival predicted in 

Bonner 2006 and in Pignon 2009 (B). 
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Figure 3. Overall survival predicted by KM, unconstrained AFT Log-normal, and AFT Log-normal 

constrained by general population data, using Equation [1] (A). Overall survival predicted by 

KM, unconstrained FSEA Generalized Gamma, and FSEA Generalized Gamma constrained by 

general population data, using Equation [1] (B).           

KM: Kaplan-Meier; FSEA: Fitted Separately to Each Arm; AFT: Accelerated Failure Time.  

 
 
 
 

 

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

Kaplan-Meier radiotherapy arm
Kaplan-Meier radiotherapy plus cetuximab arm
unconstrained AFT log-normal radiotherapy arm
constrained AFT log-normal radiotherapy arm
unconstrained AFT log-normal radiotherapy + cetuximab arm
constrained AFT log-normal radiotherapy + cetuximab arm
General population

Years

0

10

20

30

40

50

60

70

80

90

100

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

Kaplan-Meier radiotherapy arm
Kaplan-Meier radiotherapy plus cetuximab arm
unconstrained FSEA Generalised Gamma radiotherapy arm
unconstrained FSEA Generalised Gamma radiotherapy + cetuximab arm
constrained FSEA Generalised Gamma radiotherapy arm
constrained FSEA Generalised Gamma radiotherapy + cetuximab arm
General population

Years

A 

B 

O
v
e
ra

ll 
s
u
rv

iv
a

l 
(%

) 
O

v
e
ra

ll 
s
u
rv

iv
a

l 
(%

) 



28 
 

Figure 4. Overall survival predicted by KM, unconstrained splines, and splines constrained by 

general population data using Equation [3], SEER conditional survival data using Equation [2] 

and expert data using Equation [4] (A). 1-year conditional survival (B). Hazard ratio (C). 

KM: Kaplan-Meier; FSEA: SEER: Surveillance, Epidemiology, and End Results  
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Web Appendix 

A:  Construction of a general population matched to the Bonner RCT 

population 

General population survival data are available in the human mortality database (37). This database 

provides the number of persons exposed to the risk of death, the number of deaths and the probabilities 

of deaths, by age, from 0 to 109 years, gender, for years 1933-2009 and many countries.  

The objective is to generate a general population cohort matched to the trial cohort for age at the onset 

of the trial and gender that differs from the trial population only in that it does not have head and neck 

cancer. 
kaP  ,

gP  and cP  are the proportions of RCT patients in each age group ak, gender g and 

country c. These figures are available in the Bonner publication.  We assume that these factors are 

independent.  

For age we used the published mean age and standard deviation, and divided the age into quartiles. 

The proportion of patients entering the trial at each of the N-quantiles defined is then set to 1/(N-1).  

We compose our matched general population with survival data using the same calendar year than the 

study entry time of the RCT. For instance, if the study recruitment has been initiated in April 1999, the 

survival data for each wanted subgroup of the general population is extracted for the year 1999. By 

doing this, we perform a period analysis instead of a cohort analysis; in order to provide more sensible 

predicted estimates (27). 

The average number of years lived during year t, for people dying during that year, is assumed to be 

0.5. Using this half-cycle correction, the numbers of person alive between times t and t+1 for each 

subgroup G of persons having the same characteristics, 
Gttgeneralr ,|1, 

,  are equal to the following: 

tGgeneraltGgeneraltGgeneral DeathsiskExposedtoRr ,,,,,, *5.0  

.  
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Where 
tGgeneraliskExposedtoR ,,
 is the number of patients exposed to the risk of dying at time t for the 

subgroup G and 
tGgeneralDeaths ,,
 is the number of deaths between time t and t+1 for the subgroup G. 

We refer to 1-year conditional survival probabilities: an interval-specific measure that gives the chance 

of surviving at time 1t , conditional on having survived to time t : )(/)1()1( tSttSttCS  , 

whereby )(tS denotes the probability of survival up to time t > 0. 

The survival probabilities at time t+1 years conditional on being alive at time t years, in the matched 

general population, 
ttgeneral

CS
1, 

,are calculated as follows:  

 


G

GttGgeneralttgeneral
WCSCS *

1,,1,
 

Where
ttGgeneral

CS
1,, 

  is the survival probabilities at time t+1 years conditional on being alive at time t 

years in the subgroup G and GW the weight of the subgroup G. 

Their corresponding variances are equal to the equation below: 

2

1,,

1,,1,,

1,
*

)1(*
)( W

r

CSCS
CSV

G ttGgeneral

ttGgeneralttGgeneral

ttgeneral 







  

The number of persons alive during the entire period, 
ttgeneralr |1, 
 and the number of persons at risk, 

ttgeneraln |1,  , between times t and t+1, in the matched general population, are obtained by the following 

equations:   

)(

)1(*

|1,

|1,|1,

|1,

ttgeneral

ttgeneralttgeneral

ttgeneral
CSV

CSCS
n








 .  

ttgeneralttgeneralttgeneral nCSr |1,|1,|1, *    

Carrying this out generates a numerator of 1660 survivors at t=40  

660,1
3940,


general
r  
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tgeneralttgeneraltgeneral SCSS ,1,1, *
   

Carrying this out generates a survival probability of 1.045% at t=40  

1,1,1, /   tgeneralttgeneraltgeneral Srn  

Carrying this out generates a denominator of 158,858 at risk at t=0  

858,1580, generaln  

 

B.  Construction of a head and neck cancer cohort matched to the Bonner 

trial population  

Relative conditional survival probabilities and numbers at risk were extracted from the SEER database 

for each of the primary cancer sites reported in the Bonner RCT. Then, the relative conditional survival 

probabilities for each site were multiplied by the age- and gender-matched general conditional survival 

to obtain conditional survival predictions, and finally pooled to form a site-weighted average using the 

cancer site information in the RCT. A period analysis of 5 years (1997-2002) was applied to extract data 

from the SEER database. Data were available from 1970 onwards; as a consequence, a follow-up of 

26 years was available. We did not adjust for stage or treatment, as these factors were less often 

recorded in the database than primary sites. Figure 2A shows the 1-year conditional survival 

probabilities obtained for each primary site and for a primary site-matched SEER population. 1-year 

conditional survival increases until around 5-years, and then stabilizes before slowly falling. RCT results 

are consistent with this trend.  

The conditional survival data is presented in Table B.1.  

Table B.1. Matched SEER conditional survival data. 

Time t in years from 
randomization 

Numerator Denominator 
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6 325 358 

7 285 308 

8 198 221 

9 143 167 

10 122 133 

11 105 117 

12 91 100 

13 86 94 

14 87 98 

15 75 85 

16 93 101 

17 47 52 

18 47 54 

19 34 41 

20 40 44 

21 22 27 

22 17 20 

23 24 31 

24 22 26 

25 25 29 

26 23 28 

 

For the analyses including both SEER and general population conditional survival information, the 

general population numerator at 34 years was 23,080, and the denominator 30,196: representing an 

estimated 76.4% 1-year conditional survival. 

 

C.  Cubic Splines 

We fit a cubic spline model to the log-cumulative hazard, where all parameters except the intercept,

, depend on treatment k  (1=treatment, 0 = control). There is therefore a spline for the control arm, and 

an additional spline for the relative treatment effect on the log-cumulative-hazard scale. All patients are 

assumed to start the RCT with the same risk of death. 

ln( ),    in monthsx t t  

)(...)(),,())(ln( 1,12,1, xxxxstH mmkkkkk    with 0k for the control arm and 

1k for the treatment arm 
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The j - th basis function is defined for mj ,...,1   as 

3

max

3

min

3 ))(1()()()(   LxLxLxxv jjjj   

and 

minmax

max

LL

LL j

j



   

),0max()( axax  
. 

Boundary knots, 
minL  and maxL , and internal knots, 1L and 2L were placed at the same location for 

each arm. minL  was set equal to the log-time of the first death in the RCT data, i.e. log(1)=0. maxL  was 

set equal to the log-time of the last assumed death in the general population data, 60 years, 

log(720)=6.58 (time in months). The first internal knot 1k  was placed in the middle of the RCT period 

i.e. log(30)=3.39 and the second internal knot 2k  was chosen approximately half way through the 

external data period on the log scale i.e. log(187)=5.23. 
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D.  Winbugs code and data 

The cubic splines model was defined as in Royston-Lambert 2011 [55]. 

# Winbugs model 
 
model { 
 
 
##Definition of the knots  
 
lambda1<-(kmax-k1)/(kmax-kmin) 
lambda2<-(kmax-k2)/(kmax-kmin) 
 
 
##Cubic splines model 
 
C<-10 
 
for (i in 1:N) { 
x[i]<-log(t[i]) 
 
##Definition of the splines variables 
rcs1[i]<-x[i] 
rcs2[i]<-pow(max(0,x[i]-k1),3)-lambda1*pow(max(0,x[i]-kmin),3)-(1-lambda1)*pow(max(0,x[i]-kmax),3) 
rcs3[i]<-pow(max(0,x[i]-k2),3)-lambda2*pow(max(0,x[i]-kmin),3)-(1-lambda2)*pow(max(0,x[i]-kmax),3) 
 
##Definition of the derivatives of the splines variables 
drcs1[i]<-1 
drcs2[i]<-3*pow(max(0,x[i]-k1),2)-3*lambda1*pow(max(0,x[i]-kmin),2)-3*(1-lambda1)*pow(max(0, x[i]-
kmax),2) 
drcs3[i]<-3*pow(max(0,x[i]-k2),2)-3*lambda2*pow(max(0,x[i]-kmin),2)-3*(1-lambda2)*pow(max(0, x[i]-
kmax),2) 
 
## Restricted cubic splines functions are not listed under the standard distributions in Winbugs. 
However, the “zeros trick” describes in the Winbugs manual allows arbitrary sampling distributions to 
be used 
 
zeros[i]<-0 
 
## eta[i] is the linear predictor which includes the intercept gamma[1] and 3 further parameters 
gamma[2], gamma[3], gamma[4] for the control arm of the 3 spline variables rcs1, rcs2 and rcs3 and 
3 further parameters beta[1], beta[2], beta[3] for the treatment arm of the 3 spline variables of rcs1, 
rcs2 and rcs 3.  
 
eta[i]<-gamma[1]+gamma[2]*rcs1[i]*(1-treat[i])+gamma[3]*rcs2[i]*(1-treat[i])+gamma[4]*rcs3[i]*(1-
treat[i])+beta[1]*treat[i]*rcs1[i]+beta[2]*treat[i]*rcs2[i]+beta[3]*treat[i]*rcs3[i] 
 
## d.spi[i] is the linear predictor for the derivative of the spline variables. This has the same 
parameters as in the linear predictor but uses the derivative variables drcs1, drcs2 and drcs3.  
 
d.sp[i]<-gamma[2]*drcs1[i]*(1-treat[i])+gamma[3]*drcs2[i]*(1-treat[i])+gamma[4]*drcs3[i]*(1-
treat[i])+beta[1]*treat[i]*drcs1[i]+beta[2]*treat[i]*drcs.treat2[i]+beta[3]*treat[i]*drcs.treat3[i] 
 
## lnL[i] is the log-likelihood 
lnL[i]<- -(d[i]*log(max((1/t[i])*d.sp[i]*exp(eta[i]), 0.00001))-exp(eta[i])) + C 
 
zeros[i]~dpois(lnL[i]) 
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##Predicted survival of trial population at times of external data 
for (i in 1:24) { 
 
##Definition of the splines variables at times of external data 
 
x.RCT.Text[i]<-log(T.ext[i]) 
rcs1.RCT.Text[i]<-x.RCT.Text[i] 
rcs2.RCT.Text[i]<-pow(max(0,x.RCT.Text[i]-k1),3)-lambda1*pow(max(0,x.RCT.Text[i]-kmin),3)-(1-
lambda1)*pow(max(0,x.RCT.Text[i]-kmax),3) 
rcs3.RCT.Text[i]<-pow(max(0,x.RCT.Text[i]-k2),3)-lambda2*pow(max(0,x.RCT.Text[i]-kmin),3)-(1-
lambda2)*pow(max(0,x.RCT.Text[i]-kmax),3) 
 
##Definition of the derivatives of the splines variables at times of external data 
 
drcs1.RCT.Text[i]<-1 
drcs2.RCT.Text[i]<-3*pow(max(0,x.RCT.Text[i]-k1),2)-3*lambda1*pow(max(0,x.RCT.Text[i]-kmin),2)-
3*(1-lambda1)*pow(max(0, x.RCT.Text[i]-kmax),2) 
drcs3.RCT.Text[i]<-3*pow(max(0,x.RCT.Text[i]-k2),2)-3*lambda2*pow(max(0,x.RCT.Text[i]-kmin),2)-
3*(1-lambda2)*pow(max(0, x.RCT.Text[i]-kmax),2) 
 
##Definition of the linear predictors at times of external data for each arm, c=control, t=treatment 
 
eta.RCT.Text.c[i]<-gamma[1] + gamma[2]*rcs1.RCT.Text[i] + gamma[3]*rcs2.RCT.Text[i]+ 
gamma[4]*rcs3.RCT.Text[i] 
eta.RCT.Text.t[i]<-gamma[1] + beta[1] *rcs1.RCT.Text[i]+beta[2]*rcs2. RCT.Text[i]+ 
beta[3]*rcs3.RCT.Text[i] 
 
##Definition of the linear predictors at times of external data for each arm, c=control, t=treatment 
 
d.sp.RCT.Text.c[i]<-
gamma[2]*drcs1.RCT.Text[i]+gamma[3]*drcs2.RCT.Text[i]+gamma[4]*drcs3.RCT.Text[i]  
d.sp.RCT.Text.t[i]<-beta[1]*drcs1.RCT.Text[i]+beta[2]*drcs 2.RCT.Text[i]+beta[3]*drcs3.RCT.Text[i] 
 
##Definition of the hazard functions at times of external data for each arm, c=control, t=treatment 
 
h.RCT.Text.c[i]<-1/T.ext[i]*d.sp.RCT.Text.c[i]*exp(eta.RCT.Text.c[i]) 
h.RCT.Text.t[i]<-1/T.ext[i]*d.sp.RCT.Text.t[i]*exp(eta.RCT.Text.t[i]) 
 
##Definition of the survival functions at times of external data for each arm, c=control, t=treatment 
 
S.RCT.Text.c[i]<-max(0.00001,min(exp(-exp(eta.RCT.Text.c[i])),0.99999)) 
S.RCT.Text.t[i]<-max(0.00001,min(exp(-exp(eta.RCT.Text.t[i])),0.99999)) 
} 
 
for (i in 1:21) 
{ 
 
##Definition of the conditional survival function in the control arm at times of external data 
CS.RCT.c[i]<-max(0.00001,min(S.RCT.Text.c[i+1]/S.RCT.Text.c[i],0.99999)) 
 
##Model for the SEER conditional survival data 
r.b[i] ~ dbin (CS.ext.b[i],n.b[i]) 
 
## Constraint using the SEER conditional survival data 
CS.ext.b[i]<-max(0.00001,min(CS.RCT.c[i],0.99999)) 
} 
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for (i in 1:1){ 
 
##Model for the general population conditional survival data 
r.GP[i] ~ dbin (CS.GP[i],n.GP[i]) 
 
##Constraint using the general population conditional survival data 
CS.RCT.c[i+21]<-max(0.00001,min(S.RCT.Text.c[(24)]/S.RCT.Text.c[(23)],0.99999))CS.GP[i]<-
max(0.00001,min(CS.RCT.c[i+21],0.99999)) 
} 
 
for (i in 1:23) 
{ 
 
##Model for the external hazard ratio data 
HR.ext.m[i]~dnorm(HR[i],HR.prec[i]) 
 
##Constraint using the external hazard ratio data 
HR[i]<-h.RCT.Text.t[i+1]/h.RCT.Text.c[i+1] 
} 
 
#Priors for the 4 gamma parameters 
for (j in 1:4){ 
gamma[j]~dnorm(0,0.01) 
} 
 
#Priors for the 3 beta parameters 
for (j in 1:3) { 
beta[j]~dnorm(0,0.01) 
} 
 
# To compute results 
for (i in 1:68) { 
 
x.pred[i]<-log(t.annual[i]) 
rcs1.pred[i]<-x.pred[i] 
rcs2.pred[i]<-pow(max(0,x.pred[i]-k1),3)-lambda1*pow(max(0,x.pred[i]-kmin),3)-(1-
lambda1)*pow(max(0,x.pred[i]-kmax),3) 
rcs3.pred[i]<-pow(max(0,x.pred[i]-k2),3)-lambda2*pow(max(0,x.pred[i]-kmin),3)-(1-
lambda2)*pow(max(0,x.pred[i]-kmax),3) 
 
drcs1.pred[i]<-1 
drcs2.pred[i]<-3*pow(max(0,x.pred[i]-k1),2)-3*lambda1*pow(max(0,x.pred[i]-kmin),2)-3*(1-
lambda1)*pow(max(0, x.pred[i]-kmax),2) 
drcs3.pred[i]<-3*pow(max(0,x.pred[i]-k2),2)-3*lambda2*pow(max(0,x.pred[i]-kmin),2)-3*(1-
lambda2)*pow(max(0, x.pred[i]-kmax),2) 
 
eta.pred.c[i]<-gamma[1]+gamma[2]*rcs1.pred[i]+gamma[3]*rcs2.pred[i]+gamma[4]*rcs3.pred[i] 
eta.pred.t[i]<-gamma[1]+ beta[1] *rcs1.pred[i]+ beta[2]*rcs.treat2.pred[i]+ beta[3]*rcs.treat3.pred[i] 
 
d.sp.pred.c[i]<-gamma[2]*drcs1.pred[i]+gamma[3]*drcs2.pred[i]+gamma[4]*drcs3.pred[i] 
d.sp.pred.t[i]<-beta[1]*drcs1.pred[i]+beta[2]*drcs.treat2.pred[i]+beta[3]*drcs.treat3.pred[i] 
 
h.c[i]<-1/t.annual[i]*d.sp.pred.c[i]*exp(eta.pred.c[i]) 
h.t[i]<-1/t.annual[i]*d.sp.pred.t[i]*exp(eta.pred.t[i]) 
 
# Predicted annual hazard ratio 
 
HR.a[i]<-h.t[i]/h.c[i] 
 
# Predicted annual survival 
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S.c[i]<-exp(-exp(eta.pred.c[i])) 
S.t[i]<-exp(-exp(eta.pred.t[i])) 
}  
 
# Predicted annual conditional survival 
 
for (i in 2:68) { 
CS.c[i]<-S.c[i]/max(S.c[i-1],0.000001) 
CS.t[i]<-S.t[i]/max(S.t[i-1],0.00000001) 
} 
 
# Predicted mean in each arm, c=control, t=treatment 
mean.surv.c<-Mean3k(endL,nsubdiv,gamma[1],gamma[2],gamma[3],gamma[4],kmin,kmax,k1,k2) 
mean.surv.t<-
Mean3k(endL,nsubdiv,gamma[1],beta[1],beta[2],beta[3],kmin,kmax.treat,k.treat1,k.treat2) 
 
# Predicted mean difference 
diff.mean<-mean.surv.t-mean.surv.c 
 
} 

# Data used  

list(N=424,nsubdiv=1000, endL=900, kmin=0, kmax=6.58, k1=3.39, k2=5.23, 
T.ext=c(60,72,84,96,108,120,132,144,156,168,180,192,204,216,228,240,252,264,276,288,300,312, 
408, #Note this time-point is 1-year prior to 1st GP CS data-point 
420),  
r.GP=c(23080),   
n.GP=c(30196),  
n.b=c(358,308,221,167,133,117,100,94,98,85,101,52,54,41,44,27,20,31,26,29,28), 
r.b=c(325,285,198,143,122,105,91,86,87,75,93,47,47,34,40,22,17,24,22,25,23), 
HR.ext.m=c(1,1,1,1,1, 1,1,1,1,1, 1,1,1,1,1, 1,1,1,1,1, 1,1,1), HR.prec=c(100,100,100,100,100, 
100,100,100,100,100, 100,100,100,100,100, 100,100,100,100,100, 100,100,100)) 
 
# IPD reconstructed from the KM curves 

t[] d[] treat[] 
1 1 0 
1 1 0 

1.93 1 0 
1.93 1 0 
2.54 1 0 
2.54 1 0 
2.54 1 0 
3.77 1 0 
3.77 1 0 
3.77 1 0 
4.31 1 0 
4.31 1 0 
4.47 1 0 
4.93 1 0 
4.93 1 0 
5.31 1 0 
5.31 1 0 
5.31 1 0 
5.54 1 0 
5.54 1 0 
5.54 1 0 
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5.54 1 0 
5.54 1 0 
6.24 1 0 
6.24 1 0 
6.39 1 0 
6.39 1 0 
6.39 1 0 
6.39 1 0 
6.62 1 0 
6.62 1 0 
6.62 1 0 
7.01 1 0 
7.01 1 0 
7.32 1 0 
7.32 1 0 
7.32 1 0 
7.85 1 0 
7.85 1 0 
7.85 1 0 
8.39 1 0 
8.39 1 0 
8.39 1 0 
8.39 1 0 

10 1 0 
10 1 0 

10.3 1 0 
10.3 1 0 
10.3 1 0 
10.3 1 0 
10.7 1 0 
11.4 1 0 
11.4 1 0 
12.3 1 0 
12.3 1 0 
12.3 1 0 
12.8 1 0 
13.8 1 0 
13.8 1 0 
14.3 1 0 
14.3 1 0 
14.3 1 0 

15 1 0 
15 1 0 
15 1 0 

15.9 1 0 
15.9 1 0 
16.6 1 0 
16.6 1 0 
17.1 1 0 
17.1 1 0 
17.1 1 0 
17.6 1 0 
17.6 1 0 

18 1 0 
18 1 0 

18.4 1 0 
18.4 1 0 
18.4 1 0 

19 1 0 
19.6 1 0 
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20 1 0 
20 1 0 

20.6 1 0 
20.6 1 0 
20.7 1 0 
20.7 1 0 
20.7 1 0 
20.7 1 0 
22.6 1 0 
23.4 1 0 
24.1 1 0 
24.9 1 0 
24.9 1 0 
24.9 1 0 
24.9 1 0 
25.3 1 0 
25.3 1 0 
27.4 1 0 
27.4 1 0 
27.4 1 0 
29.1 1 0 
29.6 1 0 
29.6 1 0 
30.9 1 0 
30.9 1 0 
30.9 1 0 
31.7 1 0 
31.7 1 0 
32.2 1 0 
34.4 1 0 
36.3 1 0 

40 1 0 
40 1 0 

42.6 1 0 
43 1 0 

47.4 1 0 
50 1 0 

51.4 1 0 
51.4 1 0 
52.5 1 0 
53.5 1 0 
58.4 1 0 
59.5 1 0 
59.4 1 0 

1.465 0 0 
2.235 0 0 
3.425 0 0 

5.12 0 0 
6.315 0 0 
7.585 0 0 

8.89 0 0 
12.55 0 0 
14.65 0 0 
17.35 0 0 

23 0 0 
26.85 0 0 
30.45 0 0 

31.3 0 0 
31.95 0 0 

33.3 0 0 
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33.3 0 0 
33.3 0 0 
33.3 0 0 

35.35 0 0 
35.35 0 0 
35.35 0 0 

37.3 0 0 
37.3 0 0 
37.3 0 0 
37.3 0 0 

39.15 0 0 
39.15 0 0 
40.55 0 0 
40.55 0 0 
41.85 0 0 
41.85 0 0 
41.85 0 0 

42.8 0 0 
45.05 0 0 
45.05 0 0 
45.05 0 0 
45.05 0 0 
45.05 0 0 
45.05 0 0 
45.05 0 0 
45.05 0 0 
45.05 0 0 
47.25 0 0 

48.7 0 0 
48.7 0 0 
48.7 0 0 
48.7 0 0 
48.7 0 0 
50.9 0 0 
50.9 0 0 

51.75 0 0 
52.3 0 0 
52.8 0 0 
53.3 0 0 
55.8 0 0 
55.8 0 0 
55.8 0 0 
55.8 0 0 
55.8 0 0 
55.8 0 0 
55.8 0 0 
55.8 0 0 

58.25 0 0 
58.95 0 0 
59.45 0 0 
62.55 0 0 
62.55 0 0 
62.55 0 0 
62.55 0 0 
62.55 0 0 
62.55 0 0 

65.1 0 0 
65.1 0 0 
65.1 0 0 
65.1 0 0 
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65.1 0 0 
65.1 0 0 
65.1 0 0 
65.1 0 0 
65.1 0 0 
65.1 0 0 
65.1 0 0 
65.1 0 0 
65.1 0 0 
65.1 0 0 
65.1 0 0 
65.1 0 0 

0.417 1 1 
1.11 1 1 
1.46 1 1 
1.63 1 1 
2.32 1 1 
2.32 1 1 
2.67 1 1 
3.02 1 1 
3.36 1 1 
3.54 1 1 
4.06 1 1 
5.1 1 1 

5.27 1 1 
5.62 1 1 
5.79 1 1 
5.96 1 1 
6.31 1 1 
6.31 1 1 
6.48 1 1 

7 1 1 
7.18 1 1 
7.18 1 1 
7.18 1 1 
7.7 1 1 

8.22 1 1 
8.39 1 1 
8.39 1 1 
8.74 1 1 
8.74 1 1 
8.74 1 1 
8.91 1 1 
9.08 1 1 
9.6 1 1 

10.1 1 1 
10.1 1 1 
10.3 1 1 
10.6 1 1 
10.6 1 1 
10.8 1 1 
11.2 1 1 
11.3 1 1 
11.3 1 1 
11.5 1 1 
11.5 1 1 
11.9 1 1 
11.9 1 1 
11.9 1 1 

12 1 1 
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12 1 1 
12.4 1 1 
12.4 1 1 
12.4 1 1 
12.4 1 1 
12.4 1 1 
12.5 1 1 
12.7 1 1 
13.2 1 1 
13.2 1 1 
14.3 1 1 
14.5 1 1 

15 1 1 
16 1 1 

16.2 1 1 
17.2 1 1 
17.6 1 1 
18.1 1 1 
18.4 1 1 
18.8 1 1 
19.3 1 1 
19.7 1 1 

20 1 1 
20.3 1 1 
20.3 1 1 
20.5 1 1 
20.9 1 1 
22.1 1 1 
22.4 1 1 
22.8 1 1 
22.9 1 1 
24.7 1 1 
25.4 1 1 
25.9 1 1 
26.9 1 1 
27.8 1 1 
28.5 1 1 
29.5 1 1 
29.5 1 1 
30.2 1 1 
31.1 1 1 
33.2 1 1 
34.2 1 1 
35.6 1 1 
35.8 1 1 
36.1 1 1 
36.3 1 1 
44.8 1 1 
45.3 1 1 
47.2 1 1 
47.6 1 1 
47.7 1 1 
48.9 1 1 
49.5 1 1 
53.3 1 1 
55.5 1 1 
56.7 1 1 
58.8 1 1 
59.7 1 1 
5.01 0 1 
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11.95 0 1 
14 0 1 

15.9 0 1 
18 0 1 

22.5 0 1 
24.95 0 1 

27.4 0 1 
31 0 1 

31.9 0 1 
32.75 0 1 

33.6 0 1 
34.5 0 1 
35.5 0 1 
36.4 0 1 

38.35 0 1 
38.35 0 1 
38.35 0 1 
40.65 0 1 
40.65 0 1 
40.65 0 1 

42.8 0 1 
42.8 0 1 
42.8 0 1 
42.8 0 1 
42.8 0 1 
42.8 0 1 
42.8 0 1 
42.8 0 1 
42.8 0 1 
42.8 0 1 
42.8 0 1 
44.9 0 1 
45.2 0 1 
45.4 0 1 
45.9 0 1 
46.1 0 1 
46.4 0 1 
46.8 0 1 
47.1 0 1 
47.5 0 1 
47.8 0 1 

48 0 1 
48.3 0 1 
48.7 0 1 

49 0 1 
49.4 0 1 
49.7 0 1 
50.4 0 1 
50.6 0 1 
51.8 0 1 
51.8 0 1 
51.8 0 1 
51.8 0 1 
51.8 0 1 
51.8 0 1 
51.8 0 1 

53 0 1 
53.35 0 1 

53.7 0 1 
53.9 0 1 
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54.2 0 1 
54.6 0 1 
54.9 0 1 
55.1 0 1 

55.45 0 1 
55.8 0 1 
56.1 0 1 
56.3 0 1 

56.65 0 1 
57 0 1 

57.2 0 1 
57.5 0 1 
57.9 0 1 
58.2 0 1 
58.4 0 1 
58.7 0 1 
59.1 0 1 
59.4 0 1 
59.6 0 1 

60.65 0 1 
63.65 0 1 
63.65 0 1 
63.65 0 1 
63.65 0 1 
63.65 0 1 
63.65 0 1 
63.65 0 1 

66.3 0 1 
66.3 0 1 
66.3 0 1 
66.3 0 1 
66.3 0 1 
66.3 0 1 
66.3 0 1 
66.3 0 1 
66.3 0 1 
66.3 0 1 
66.3 0 1 
66.3 0 1 
66.3 0 1 
66.3 0 1 
66.3 0 1 
66.3 0 1 

END   
 
 
 
Subroutine Mean3k called by the WinBUGS program above 
Blue color represents changes from the blackbox module template 
 
 MODULE WBDevMean3k; 
 
  IMPORT 
   WBDevVector, 
   WBDevScalar, 
   Math, 
   WBDevSpecfunc; 
    
  TYPE 
   Function = POINTER TO RECORD (WBDevScalar.Node) END; 
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   Factory = POINTER TO RECORD (WBDevScalar.Factory) END; 
    
  VAR 
   fact-: WBDevScalar.Factory; 
    
  PROCEDURE (func: Function) DeclareArgTypes (OUT args: ARRAY OF CHAR); 
  BEGIN 
 
#number of parameters=10 
   args := "ssssssssss"; 
  END DeclareArgTypes; 
   
  PROCEDURE (func: Function) Evaluate (OUT value: REAL); 
  CONST 
 
#Definition of the parameters 
  timeupper = 0; nsubdiv = 1; gamma1 = 2; gamma2= 3; gamma3= 4; gamma4=5; kmin= 6; 
kmax= 7; k1= 8;k2=9; 
 
  VAR 
#Definition of the variables 
   i,j,n: INTEGER;  
   t,h,a,b,c,kamin,kamax,ka1,x,lambda1, rcs1, 
rcs2,eta,xka1,xkamin,xkamax,d,ka2,xka2,lambda2,rcs3: REAL; 
 
  BEGIN 
#Definition of the function: the area under the curve is computed using the Simpson’s rule [60]. This 
rule is a method for numerical integration that provides numerical approximation of definite integrals. 
 
   a := func.arguments[gamma1][0].Value(); 
   b:= func.arguments[gamma2][0].Value(); 
   c:= func.arguments[gamma3][0].Value(); 
   d:= func.arguments[gamma4][0].Value(); 
   kamin:= func.arguments[kmin][0].Value(); 
   kamax:= func.arguments[kmax][0].Value(); 
   ka1:= func.arguments[k1][0].Value(); 
   ka2:= func.arguments[k2][0].Value(); 
   n:= SHORT(ENTIER(func.arguments[nsubdiv][0].Value())); 
   t := func.arguments[timeupper][0].Value(); 
   i:=0; 
   h:=t/n; 
   value:=1; 
   INC(i);  
   j:=0; 
 
   lambda1:=(kamax-ka1)/(kamax-kamin); 
   lambda2:=(kamax-ka2)/(kamax-kamin); 
 
   WHILE i < n DO; 
    
   x:=Math.Ln(i*h); 
   rcs1:=x; 
    
   IF (x-ka1>0) THEN; 
   xka1:=x-ka1; 
   ELSE; 
   xka1:=0; 
   END; 
    
   IF (x-ka2>0) THEN; 
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   xka2:=x-ka2; 
   ELSE; 
   xka2:=0; 
   END; 
    
   IF (x-kamin>0) THEN; 
   xkamin:=x-kamin; 
   ELSE; 
   xkamin:=0; 
   END; 
    
   IF (x-kamax>0) THEN; 
   xkamax:=x-kamax; 
   ELSE; 
   xkamax:=0; 
   END; 
    
   rcs2:=WBDevSpecfunc.Power(xka1,3)-lambda1*WBDevSpecfunc.Power(xkamin,3)-(1-
lambda1)*WBDevSpecfunc.Power(xkamax,3); 
    
   rcs3:=WBDevSpecfunc.Power(xka2,3)-lambda2*WBDevSpecfunc.Power(xkamin,3)-(1-
lambda2)*WBDevSpecfunc.Power(xkamax,3); 
     
   eta:=a+b*rcs1+c*rcs2+d*rcs3; 
    
    
   IF (i=2*j+1) THEN; 
    value:= value + 4*(Math.Exp(eta-Math.Exp(eta))); 
     INC(j); 
   ELSE; 
    value:= value + 2*(Math.Exp(eta-Math.Exp(eta))); 
    
   END; 
   INC(i);  
    
   END; 
 
   x:=Math.Ln(t); 
   rcs1:=x; 
   
   IF ((x-ka1)>0) THEN; 
   xka1:=x-ka1; 
   ELSE; 
   xka1:=0; 
   END; 
    
   IF (x-ka2>0) THEN; 
   xka2:=x-ka2; 
   ELSE; 
   xka2:=0; 
   END; 
    
   IF ((x-kamin)>0) THEN; 
   xkamin:=x-kamin; 
   ELSE; 
   xkamin:=0; 
   END; 
    
   IF ((x-kamax)>0) THEN; 
   xkamax:=x-kamax; 
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   ELSE; 
   xkamax:=0; 
   END; 
    
   rcs2:=WBDevSpecfunc.Power(xka1,3)-lambda1*WBDevSpecfunc.Power(xkamin,3)-(1-
lambda1)*WBDevSpecfunc.Power(xkamax,3); 
    
   rcs3:=WBDevSpecfunc.Power(xka2,3)-lambda2*WBDevSpecfunc.Power(xkamin,3)-(1-
lambda2)*WBDevSpecfunc.Power(xkamax,3); 
     
   eta:=a+b*rcs1+c*rcs2+d*rcs3; 
    
   value:= value + Math.Exp(eta-Math.Exp(eta)); 
    
   value:= (t/n)*value/3   
  
  END Evaluate; 
   
  PROCEDURE (f: Factory) New (option: INTEGER): Function; 
  VAR 
   func: Function; 
  BEGIN 
   NEW(func); func.Initialize; RETURN func; 
  END New; 
   
  PROCEDURE Install*; 
  BEGIN 
   WBDevScalar.Install(fact); 
  END Install; 
   
  PROCEDURE Init; 
  VAR 
   f: Factory; 
  BEGIN 
   NEW(f); fact := f; 
  END Init; 
   
 BEGIN 
  Init; 
END WBDevMean3k. 
 
 

E:  Initial values, convergence, and posterior sampling 

We assessed convergence by running multiple chains with different initial values, then inspecting history 

plots, density plots for key model outputs (survival estimates) and the gelman-rubin statistics.   

For the model based on RCT data alone, we present results based on a burn-in period of 20,000 

simulations, and posterior inference was based on 350,000 samples for the splines model, 150,000 for 

the AFT log-normal model, and 300,000 for the generalised gamma model.  
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For the constrained models, we present results based on a burn-in period of 20,000 simulations, and 

posterior inference was based on 70,000 samples for the splines model, 30,000 for the AFT log-

normal model, and 60,000 for the generalised gamma model. 

Convergence was problematic in some cases, and care was required in the choice of initial values to 

avoid the chain sampling from infeasible curves (see below).  

Initial values 

Spline function parameters of splines have no direct interpretation, making it difficult to choose a realistic 

set of initial values. Furthermore, due to the extremely flexible nature of the spline functions, 

convergence can be problematic if there is not sufficient data to determine the exact shape of the curves 

between the knots, and especially in the tail of the curves. This is essentially a problem of identifiability. 

We found that some choices of initial value found a solution that gave infeasible predicted survival 

curves, especially when we did not include all evidence sources. In such cases it is often suggested to 

use the Maximum Likelihood Estimate (MLE) to choose initial values [56], however due to the 

complexity of the relationships between our evidence and the model, it is not possible to evaluate the 

MLE. Instead we used the following strategy to identify realistic initial values:  

1. Run the model with multiple chains of initial values. 

2. Choose the chain with the minimum Dbar (i.e. the chains that fit the data best, and closest to 

MLE),  

3. We then used descriptive statistics from the joint distribution from the chain with minimum Dbar 

to identify new sets of initial values (covering the full range of jointly plausible values) 

4. Repeat steps 1-3 until Dbar seems to stabilise, i.e. when Dbar is not decreasing anymore after 

a reasonable number of attempts. 

The sets of initial values identified are then used to check for convergence and to obtain results, as 

described above. 

 


