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Entanglement allows for the nonlocality of quantum theory, which is the resource behind device-independent
quantum information protocols. However, not all entangled quantum states display nonlocality, and a central
question is to determine the precise relation between entanglement and nonlocality. Here we present the first
general test to decide whether a quantum state is local, and that can be implemented by semidefinite program-
ming. This method can be applied to any given state and for the construction of new examples of states with
local hidden-variable models for both projective and general measurements. As applications we provide a lower
bound estimate of the fraction of two-qubit local entangled states and present new explicit examples of such
states, including those which arise from physical noise models, Bell-diagonal states, and noisy GHZ and W
states.

Introduction.— Entanglement is one of the defining prop-
erties of quantum theory, playing a central role in quantum
information science. One of the most astonishing conse-
quences of entanglement is that local measurements on com-
posite quantum systems can produce correlations which are
impossible to reproduce by any classical mechanism satisfy-
ing natural notions of local causality [1]. Such correlations
are the key aspect behind the famous nonlocality of quantum
theory, and they are witnessed by the violation of Bell inequal-
ities [2]. Witnessing nonlocality certifies the entanglement of
the underlying quantum state in a way which makes no as-
sumptions about the functioning of the apparatuses used, a
realisation which led to the development of the field of device-
independent quantum information.

Remarkably, as first shown by Werner [3], although every
entangled state needs a quantum channel to be distributed,
there exist entangled quantum states whose correlations can
be reproduced classically, since they are incapable of display-
ing nonlocality. More precisely, Werner presented a highly
symmetric family of quantum states whose statistics for all
possible projective measurements could be reproduced by
an ingenious classical model, referred to as a local-hidden-
variable (LHV) model. On the one hand this shows that the
relation between entanglement and nonlocality is not straight-
forward. On the other hand, it shows that not all entangled
states are useful for applications in device-independent infor-
mation processing. Since Werner’s original result there have
been a number of subsequent results further elucidating the re-
lation between entanglement and nonlocality in terms of find-
ing LHV models for other families of states [4–9] (for a review
see [10]).

Nevertheless, it remains a difficult task to decide whether a
given entangled quantum state is nonlocal or not. This lies in
the fact that showing that a given state cannot lead to nonlocal
correlations requires showing that the statistics of all measure-
ments can be reproduced by a suitable LHV model. Crucially
all constructions to date make use of the symmetries present
in the quantum states under scrutiny, and consequently they
can not be readily applied to other quantum states. In fact,

apart from very recent sufficient condition for the special case
of two-qubits (and one-sided projective measurements) [11],
there is no general criterion to test whether a given quantum
state is local.

Our main contribution here is to present sufficient condi-
tions for a general quantum state to admit a LHV model,
either for projective von Neumann measurements, or for
general positive-operator-valued measure (POVM) measure-
ments, that can be tested via semi-definite programming
(SDP), an efficient form of convex optimisation that can be
readily implemented in practice. We also show how this
method can be modified to provide a means to randomly gen-
erate local quantum states. We show the power of these tests
by providing a lower-bound estimate on the volume of the set
of entangled two-qubit states that possess LHV models for
projective and POVM measurements, and by presenting sev-
eral examples of new local entangled states, including those
that would arise from local amplitude-damping noise, two-
qubit Bell diagonal states, and three-qubit noisy GHZ and W
states. Our method focuses on a particular class of LHV mod-
els, known as local-hidden-state (LHS) models, which natu-
rally arise in the context of quantum steering [7, 12], a closely
related concept to nonlocality.An advantage of such models is
that they automatically imply a LHV model when one of the
parties apply POVM measurements. A disadvantage is that
there exist entangled states that admit LHV models but do not
admit LHS models [7, 13]. As we will see in what follows,
even with this restriction, our tests are still strong enough to
find models for many interesting states.

Preliminaries.—Let us start by defining more precisely
LHV and LHS models. Suppose that Alice and Bob apply lo-
cal measurements defined by measurement operators {Ma|x}
and {Mb|y} (x and y labels measurement choices and a and
b outcomes) on a shared state ρAB. The set of conditional
probability distributions they observe is

P (a, b|x, y) = tr
[(
Ma|x ⊗Mb|y

)
ρAB

]
. (1)

The state ρAB is said to have a LHV model for these measure-
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ments if P (a, b|x, y) can be written as

P (a, b|x, y) =

∫
dλq(λ)P (a|x, λ)P (b|y, λ) (2)

where λ is the so-called shared local hidden variable and∫
dλq(λ) = 1. This decomposition can be thought as coming

from the following model: a classical variable λ is randomly
chosen according to the probability density q(λ) and sent to
Alice and Bob. Upon receiving λ and choosing their mea-
surement, Alice and Bob output a and b according to the dis-
tributions P (a|x, λ) and P (b|y, λ), respectively. Of particular
interest is when the sets {Ma|x} and {Mb|y} contain either all
projective measurements, or all POVM measurements.

A subclass of LHV models is that of local-hidden-state
(LHS) models. Let us consider now that only Alice measures
ρAB. The (unnormalised) state on Bob’s side, conditioned on
Alice having observed the outcome a of measurement x is

σa|x = trA
[(
Ma|x ⊗ IB

)
ρAB

]
, (3)

where tr[σa|x] = P (a|x) is the probability that Alice obtains
the outcome a. If these post-measurement states can be writ-
ten in the form

σa|x =

∫
dλq(λ)P (a|x, λ)ρλ, (4)

where ρλ ≥ 0, tr ρλ = 1 for all λ, and
∫
dλq(λ) = 1, ρAB is

said to have a LHS model for these measurements. It can be
easily checked that if Bob measures his share of the state (4)
with any set of POVM measurements, the probability distri-
butions observed will have the form (2). This means that the
existence of a LHS model implies a LHV model for arbitrary
POVM measurements on Bob’s side. Note that LHS models
are not as powerful as general LHV models; there exist states
that provably have an LHV model but no LHS model [7, 13].

Main Results.— The main insight behind the following the-
orems is to replace the problem of finding a LHS model for a
physical state and an infinite set of measurements, to the one of
finding a model for a non-physical operator and a finite set of
measurements. As we will discuss afterwards, this is a huge
simplification that will allow us to test for LHS models via
SDP.

Theorem 1 (LHS model for projective measurements). Let
M be a finite collection of projective measurements in CdA .
A state ρAB acting on CdA ⊗CdB admits a LHS model for all
projective measurements if there exists a unit-trace operator
OAB acting on the same Hilbert space, such that OAB admits
a LHS model for the measurements inM, and

ρAB = rOAB + (1− r) IA
dA
⊗OB, (5)

where r is the radius of the insphere[14] of the polytope gen-
erated byM.

Here we prove this theorem for the case of dA = 2. A proof
for arbitrary dA can be found in Ref. [15].

Proof. Let M define a finite set of measurements for Alice
given by measurement operators Πa|ûx

= I+(−1)aûx˙~σ
2 , where

x = 1, ..,mA, a, b ∈ {0, 1}, and ~σ = (σx, σy, σz) is the
vector of Pauli operators and û a three dimensional unit vector.
This measurement set can be chosen arbitrarily – for example
in a regular fashion (along the vertices or faces of a regular
solid), or at random. Suppose that these measurements, when
applied to a given operator OAB, have a LHS description of
the form (4),

trA
[(

Πa|ûx
⊗ IB

)
OAB

]
=

∫
dλq(λ)P (a|ûx, λ)ρλ, ∀ a, x.

(6)
Note that any set of measurements that can be performed

as a convex combination of the measurements inM also has
an LHS description. This is valid, in particular, for noisy von
Neumann measurements whose elements are contained within
a shrunken Bloch sphere completely contained inside the con-
vex hull ofM (see Fig. 1). This sphere is given by depolarized
measurement operators Π

(r)
a|û = rΠa|û + (1 − r)IA/2, where

r is the radius of the insphere of the polytope generated by the
convex hull ofM.

Finally notice that

trA[(Π
(r)
a|û ⊗ IB)OAB] = trA[(Πa|û ⊗ IB)ρAB], (7)

assuming that ρAB = rOAB + (1 − r) IA
2 ⊗ OB. That is, ap-

plying noisy measurements on an operator OAB is equivalent,
at the level of the states prepared for Bob, to applying noise-
free measurements on a noisy version of OAB, denoted here
as ρAB. Therefore, ifOAB admits a LHS model for the setM,
then it also does for the set {Π(r)

a|û}, which implies that ρAB

admits a LHS model for all projective measurements.

Note first that the operator OAB need not to be a valid den-
sity operator (it can have negative eigenvalues). The require-
ments on OAB are that it has unit trace, admits a LHS model
for the measurements inM, and that it becomes equal to ρAB

when depolarized. Note also that in the case thatM is the (in-
finite) set of all projective measurements, then this is precisely
a brute force test for the existence of a LHS model. Thus, our
method can be seen to provide a sequence of tests (sufficient
conditions), in terms of the setM, for a state to have an LHS
model, which in the limit converges to the brute force test.

To further generalise this result to accommodate general
POVMs we can make use of a result from Ref. [9], that if
ρAB has a LHS model for projective measurements, than the
state ρ′AB = (1/dA)ρAB + (1 − 1/dA)γA ⊗ ρB has a LHS
model for all POVMs, where dA is the local Hilbert space di-
mension of Alice and γA is an arbitrary state[21]. Combining
this result with the above theorem, we obtain the following

Theorem 2 (LHS for POVM measurements). A state ρAB act-
ing in CdA ⊗CdB admits a LHS model for all POVMs if there
exists an operator OAB that admits a LHS model forM such
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that

ρAB =
1

dA

[
rOAB + (1− r) IA

dA
⊗OB

]
+
dA − 1

dA
γA ⊗OB,

(8)
where γA is an arbitrary state.

Note however, that unlike in the previous case, which be-
came a brute force search for the existence of an LHS model
for all projective measurements in an appropriate limit, this
test provides only a sufficient criteria.

Both theorems can be easily adapted to the case of LHV
models by applying the same ideas also to Bob’s system [22].
That is, one can also choose a set of measurements to Bob,
compute the corresponding radius rB , impose that Alice’s and
Bob’s measurements generate local probability distributions
and locally depolarise according to Alice and Bob’s shrinkng
factors.

SDP formulation.—We now provide explicit SDP formula-
tions of Theorems 1 and 2. We start by choosing a finite set
of measurementsM and calculating r, given by the distance
between the closest facet of the polytope generated byM and
the origin, which can easily be computed by standard vertex
enumeration algorithms [23, 24]. Since M is finite, we can
restrict to a finite set of hidden variables [25] when imposing
an LHS model for the operator OAB. Without loss of gener-
ality we take λ = λ1 · · ·λmA to be a mA-length bit-string,
which specifies a (deterministic) outcome for each of the mA

measurements of Alice: a = λx when the measurement along
direction ûx is performed. There are dmA distinct determinis-
tic specifications. Thus, according to Theorem 1, the follow-
ing SDP tests for a LHS model for projective measurements
on the state ρAB:

given ρAB,M, r

find OAB, {ρλ}λ
s.t. trA

[(
Πa|ûx

⊗ IB
)
OAB

]
=
∑
λ

Dλ(a|x)ρλ, ∀ a, x

ρλ ≥ 0, ∀ λ (9)

rOAB + (1− r) IA
d
⊗OB = ρAB,

where Dλ(a|x) = δa,λx are deterministic response functions.
Following Theorem 2 we can substitute the last constraint

in the above SDP by Eq. (8) to test, with a given γA, for the ex-
istence of an LHS model for all POVM measurements. These
programs can also be adapted to test families of states ρ(w)
that depend linearly on a parameter w (e.g. Werner states): in-
stead of running the feasibility problem (9) one can maximise
(or minimise) w subject to the same constraints. This finds
the value w∗ such that for all w ≤ w∗, states within the fam-
ily have an LHS model.

Extensions.—The previous methods extend to multipartite
states in a rather straightforward way. In particular, extending
B → B1 ⊗ · · · ⊗ Bk, we demand in addition that each ρλ in
(9) (now an operator on HB1

⊗ · · · ⊗ HBk
) is a fully separa-

ble state. This is easily seen to provide an LHV model where

r

u
1

-u
1

u
2

u
3

-u
2

-u
3

FIG. 1. Diagrammatic representation of the method (restricted to
two-dimensions for illustrative purposes). The vectors ±ûx are the
Bloch vectors corresponding to each of the measurements from the
set M. The area enclosed by the dashed lines is the polytope that
these measurements form. Any measurement contained inside this
polytope can be simulated by appropriately mixing the LHS model
that simulates the measurements inM. The shaded circle, of radius
r is the largest circle which is completely contained in the convex
hull, and contains all noisy projective measurements Π

(r)

a|û.

each Bob can perform arbitrary POVM measurements. Note
that although imposing separability is in general difficult; for
the case where Bob holds two qubits, imposing positive par-
tial transpose (PPT) is sufficient. In the case of higher dimen-
sional systems, although in principle the above method still
applies, the number of measurements necessary to generate a
polytope with a large insphere grows quickly with dA (which
is necessary to keep the amount of noise low). This implies
that the above SDPs become too costly to be used in practice.

Example 1.— As an illustration of the technique we
first investigate the Bell diagonal states, given by ρBell =∑
i pi |Ψi〉 〈Ψi|, where |Ψi〉 are the four Bell states, pi ≥ 0,

and
∑
i pi = 1 have LHS models. In this case we adapted the

SDP (9) to maximise p1 provided the same constraints. We
find p1 ≈ 0.4454, and p2 = p3 = p4 = (1−p1)/3, which is a
Werner state, usingM along the vertices of the rhombicuboc-
tahedron, an Archimedian solid with 24 vertices. Notice that
the analytical construction of Werner [3] provides a model for
p1 ≤ 1/2, thus with 12 measurements our method already
recaptures ≈ 89% of LHS Werner states. We also looked at
rank-3 Bell diagonal states, by setting p4 = 0, and found the
largest p1 equal to 0.5664, with the sameM.

Example 2.— As a more physical example we consider an
initial maximally entangled state |Φ+〉 = (|00〉 + |11〉)/

√
2

undergoing independent local amplitude damping given by
the evolution ρ(t) =

∑
i,j Ei ⊗ Ejρ(0)E†i ⊗ E

†
j , defined by

the Kraus operatorsE0 = |0〉〈0|+
√

1− e−γt|1〉〈1| andE1 =√
e−γt|0〉〈1|. This noisy model is used to describe sponta-

neous decay of two-level systems [26] and is particularly rel-
evant for atomic Bell experiments [27, 28]. While the evolved
state becomes separable only asymptotically (i.e. for t→∞),
we found it to have an LHS model for all γt & − ln 0.60.

Example 3.— Finally, we consider noisy 3-qubit GHZ and
W states given ρ(p) = p|ψ〉〈ψ| + (1 − p)I/8, where |ψ〉 =
|GHZ〉 := (|000〉 + |111〉)/

√
2 or |ψ〉 = |W 〉 := (|001〉 +
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|010〉 + |100〉)/
√

3. These states are fully separable for p ≤
0.2 and p ≤ 0.2096 respectively. With M corresponding to
the rhombicuboctahedron we found that these states are LHS
for projective measurements for p ≤ 0.232 and p ≤ 0.228
respectively.

Generating entangled states with LHS models.— A com-
plementary problem to the one of deciding if a target state is
local, is to generate local entangled states. Furthermore, it is
also interesting generating local states which contain as much
entanglement as possible. To this end, we make use of the
concept of entanglement witnesses.

Entanglement witnesses are Hermitian operators W for
which a negative expectation value for the state ρAB,
tr[WρAB] < 0, certifies that it is entangled. As shown in
Refs. [29, 30], if W has additional appropriate structure, the
absolute value of this negative expectation value also pro-
vides a lower bound on the amount of entanglement of ρAB,
i.e. E(ρAB) ≥ − tr[WρAB]. Finally, such entanglement
witnesses themselves can be obtained through simple SDPs,
where by imposing the different constraints on W we obtain
[15] estimators for different entanglement quantifiers E(ρAB)
[29, 30]

We now propose a method to generate entangled states with
LHS models and high entanglement. We start with a given
witness W (obtained via an SDP). As before, we choose a set
of measurements M and compute the radius of the insphere
r. We now search for the state which maximally violates the
witness and has a LHS model for projective measurements by
solving the following SDP:

min
OAB,ρa

tr[W (rOAB + (1− r) IA
d
⊗OB)]

s.t. trA
[(

Πa|ûx
⊗ IB

)
OAB

]
=
∑
a

Da(a|x)ρa,∀ a, x

ρa ≥ 0, ∀ a, tr[OAB] = 1, (10)

rOAB + (1− r) IA
d
⊗OB ≥ 0.

If the solution of this SDP is negative, then the minimising
operator ρ∗AB = rO∗AB +(1−r) IA

d ⊗O
∗
B is an entangled state

which has a LHS model: entanglement is guaranteed by the
violation of the witness and the fact it is has a LHS model is
imposed by the constraints of the SDP.

Once we find an example of a LHS entangled state ρ∗AB, we
can iterate this procedure and find new examples with more
entanglement: we find the entanglement witness W ∗ which
is optimal for the state ρ∗AB and use W ∗ in the SDP (10) to
find a new state ρ∗∗AB, which is generally more entangled ac-
cording to the chosen quantifier. This procedure can then be
iterated until it converges [31]. Note that different quantifiers
of entanglement have different properties, and thus exploring
a number of different quantifiers can provide LHS states with
different properties. Finally, as before, we can adapt (10) ac-
cordingly to Eq. (8) to find examples of entangled states with
LHS models for all POVM measurements.

Using this method we generated a large list of bipartite

entangled states which have LHS models for projective and
POVM measurements [32]. In Ref. [15] we make an analysis
of these examples in terms of their entanglement content and
other relevant parameters. Finally, by using entanglement wit-
nesses that detect genuine multipartite entanglement [33] we
were also able to obtain new examples of genuine tripartite
entangled three-qubit states with LHS models for projective
measurements. To the best of our knowledge, only two exam-
ples were previously known [34, 35].

Estimating the volume of LHS states.— The previous pro-
grams can be directly applied to lower bound the relative vol-
ume of the set of entangled states that admit LHS models. We
uniformly sampled 2 × 104 two-qubit states according to the
Hilbert-Schmidt and Bures measures, for which we obtained,
≈ 23% and ≈ 7% separable states, respectively, in good ac-
cordance with the values 24.2% and 7.3%, obtained from ge-
ometrical arguments [36]. We then applied the above SDPs to
estimate how many of the entangled states admit LHS models
[37]. With the measurementsM chosen to be the vertices of
the icosahedron (r ≈ 0.79), we obtain that &25% of the en-
tangled states sampled according to the Hilbert-Schmidt mea-
sure are LHS, while &7% are LHS using the Bures measure.
We were not able to obtain any entangled state admiting LHS
models for POVMs by applying the same technique with mea-
surements given by the icosahedron. A better estimation of the
volume of the set of local states could be obtained, both for
projective measurements and POVMs, by considering more
measurements in the setM.

Discussion.— Not all entangled quantum states exhibit non-
locality – the strongest signature of their inseparability. Un-
derstanding the relation between nonlocality and entangle-
ment is an important problem, and it has been notoriously dif-
ficult to find general purpose methods for determining which
entangled states are local. In this paper we have presented a
criterion for a state to admit a LHS model for projective or
general measurements. Although LHS models are only a sub-
set of general LHV models, we have demonstrated the power
of our criteria by finding new physical examples of multipar-
tite entangled states that are local.

We also showed how our method naturally provides a
method to generate examples of entangled local states, and
used it to give the first estimate of the relative volume of the set
of entangled two-qubit states that admit LHS models, showing
that a significant fraction of them in fact do so. As a conse-
quence, our results lower bound the fraction of states useless
as resources for any device-independent quantum information
processing task.

Our method works particularly well for projective measure-
ments on two- or multi-qubit states, becoming equal to a brute
force search in the appropriate limit. In [22] it was further
shown how a variant of the above methods allow provide nec-
essary and sufficient criteria for general POVM measurements
in the limit. In the future it would be interesting to build upon
the general methods presented here to provide practical tests
for higher dimensional and multipartite systems.

Note added.—During the development of this work we be-
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came aware of a complementary work by F. Hirsch et al. [22].
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