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Abstract
Data of physical contacts and face-to-face communications suggest temporally varying networks as
themedia onwhich infections take place among humans and animals. Epidemic processes on
temporal networks are complicated by complexity of both network structure and temporal
dimensions. Theoretical approaches aremuch needed for identifying key factors that affect dynamics
of epidemics. In particular, what factorsmake some temporal networks strongermedia of infection
than other temporal networks is under debate.We develop a theory to understand the susceptible-
infected-susceptible epidemicmodel on arbitrary temporal networks, where each contact is used for a
finite duration.We show that temporality of networks lessens the epidemic threshold such that
infections persistmore easily in temporal networks than in their static counterparts.We further show
that the Lie commutator bracket of the adjacencymatrices at different times is a key determinant of
the epidemic threshold in temporal networks. The effect of temporality on the epidemic threshold,
which depends on a data set, is approximately predicted by themagnitude of a commutator norm.

1. Introduction

Amajority of infectious diseases, ranging from seasonal influenza to Ebola outbreaks and sexually transmitted
infections, can be viewed to occur on contact networks of humans and animals, which are composed of
individuals and dyadic links between them. Epidemic processes are one of themost widespread applications of
network analysis. Structure of contact networks has been shown to affect, for example, the likelihood and speed
of an infection penetrating into a significant part of a population, effectiveness of intervention strategies, and
identification of super-spreading individuals [1–3].

Accumulating data evince that contact networks underlying epidemic and other processes are often highly
dynamic, constituting temporal networks [4, 5]. For example, linksmay be only occasionally used for actual
physical contacts. Individualsmay be socially active in some restricted periods of time. Temporality of networks
may alter effects of networks on epidemic processes [6, 7]. This is a practical enquiry because various instances of
epidemics in human and animal populations, and also viral spreading of information in human society, seem to
occur on temporally varying networks. However, our understanding of epidemic processes in temporal
networks is still limited. Theory based on the branching process enables us to understand long-tail behaviour of
the number of newly infected individuals [8–10]. Other theoretical approaches include analysis of epidemic
spreading on theoretically tractable generativemodels of temporal networks [11–21]. However, these studies
assume networkmodels such that theymaymiss effects of the properties of temporal contact networks that are
present in empirical data but notmodelled. On empirical temporal networks, themost popular approach has
probably been to run numerical simulations of epidemic processes on the empirical networks and their variants
(e.g., [7, 22–24]).

OPEN ACCESS

RECEIVED

22 February 2016

REVISED

5May 2016

ACCEPTED FOR PUBLICATION

7 June 2016

PUBLISHED

6 July 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/7/073013
mailto:naoki.masuda@bristol.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/7/073013&domain=pdf&date_stamp=2016-07-06
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/7/073013&domain=pdf&date_stamp=2016-07-06
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


Valdano and colleagues introduced a temporal-network variant of the individual-based approximation to
understand the susceptible-infected-susceptible (SIS)model of epidemic spreading [25, 26] (also see [27] for a
similar approach to a different diseasemodel). In this approach, the probability that each node is infected is
tracked over time using thematrix algebra. They showed how to calculate the epidemic threshold (i.e., strength
of infection abovewhich infection can remain prevalent in the population) and the prevalence (i.e., fraction of
infected nodes in the stationary state) in terms of the spectral radius of a relevantmatrix. Their theory is
applicable to arbitrary temporal network data.

Despite these and other developments, we are yet left with fundamental questions regardingmechanisms of
infections in given temporal networks.Why is the epidemic threshold large in one temporal network and small
in another?Howdo two time scales, one of network dynamics and the other of the epidemic process, interact? In
the present study, we use the individual-based approximation to reveal factors controlling the epidemic
threshold for the SISmodel on arbitrary temporal networks.We show theoretical and numerical evidence that
the epidemic threshold decreases (i.e., infection ismore likely to occur) as the network becomesmore temporal
in the sense that the network changesmore slowly (but not quiescent) relative to the time scale of the epidemic
process.We use the continuous-time SISmodel on networks switchingwith regular intervals to reach this
conclusion. This result is consistent with those derived for particular temporal networkmodels [16, 18]. Impacts
of the temporality of networks on the epidemic threshold vary across networks [25–27].Wefind that non-
commutativity of the adjacencymatrices at different times, as quantified by the Lie bracket of the adjacency
matrices, is a key indicator that influences the epidemic threshold.

2.Model

Weconsider the continuous-time SISmodel on undirected temporal networks havingNnodes, as schematically
shown infigure 1. Each node assumes either the susceptible or infected state. An infected node infects each of its
susceptible neighbours at rateβ. An infected node transits to return to the susceptible state at rate γ. Tomodel
exogenous dynamics of networks, we consider an infinite sequence of adjacencymatrices ¼{ }( ) ( )A A, ,0 1 and

sequentially apply each of them for time τ. In other words, ¢ℓ( )A is applied between time t¢ℓ and t¢ +ℓ( )1 .We
refer to each network applied for time τ as the snapshot network, or snapshot in short.

This switching networkmodelling of temporal networks is common in studying synchronisation processes
[28–30]. It is also in accordance with observation of temporal network data at regular time intervals τ. Here we
regard τ as a free parameter. It controls the relative time scale of the epidemic and network dynamics;
multiplying τ by a constant >( )c 0 is equivalent to not changing τ and instead changingβ and γ to bc and gc ,
respectively. In addition, changing (τ,β, γ) to ( tc , b c , g c)does not change the dynamics. Therefore, we set

g = 1without loss of generality.
Themodel simplifies over real epidemic processes. Heterogeneities are considered only through the

quenched disorder of the network. Amore refinedmodel would account for heterogeneity also in the
parameters, drawingβ and γ separately for each node and τ for each snapshot fromprobability distributions.We
suppress these refinements for the sake of tractability of themodel.

Figure 1. Schematic showing a temporal networkwithN=4 nodes and =ℓ 4 snapshots, and the corresponding aggregate network.
The linkweight in the aggregate adjacencymatrix, *A , is equal to the sumof the linkweight over the four snapshots divided by four.
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3. Infections persistmore easily in temporal than static networks

Wedenote the probability that node i (  i N1 ) is in the infected state at time t by xi(t). Under the assumption
that the states of different nodes are independent of each other, the individual-based approximation to the SIS
dynamics linearised around the disease-free configuration (i.e., =( )x t 0i for all i) is given by

b t t= - ¢ < ¢ +¢ ℓ ℓ˙ ( ) ( ) ( ) ( ( ) ) ( )ℓ( ) x xt A I t t 1 , 1

where = ¼( ) ( ( ) ( ))x t x t x t, , N1 , denotes the transposition, and I is the identitymatrix.When the network is
static, equation (1) is simplified to b= -˙ ( ) ( ) ( )x xt A I t , whereA is the adjacencymatrix. The epidemic
threshold, denoted by bc, is defined as the value ofβ abovewhich infection can persist in the network. According
to the individual-based approximation, bc for a static network is given by the value ofβ at which the leading
eigenvalue of b -A I is equal to zero. The leading eigenvalue of b -A I is given by ba - 1max , where amax is
the leading eigenvalue ofA. Therefore, we obtain b a= 1c max [3, 41, 42].

When the network varies in time, equation (1) yields

t t=ℓ( ) ( ) ( ) ( )x xT 0 , 2

where

t b t b t= - --( ) [( ) ] [( ) ] ( )ℓ( ) ( )T A I A Iexp exp . 31 0

The leading eigenvalue of t( )T , which depends on sequence ¼ -{ }ℓ( ) ( )A A, ,0 1 , is denoted by mmax. The epidemic
threshold, bc, satisfies m = 1max . Valdano and colleagueswere the first to derive this result by analysing the SIS
model in discrete time [25].

For two temporal networks, we simulated the SISmodel dynamics using the quasistationary state (QS)
method [43] tailored to the case of temporal networks (appendix A).We aggregated the original data over several

timewindows to define snapshot networks ¢ℓ( )A ; the size of the aggregatingwindow is shown in table 1. The
average prevalence of infection for values ofβ and τ is shown infigure 2. Similarly to [25], we assumed a periodic
boundary condition such that thefirst snapshot ensues after the last snapshot. The theoretical estimates of bc are
shownby the arrows infigures 2(a) and (b), which are fairly accurate.

Figure 2 suggests that the epidemic threshold, denoted by bc, decreases as τ increases in both networks. To
formulate this point, we compare bc with the epidemic threshold for the SIS dynamics occurring on the
aggregate, static network, denoted by b*c .We start with defining the aggregate network as the adjacencymatrix

= å ¢=
- ¢ ℓℓ

ℓ ℓ( )*A A0
1 applied for tℓ t0 .With this normalisation, the temporal and aggregate networks

have the same time average of theweight of each link [30] (figure 1). The epidemic threshold for the aggregate
network is given by b a=* *1c max, where a*max is the largest eigenvalue of *A .

Any real-valued, continuous spectral functionf that acts on the spectrumof itsmatrix argument and only
attainsfinite values satisfies f f +( ) ( )e e eM M M M1 2 1 2 for arbitrary symmetricmatricesM1 andM2 [44].
Although a generalisation of this inequality to the case ofmore than twomatrices is false in general, we
conjecture that it remains true if the involvedmatrices have only non-negative entries andf is the spectral
radius.We have the following evidence. First, to the best of our knowledge, all counterexamples involvematrices
with negative entries [45]. Second, the theoretical results for twomodel temporal networks presented in
section 4 are consistent with this inequality. Third, all numerical calculations performed in this paper on real
data sets and synthetic networks are consistent with this inequality. By admitting this generalised inequality, and

applying it tomatrices bt ¢ℓ( )A ( ¢ -ℓ ℓ 0 1), we obtain

Table 1.Properties of empirical temporal networks. The number of nodes (N), that of links (M),
that of events (Mevent), and that of snapshots (r) are shown. The largest connected component of
the aggregate undirected network is used for each data set. The length of the aggregating timewin-
dowused for figures 2 and 6 is also shown. In the realitymining data set, we have ignored thefirst
27weeks, because the time stamps for these entries are false [32].

Data N M Mevent r Aggregating window

Hospital ward [31] 75 1139 32 424 97 1 h

Realitymining [32] 104 3525 781 653 54 7 d

ht09 [33] 113 2196 20 818 59 1 h

School2011 [34] 126 1710 28 561 76 1 h

School2012 [34] 180 2220 45 047 203 1 h

School2014 [35, 36] 242 8317 125 773 33 1 h

School2013 [37] 327 5818 188 508 101 1 h

Onlinemessage [38] 1892 13 835 59 831 195 1 d

Hospital [39] 5607 60 177 936 101 105 7 d

Sexual contact [40] 15 810 38 540 50 116 75 30 d
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Equation (4) implies that m  1max at b b= *c . Therefore, b b*c c .
Several remarks are in order. First, equation (4) implicitly assumes the periodic boundary condition for the

temporal networks. However, becauseℓ is arbitrary, equation (4)holds true for arbitrary sequences of networks.
Second, in the limit t  0, equation (4) is satisfiedwith equality such that b b a= =* *1c c max. Third, if each
snapshot is composed of a single link, numerical results suggest that the epidemic threshold increases as the
temporality of the network increases (appendix B), which is opposite to the current result. In this situation, the
probability that the infection is extinguished is not negligible even for a large infection rate. A theory that
accounts for stochasticity, which is different from the deterministic individual-based approximation, correctly
predicts the direction of the change in the epidemic threshold as τ increases (appendix B). It should be noted that
a networkmainly composed of isolated single links is realistic for sexually transmitted infections through
monogamous relationships [11]. This situation is out of the scope of the following analysis. Our theory requires
that each snapshot has a relatively large connected component such that the SIS dynamics on the snapshot are
not significantly influenced by disconnected single links even if they are present. The stochasticity and the
absorbing configuration (all nodes susceptible) become relevant not only for disconnected single links
(appendix B) but also snapshots of increasing size as t  ¥. If τ exceeds the typical time of reaching the
absorbing configuration on a snapshot, the epidemic ceases due to stochasticity.

4. Analysis ofmodel networks

4.1. Temporal networkswith clique snapshots
To investigate the distance between the epidemic threshold for aggregate and temporal networks and its
dependence on parameters, we start by calculating the epidemic threshold for two temporal networkmodels. In
thefirstmodel, snapshots consist of a disjoint union of cliques, eachwith +d 1cl nodes, and isolated nodes. A
cliquemay be a suitablemodel for conversation events in a small group [23, 46–48]. The clique size remains the
same across different cliques and snapshots. The number of nodes stays constant across snapshots, but the
number of cliquesmay depend on a snapshot.

We assume that snapshots are randomly and independently drawn froma set of possible snapshots with
equal probability, whichwe call the random samplingwith replacement.Whether the expected prevalence is
positive or not can be determined by l t m= ¥

-ℓ( )ℓlim ln1
max, which is equal to themaximumLyapunov

Figure 2. Stochastic simulations of the SISmodel on the (a) onlinemessage data set [38] and (b) sexual contact data set [40]. See table 1
for details on the data sets.We imposed periodic boundary conditions. The theoretically obtained bc is shown by the arrows.We
calculated the theoretical bc value by a bisectionmethod on the leading eigenvalue of t( )T .We expanded t( )T up to the termof the
order of t( )O 10 and calculated its leading eigenvalue using the powermethod.
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exponent associatedwith the switching linear dynamics induced by operator t( )T (equation (3)) as  ¥ℓ
[49–51]. The epidemic threshold corresponds to l = 0. It is algorithmically undecidable to determinewhether
l < 0 or not [52], hindering us fromderiving the exact value of bc . Therefore, we evaluate the expected state
vector, [ ( )]x tE , where E is the expectation. The expected state vector evolves according to

t t t¢ + = ¢ℓ ℓ[ (( ) )] ˆ ( ) [ ( )] ( )x xTE E1 , 5

where ¢ = ¼ℓ 0, 1, , and

åt b t= -ˆ ( ) [( ) ] ( )T
r

A I
1

exp . 6
A

Here, the summation runs over all possible snapshots, and r represents the number of possible snapshots.We
denote the leading eigenvalue of tˆ ( )T by m̂ ;max m t( ˆ )ln max approximatesλ. It holds true that m t l( ˆ ) ln max

(appendix C). In addition, we numerically verified b b» ˆ
c c for some networks and a range of parameter values,

where the estimate of the epidemic threshold b̂c is obtained from m =ˆ 1max (figure 3).
As shown in appendixD,we obtain

b
t a

» + -tˆ ( ) ( )
*

⎡
⎣⎢

⎤
⎦⎥d

d1
ln 1 e 1 . 7c

cl

cl

max

Equation (7) is exact as t  0, yielding b a=ˆ *1c max. It is also exact as t  ¥, yielding b =ˆ d1c cl.
Infigure 4, we test the accuracy of the theory against numerical simulations using a synthetic temporal

network constructed as follows. In each snapshot, every node is independently activatedwith probability ai,
which obeys a power-law distribution. Each activated node triggers a clique of size +d 1cl by involving dcl other
nodes drawnwith equal probability.We allowmultiedges in a snapshot. The degree of the aggregate network up
to the leading order in terms ofN is given by » + á ñ*d a d a di i cl cl

2, where á ñ = å =a a Ni
N

i1 . Figure 4(a) suggests
that equation (7) (dotted line) is sufficiently close to the exact value of b̂c obtained through equation (6) (solid
line). The small discrepancy between the exact and the approximated values are caused by the fact that cliques
may overlap in the synthetic temporal networks, which the approximate theory does not assume. All these
estimates accurately locate the position of the epidemic threshold obtained fromdirect numerical simulations
(figure 4(b)).

Different temporal networks generated by the presentmodel can have the same aggregate network. In
equation (7), a*max is the same for all temporal networks sharing an aggregate network. Therefore, the epidemic
threshold depends on the temporality of networks solely through dcl. Equation (7) implies that the epidemic
threshold decreases as dcl increases for all values of t > 0. This observation implies that infection ismore likely
to be prevalent when snapshots are highly variable in the sense that some snapshots havemany links and others
have few links, as compared towhen different snapshots have similar densities.

Figure 3.Comparison between the epidemic threshold bc (solid line) and its lower bound b̂c (dotted line). The Lyapunov exponent,
whichwas used for calculating b̂c, was computedwith aMonte Carlo algorithm [50]. (a)Networkwith randomclique snapshots. (b)
Activity drivenmodel.We setN=100, = =d d 10cl hub , and r=100. The value of ai (e  a 1i ) is distributed according to a
power lawwith exponent equal to 3.We adjust ε such that themean of ai equals 0.04.
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4.2. Activity drivenmodel
In the temporal networks composed of cliques (section 4.1), the degree of nodes is essentially homogeneous
within each snapshot (i.e., dcl or 0). In this section, we study the case inwhich a snapshot consists of a disjoint
union of stars, allowing snapshots to be heterogeneous in the node’s degree. Each star is assumed to have one
hubnode connected to dhub leaves. A leaf is only adjacent to the corresponding hub. The value of dhub is assumed
to be the same for different stars and snapshots. Different snapshotsmay contain different numbers of stars. As a
special case of thismodel, we consider the discrete-time version of the activity drivenmodel [17, 21]. In each
snapshot, every node i is activatedwith probability ai independently of other nodes. The variable ai plays a
similar role to that in the case of clique snapshots but is distinct from it. For each activated node, dhub nodes are
drawnwith equal probability and connected to the activated node. Although stars in a single snapshotmay
overlap, we consider the case inwhich the overlap is rare.

Figure 4.Epidemic threshold for temporal networkmodels. (a) and (b)Temporal networkswith clique snapshots. (c) and (d)Activity
drivenmodel. (a)Epidemic threshold for the clique networkmodel. The epidemic threshold, b̂c, obtained from the bisectionmethod
on equation (6) is shown by the solid line. The approximation, equation (7), is shown by the dotted line. The two lines severely overlap
in the entire range of τ. (b) Fraction of infected nodes for the clique networkmodel. The results for direct stochastic simulations are
shown by the curves. The epidemic threshold predicted by equation (6) and equation (7) are shown by the solid and dashed arrows,
respectively. (c)Epidemic threshold for the activity drivenmodel. The exact value obtained from equation (6) is shown by the solid
line. The approximation, equation (8), is shown by the dotted line. (d) Fraction of infected nodes for the activity drivenmodel. The
epidemic threshold predicted by equation (6) and equation (8) are shown by the solid and dashed arrows, respectively.We set
N=2000, = =d d 15cl hub , r=1000, and let each ai obey the power-law distributionwith the probability density function

h e- -h h- -( ) ( )a1 1i
1 , where e  a 1i .We set h = 3 and adjusted ε to ensure á ñ =a 0.0025.
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As shown in appendix E, the epidemic threshold is approximated as

b
t a

» + -tˆ ( ) ( )
*

⎡
⎣⎢

⎤
⎦⎥d

d1
ln 1 e 1 . 8c

hub

hub

max

It should be noted that both equation (8) and amore exact estimate given by equation (39) (appendix E) converge
to b a=* *1c max in the limit t  0 and to d1 hub in the limit t  ¥. The high accuracy of equation (8) is
confirmed infigure 4(c).

Equation (8) indicates that the epidemic threshold is small for a large value of dhub. This result is consistent
with that for the networkmodel with clique snapshots. In other words, if the aggregate network is the same,
temporal networks that sometimes have dense snapshots and otherwise sparse snapshots wouldmake the
epidemic threshold small, as compared to temporal networks that have similar density of links across time.

According to the heterogeneousmeanfield approximation [17, 21], the epidemic threshold for the activity
drivenmodel is equal to

b »
á ñ + á ñ( )

( )
d a a

1
. 9c

hub
2

In fact, we obtain a » á ñ + á ñ( )* d a amax hub
2 , yielding b b=*c c (see appendix F for the derivation of a*max). In

their framework, network switching occurs sufficiently fast as compared to epidemic dynamics such that
epidemic spreading is effectively occurring on the static, aggregate network. Their epidemic threshold is different
from thewell-known value for the configurationmodel [53] because the aggregate network of the activity driven
network is different from the configurationmodel having the same degree sequence. In contrast, the present
results capture how the time scale of the network dynamics as described by the activity drivenmodel and that of
the SIS dynamics interact.

5.Non-commuting snapshots lower the epidemic threshold

The amount of the shift in the epidemic threshold aswe slow down the dynamics of the network (by increasing
τ) depends on individual temporal networks. The onlinemessage network (figure 2(a)) experiences a larger shift
than the sexual contact network (figure 2(b)). In themodel networks examined in section 4, the epidemic
threshold is sensitive to the change in τwhen dcl or dhub is large (equations (7) and (8)). In this section, we
propose a quantity to predict the sensitivity of the epidemic threshold, bc, to temporality of networks, τ.

First of all, bc is independent of τ if any pair of adjacencymatrices of the snapshots commutes. This is
because the time evolution operator for the temporal network, t( )T (equation (3)), and that for the aggregate
network, b t- ℓ[( ) ]*A Iexp , coincide in this case. To quantify the difference between bc and b*c whenmatrices
are non-commuting, we use Zassenhaus’ formula [54] given by

+ =[ ( )] [ ] [ ] [ ( )] ( )


s M M sM sM s C M Mexp exp exp exp , , 10
n

n
n1 2 1 2

2
1 2

whereM1 andM2 arematrices, s is a real number, and n 2 indicates amatrix product in ascending order of the
indices.Matrices ( )C M M,n 1 2 ( n 2) are given by linear combinations of nested commutator brackets, where
the commutator bracket ofM1 andM2 is defined by

º -[ ] ( )M M M M M M, . 111 2 1 2 2 1

For instance, the first twomatrices are given by

= -( ) [ ] ( )C M M M M,
1

2
, 122 1 2 1 2

and

= +( ) ( [ [ ]] [ [ ]]) ( )C M M M M M M M M,
1

6
2 , , , , . 133 1 2 2 1 2 1 1 2

By iteratively applying equation (10)with tb=s , we obtain

  åb t t tb- =
¢=

-
¢

=

¢-
ℓ[( ) ] ( ) ( ) ( )

ℓ

ℓ
ℓ

ℓ

ℓ
ℓ( ) ( )*



⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥A I T C A Aexp exp , , 14

n

n
n

1

1

2 0

1

which relates the time evolution operator for epidemic dynamics on the aggregate network on the left-hand side
to that of the temporal network, t( )T , on the right hand side. In particular, mmax equals

7

New J. Phys. 18 (2016) 073013 L Speidel et al



å å å å

å å

m f b t tb tb

f b t b
b t

= - - - +

= + - + - + +

¢=

-
¢

=

¢-


¢=

-
¢

=

¢-


¢=

-

=

¢-
¢ 

ℓ

ℓ
ℓ

ℓ

[( ) ] ( ) ( )

( ) ( ) [ ] ( )

( )

ℓ

ℓ
ℓ

ℓ

ℓ
ℓ

ℓ

ℓ
ℓ

ℓ

ℓ
ℓ

ℓ

ℓ

ℓ

ℓ
ℓ ℓ

( ) ( ) ( ) ( )

( ) ( )

*

* *

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎛
⎝
⎜⎜

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎧
⎨
⎩

⎫
⎬
⎭

⎞
⎠
⎟⎟

A I I C A A C A A

I A I A I A A

exp , ,

,
2

.

15

max
2

1

1

2
0

1
3

1

1

3
0

1

2
2

2
1

1

0

1 2





Equation (15) suggests that nested commutator brackets between adjacencymatrices of snapshots control the
difference between mmax and f b t- ℓ( [( ) ])*A Iexp . On the basis of equation (4), this difference yields a
difference between bc and b*c . Therefore, we define the degree of non-commutativity by

å åa
º

¢=

-

=

¢-
¢ 

ℓ( )
[ ] ( )

ℓ

ℓ

ℓ

ℓ
ℓ ℓ( ) ( )

*
C A A

1
, , 16

max
2

1

1

0

1

2 

where · 2  is the spectral normdefined by f= ( )M MM2  . Themultiplicative constant a*1 max in
equation (16)normalises the leading eigenvalue of the aggregate network to unity. IfC= 0, all pairs of the
adjacencymatrices of snapshots commute, and bc is independent of τ. If >C 0, at least some adjacencymatrices
do not commute.

We carry out numerical simulations to examine the relationship betweenC and the epidemic threshold.
First, we generate r=50 commuting adjacencymatrices of snapshots (appendixG), yieldingC= 0. Then, we
manipulateC by gradually swapping elements of adjacencymatrices of different snapshots with the aggregate
networkfixed (appendix G). For each sequence of adjacencymatrices thus obtained, we estimate the relative
change of the epidemic threshold given by b b b bD = -( )* *c c c c . Figure 5 indicates that bD c increases roughly
quadratically inC and suggests a high predictive power ofC.

Across several temporal network data sets summarised in table 1, the dependency of bD c onC is shown in
figure 6(a). Thefigure also contains results for temporal networks with clique snapshots and the activity driven
model. These networks were generatedwith different values of dcl and dhub under the condition that the
aggregate networkwas approximately the samewithin the samemodel (appendixH). Consistently with figure 5,
C is a strong determinant of the decrease in the epidemic threshold across various temporal networks. It should
be noted thatC and bD c are strongly correlated despite different sizes of the empirical networks.

Various types of temporal correlation in empirical data are known to affect epidemic processes [7, 22–24].
Therefore, the epidemic thresholdmay be influenced by the order of snapshots, whereasC is not. To examine
this point, we calculated the epidemic threshold for each network using the order of snapshots given by random
samplingwith replacement. The results are shown infigure 6(b). For these decorrelated temporal networks as
well,C and bD c are strongly correlated. Comparison between figures 6(a) and (b) reveals that the loss of
temporal correlation somewhat decreases bD c for all data sets. However,C is clearly a stronger determinant of

bD c than the order of snapshots is.

Figure 5.Relationship between the epidemic threshold and the degree of non-commutativity for the synthetic temporal networks.
Each point corresponds to a different sequence of snapshotsmanipulated from the original one such that the aggregate network is the
same. The original sequence was generatedwith r=50 snapshots andN=10 nodes each.We used a smallN value because it was
computationally costly to generate snapshots with largerN.We set t = 1.
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6.Discussion

Wehave provided evidence that the epidemic threshold for the SISmodel on temporal networks is smaller than
that for the corresponding static networks for arbitrary temporal networks.We have also shown that the degree
of commutativity of the adjacencymatrices of the snapshot networks predicts the impact of temporality of the
network on the epidemic threshold. Our results are opposite to the previous results concluding that infection in
the SISmodel is less likely in temporal than static networks [11, 17, 20]. However, our results do not contradict
theirs, for which the aggregate network obtained from the temporal network is not equal to the static network
used for comparison. In contrast, we compared temporal networks with static networks such that they are the
same if we ignore the temporal information in the former.

In the discrete-time SISmodel on temporal networks [25], the epidemic threshold is larger for the temporal
network than the corresponding aggregate networkwhen a sequence of snapshots is randomly drawnwith
replacement (appendix I). This result is opposite to the current results for the continuous-time dynamics.
Because a discrete-timemodel is a proxy to the continuous-time counterpart, which is usuallymore realistic, the
present continuous-time framework is useful. For instance, the discrete-time SISmodel implicitly assumes that,
for time τ, each node is allowed tomake atmost one transition between the infected and susceptible states.
Therefore, the propagation speed is restricted, which is not the case in the continuous-time framework. In
particular, the discrete and continuous-time versions only coincide when t  0, inwhich limit both reduce to
the SISmodel on the aggregate network.

Wemodelled temporal networks by switching networks. In practice, we cannotmanipulate the duration of
each snapshot (i.e., τ) because it is specified by the data, reflecting the temporal resolution of the observation.
Rather, our interpretation of τ is the relative time scale between the epidemic dynamics and network dynamics.
A large τ, withwhich the epidemic threshold decreases, corresponds to fast epidemic dynamics relative to
network dynamics. The present results imply that infection is pronouncedwhen the network varies over time
(i.e., temporal network) but only slowly. In this situation, there are timeswhen some snapshots strongly favour
infection as compared to typical snapshots, and such snapshots enhance infectionmore than other snapshots
suppress it. It should be noted that the time scale of the epidemic dynamics does not affect the equilibriumof the
SISmodel in the case of static networks. A future extension of themodelmay relax the assumption of equal
duration τ of each snapshot and explore the effect of a (possibly broad) distribution of time spans. In a further
step, a dependence of τ on the nodes’ statemay be considered tomodel contact avoidance and quarantine of
infected nodes.

Our commutativity result opens theway to contain infection by devising the set of snapshots without
changing τ or the structure of the aggregate network. In a hospital, itmay be undesirable to change aggregate
interactions between doctors, nurses, and patients because the amount of the interactionsmay be positively
correlatedwith service quality.We can increase the epidemic threshold (therefore, less epidemic) by designing a
sequence of interactions such that the corresponding adjacencymatrices commute asmuch as possible. The
method explained in appendix G is useful in systematically generating commuting adjacencymatrices. For a

Figure 6.Relationship between the shift in the epidemic threshold and the degree of non-commutativity for real temporal networks
(circles), temporal networkswith clique snapshots (triangles) and the activity drivenmodel (squares). (a)Periodic boundary
conditions. (b)Random sampling with replacement. Properties of the data sets are summarised in table 1. Temporal networkswith
clique snapshots and the activity drivenmodel haveN=200 nodes, r=200 snapshots, and Î ¼{ }d d, 4, , 10cl hub .We set t = 1.
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similar attempt in synchronisation dynamics using single-link snapshot networks, see [55]. The adjacency
matrices obviously commutewhen the snapshots do not have any nodes in common. Therefore, designing
interactions such that different sets of nodes are active at different times asmuch as possiblemay be effective at
increasing the epidemic threshold. This point warrants furtherwork. Examining the influence of τ on the
epidemic threshold and the relevance of the commutativity of the adjacencymatrices inmore complex
compartmentalmodels of epidemic dynamics alsowarrants futurework.
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AppendixA.QSmethod

TheQSmethod is used for computing the average prevalence in the SISmodel infinite populations [43]. TheQS
method for the SISmodel in static networks works as follows.We distinguish active states, which are
configurationswith at least one infected node, from the absorbing state, which is the configurationwith no
infected nodes.We keep a total of 2000 active states inmemory. After one update event in the SISmodel, we are
either in an active or an absorbing state. If an active state is reached, it replaces a randomly chosen state in the
memorywith the probability proportional to the expected time to the next update, where the proportionality
constant is set to 0.5. It should be noted that the probability does not exceed unity because themean time to
recovery is normalised to unity such that the expected time to the next update in the entire network is less than
unity. If the absorbing state is reached, one active state is chosen uniformly at random from thememory to
replace the absorbing state. After a transient of 103 time units, theQS is calculated as the average of the system’s
state over the next 103 time units.

Wemodified theQSmethod for temporal networks. Our implementation is slightly different from that in
[25]. Assume that we are currently using the nth snapshot. In otherwords, t t- <( ) n t n1 . TheQSmay
depend on t- -( )t n 1 , i.e., the time since the beginning of the current snapshot. Therefore, for different
values of t- -( )t n 1 and the current snapshot, we generate amemory, i.e., a list of active states to be used
when the process dies. To this end, we divide the timewindow t[ )0, into those of length t¢. If t t< ¢, we set
t t¢ = and the timewindow is not divided. For every combination of the currently used snapshot and discrete
time t¢ ¢n , which covers t t t¢ ¢ - < ¢ + ¢( )n t n n 1 ( ¢ = ¼n 0, 1, ), we allocatememory to store 2000 active
states.When the process is in an active state at time t t- = ¢ ¢t n n , it replaces a randomly chosen active state in
thememory corresponding to t¢ ¢n and the current snapshotwith probability 0.5. If the process reaches the
absorbing state at time t t t- Î ¢ ¢ ¢ + ¢[ ( ) )t n n n, 1 , the network state is replaced by an active state randomly
chosen from thememory corresponding to the elapsed time t¢ ¢n and the current snapshot. Then, the process is
restarted at time t t= + ¢ ¢t n n . After a transient of time tr103 , where r is the number of snapshots, we calculate
the steady state as the fraction of the infected nodes averaged over the r103 subsequentmeasurements conducted
when snapshots switch fromone to another.We used t¢ = 0.5 and confirmed that the results remained
unaffectedwith t¢ = 0.1.

Appendix B. Stochastic SISmodel on single-link snapshots

Consider a temporal network inwhich each snapshot contains disjoint single links drawn at random. The degree
of every node in a snapshot is atmost one.Numerical results on a temporal network generated from thismodel
withN=2000 nodes and 500 links in each snapshot are shown infigure I1. Contrary to the results shown in the
main text, the epidemic threshold increases as τ increases.

This result is caused by the fact that the individual-based approximation does notwork, even qualitatively,
when snapshots are composed of small fragments such as disjoint single links. For such networks, stochasticity
of the dynamics that the individual-based approximation does not account for plays a significant role. In short,
even if the infection rate is very large, infectionwill die out if we apply a snapshot for long τ. To understand this
situation, herewe analyse the stochastic SISmodel on a single link =( )N 2 by themaster equation rather than
by the individual-based approximation.

The SISmodel with two distinguishable nodes has =2 42 states, where each node is either susceptible or
infected.We assume that the two nodes are bi-directionally coupled.We denote the time-dependent
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probabilities of the states by pSS (none infected), pIS (only node 1 infected), pSI (only node 2 infected), and pII
(both nodes infected). It should be noted that + + + =p p p p 1SS IS SI II . The probabilities evolve as

= +˙ ( )p p p , 17SS IS SI

b= - - +˙ ( ) ( )p p p1 , 18IS IS II

b= - - +˙ ( ) ( )p p p1 , 19SI SI II

b= + -˙ ( ) ( )p p p p2 . 20II IS SI II

To exploit the symmetry, we consider = +u p pIS SI and = -r p pIS SI in place of pIS and pSI. They evolve as

b= - - +˙ ( ) ( )u u p1 2 21II

and

b= - -˙ ( ) ( )r r1 . 22

The equations for r, u, and pII fully describe the dynamics. The solution of equation (22),

= b- +( ) ( ) ( )( )r t r 0 e , 23t1

is decoupled from the dynamics of u and pII. The linear dynamics composed of equations (20) and (21) have the
eigenvalues given by

l b k= - - ( ) ( )1

2
3 , 24

with k b b= + +1 6 2 . The corresponding left eigenvectors are given by b k b- (( ) ( ) )1 2 1 . For initial
conditions u(0) and ( )p 0II , the solution reads
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Inwhat follows, we assume that one node is initially infected and the other is initially susceptible, yielding
=( )u 0 1, Î -( ) { }r 0 1, 1 , and =( )p 0 0II . Then, the solution at time τ is given by

t
k

b k b k
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and

t = b t- -( ) ( ) ( )( )r r 0 e . 291

Wedenote the probability for nodes 1 and 2 to be infected at time τ by t( )p1 and t( )p2 , respectively. They are
given by

t t t t

k
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= + +
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and

t t t t

k
k kt b kt

=- + +

=- + + +
b t b t- - - -

( ) ( ) ( ) ( )

( ) [ ( ) ( ) ( )] ( )
( ) ( )
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2
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e
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2
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The expected number of infected nodes, t t+( ) ( )p p1 2 , when one node is initially infected is shown in
figure I2(a). The individual-based approximation developed in themain text would predict that the number of
infected nodesmonotonically increases in timewhenβ is sufficiently large.However, figure I2(a) indicates that
the infection eventually dies out even for a largeβ value.Next, we estimated the epidemic threshold as theβ value
at which t t+ =( ) ( )p p 11 2 . This estimate gives a τ-dependent lower bound on the epidemic threshold in
temporal networks, bc. The epidemic can only spread if the expected number of nodes after time τ is larger than
the number at time 0. The relationship between the estimated epidemic threshold and τ is shown infigure I2(b).
Wefind that the epidemic threshold increases as τ increases.

AppendixC. Relationship between the Lyapunov exponent and m̂max

Weassume random samplingwith replacement of snapshots. ThemaximumLyapunov exponent is given by
l t m= ¥

-ℓ( )ℓlim ln1
max, whereℓ is the length of a sequence of snapshots. It should be noted that, while mmax

is a randomvalue for anyℓ, themaximumLyapunov exponent is a deterministic value owing to theorem2 in
[49]. In this section, we show that m t l( ˆ ) ln max .

We use theorem 1 in [51]. Suppose that any adjacencymatrix of the snapshot is amatrix with non-negative
entries and that, for each pair (i j, ) (  i j N1 , ), there is a sequence of adjacencymatrices

¼ -{ }ℓ( ) ( ) ( )A A A, , ,0 1 1 for someℓ such that t >( )T 0ij . Under this condition, the theorem states that for every
pair (i, j) satisfying t t ¹¥

-ℓ( ) [ ( ) ]ℓ Tlim ln 0ij
1 , we obtain
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The condition of the theorem is satisfied if the aggregate network is connected.
We denote the ensemble average over the set of snapshots by E. By using Jensen’s inequality, we obtain
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If t t ¹¥
-ℓ( ) [ ( ) ]ℓ Tlim ln 0ij

1 , we combine equations (32) and (33) to obtain
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Because the largest eigenvalue of ˆ ℓ
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max and
ˆ ℓ

T is symmetric in the case of undirected snapshots,
we obtain
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AppendixD. Epidemic threshold for temporal networkswith clique snapshots

Wedenote by Acl the adjacencymatrix of the network inwhich nodes ¼ +d1, , 1cl form a clique andnodes
+ ¼d N2, ,cl are isolated. Restricted to the clique part (i.e., principalminor of size +d 1cl ), the eigenvalues of

Acl are equal to dcl and−1, where−1 hasmultiplicity dcl.We define a + ´ +( ) ( )d d1 1cl cl matrix by
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where thefirst columnof Qcl is an eigenvector corresponding to dcl, restricted to the clique part, and the
remaining columns span the eigenspace of the eigenvalue−1. Then, we obtain
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Equation (40) remains true if a snapshot consists ofmultiple cliques.
By combining equations (6) and (40), we obtain
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where = å*A A rA is the aggregate network, and *D is the diagonalmatrix with degree *di of the aggregate
network on the diagonal.

We denote the eigenvector corresponding to m =ˆ 1max by = ¼( )u u u, , Ncl 1 . The normalisation is given by

å == u 1i
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i1 . By using equation (41), we obtain
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wherewe abbreviated the ith row ofmatrix *A by *Ai• and á ñ, denotes the scalar product of two vectors.
Summation of equation (42) over i yields
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where = ¼( )* * *d d d, , N1 . By solving equation (43), we obtain
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It should be noted that ucl depends on τ.
When t = 0, ucl is the eigenvector of *A corresponding to a*max such that

å åa aá ñ = = =
= =

( )* * * *d u A u u, . 45
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jcl
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max max

Therefore, b̂c converges to b a=* *1c max in the limit t  0. In the limit t  ¥, b̂c converges to d1 cl,
representing the fact that just one snapshot is used indefinitely long, and the epidemic threshold in a single
snapshot is that of a clique.

Finally, we approximate aá ñ »* *d u, cl max for general τ values in equation (44) to obtain equation (7). It
should be noted that equation (44) is independent of á ñ*d u, cl in the limit t  0 and t  ¥ such that
equation (7) is exact in these two limits.

13

New J. Phys. 18 (2016) 073013 L Speidel et al



Appendix E. Epidemic threshold for temporal networkswith star snapshots

Wedenote by Ast the adjacencymatrix of the network inwhich a star of size +d 1hub is embedded.Without loss
of generality, we assume that node 1 is the hub, nodes 2 to +d 1hub are leaves connected only to the hub, and
nodes +d 2hub toN are isolated. The adjacencymatrix restricted to the star part (i.e., principalminor of size

+d 1hub ) has three distinct eigenvalues dhub and 0, where the eigenvalue 0 hasmultiplicity -d 1hub .We
define a + ´ +( ) ( )d d1 1hub hub matrix by

=

-

-

-

-

-
-

-
-

-
-

-
-

( )

⎛

⎝
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where thefirst column is an eigenvector corresponding to eigenvalue dhub , the second column is an

eigenvector corresponding to eigenvalue- dhub , and the remaining columns span the eigenspace of the zero
eigenvalue. Then, we obtain

b t

t b t b

- =

= + - +

t
t b

t b
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-
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( ) [ ( ) ] ( )
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st st
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hub st

hub
hub st

2

hub

hub

Ifmore than one star is embedded in a snapshot, appropriately permutated versions of equation (32) are added
together. By applying equation (47) to equation (6), we obtain

t t b t b= + - å +t-ˆ ( ) ( ) [ ( ) ] ( )*
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥T

d
d A

d
d

A

r
Ie

1
sinh

1
cosh 1 , 48

hub
hub

hub
hub

2

where the summation ofA2 runs over all possible snapshots and r is the number of the possible snapshots.When
=d 1hub , we obtainå = *A r D2 such that equation (48) is consistent with equation (41).
As a special case, we consider the discrete-time version of the activity drivenmodel [17, 21]. In each

snapshot, every node i is assumed to be activatedwith probability ai independently of the other nodes.
If node i is a hub, the probability that it connects to a node j in a snapshot is equal to d Nhub . Therefore, we

obtain up to the order of N1

»
+( )

( )*A
a a d

N
, 49ij

i j hub

wherewe neglected the probability that both i and j are hubs and are connected to each other. If node k is a hub,
the probability that it selects both nodes i and j (¹i) as leaves is equal to - -( ) [ ( )]d d N N1 1hub hub . Then, for
¹i j we obtain

å å»
-

-

» á ñ
-

= ¹

( )
( )

( ) ( )

⎛
⎝⎜

⎞
⎠⎟

A

r
a

d d

N N

a
d d

N

1

1

1
, 50

ij k k i j

N

k

2

1; ,

hub hub

hub hub

where = ¼( )a a a, , N1 , á ñ = å =a a Ni
N

i1 , andwe have neglected -( )O N 2 terms.We also obtain

å = » + á ñ( ) ( )*
⎛
⎝⎜

⎞
⎠⎟

A

r
d a a d , 51

ii
i i

2

hub

where *di is the degree of node i in the aggregate network.
The epidemic threshold satisfies m =ˆ 1max .We denote the eigenvector corresponding to m =ˆ 1max by ust. By

substituting equations (49)–(51) in equation (48), using á ñ º å » á ñ=* *d d N a d2i
N

i1 hub, which is derived from
equation (51), and performing steps similar to those in equations (42) and (43), we obtain
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We substitute b t y= -ˆ ( )d lnc hub
1 in equation (52) to obtain
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By solving this quadratic equation, we obtain
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Weobtain an approximate formula for b̂c by replacing á ñ*d u, st with a » á ñ + á ñ( )* d a amax hub
2 (see

appendix F for the derivation of a*max), which is exact for t = 0 and t = ¥ as in the case of temporal networks
with clique snapshots (appendixD).We additionally simplify this formula by performing a Taylor expansion of
b̂c in terms of -te 1around t = 0. By neglecting higher order terms, we obtain equation (8).

Appendix F.Derivation of a*max for the activity drivenmodel

Wederive the leading eigenvalue of the aggregatematrix for the activity drivenmodel, a*max, where the aggregate
adjacencymatrix is given by equation (49). Each rowof a=* *u uA st max st is given by

a = á ñ »
+ á ñ( ) ( )* * u

a u
u A

a d

N
,

,
. 58i i

i
max • st

st hub

Summation of equation (58) over i yields

a » á ñ + á ñ( ) ( )* a ua d, . 59max st hub

Bymultiplying both sides of equation (58)with ai and summing over i, we obtain

a á ñ » á ñ + á ñá ñ( ) ( )* a u a ua a d, , , 60max st
2

st hub

where á ñ = å =a a Ni
N

i
2

1
2 . Because entries of ust are all non-negative and ust is a non-zero vector, á ñ ¹a u, 0st .

By removing á ña u, st using equations (59) and (60), we obtain

a a- á ñ + á ñ - á ñ »( ) ( )* *a d a d a d2 0, 61max
2

hub max
2

hub
2 2

hub
2

which results in

a » á ñ + á ñ( ) ( )* d a a . 62max hub
2

AppendixG.Generating temporal networkswith the same aggregate network and
different values ofC

To generate commutingmatrices, we use the fact that symmetricmatrices commute if and only if their
eigenspaces coincide.We start by thematrix inwhich all entries are equal to unity. Its eigenvalues areN and 0.
We denote the eigenvectors by ui ( = ¼i 1, 2, ), where = ( )u N1 11  is the eigenvector corresponding
to eigenvalueN. Because all entries of thismatrix are positive, small changes in the eigenvalues will result in a
matrix with positive entries.We choose eigenvalues l Î - +[ ]N N1, 11 and l e eÎ -[ ],i (  i N2 ),
e > 0 uniformly at random and calculate a new adjacencymatrix as
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ål
=

( )u u . 63
i

N

i i i
1

We set e = 10 in the numerical simulations.We repeat this procedure until we obtain rmatrices with positive
entries. The r adjacencymatrices commutewithin themselves.

Wemanipulate the r commutingmatrices to increase the degree of commutativity,C (equation (16)), while
conserving the aggregatematrix as follows. First, we select twomatrices. Then, we randomly select (i, j),
 i j N1 , and swap the (i, j) entry of the twomatrices. To keep bothmatrices symmetric, we also swap the ( j,

i) entry of the twomatrices.We repeat this procedure 2000 times duringwhichC tends to increase.

AppendixH.Generation of temporal networkswith different dcl and dhub values and the
same aggregate network

Wegenerate temporal networks with clique snapshots and the activity drivenmodel with different values of dcl

and dhub and the common aggregate network as follows.
For temporal networks with clique snapshots with given dcl and a, the aggregatematrix up to the order of

N1 is given by

» + + á ñ
-( ) ( ) ( ) ( )* aA a a

d

N

d d

N

1
. 64ij i j

cl cl cl

Therefore, for a choice of ¢dcl, we need tofind ¢a satisfying
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Equation (65) implies
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1
, 66cl
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cl cl cl

cl

where J is thematrix inwhich all entries are equal to unity.
For the activity drivenmodel with given dhub and a, the aggregatematrix up to the order of N1 is given by

equation (49). Therefore, for a choice of ¢dhub, we need tofind ¢a satisfying

¢ + ¢ ¢
=

+( ) ( )
( )

a a d

N

a a d

N
, 67

i j i jhub hub

which implies

¢ =
¢

( )a a
d

d
. 68hub

hub

Infigure 6, we chose dcl, =d 10hub and drew ai from a power-law distributionwith exponent 3 and
mean á ñ =a 0.05.

Figure I1.Results of stochastic simulations on a temporal network composed of disjoint links.We setN=2000 and r=1000. Each
snapshot contains 500 disjoint links.
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Appendix I. Epidemic threshold for temporal networks in discrete time

In this section, we show b b*c,disc c , where bc,disc is the epidemic threshold for the discrete-time SISmodel in
which snapshots are randomly sampledwith replacement from a given set.

For the SISmodel in discrete time, the time evolution operator is given by equation (8) in [25] as follows:

t t tb t tb t tb= - + - + - +- -( ) [( ) ][( ) ] [( ) ] ( )ℓ ℓ( ) ( ) ( )T I A I A I A1 1 1 . 69disc
1 2 0

Because the probability of infection and recovery is given by tb and τ, respectively, τmust be smaller than
b-{ }min , 11 . The epidemic threshold, bc,disc, is equal to the value ofβ at which the largest eigenvalue of t( )Tdisc

is equal to unity.
We let

t t tbº = - +ˆ [ ( )] [( ) ] ( )ℓ*T T I AE 1 70disc disc

and denote by b̂c,disc the value ofβ at which the largest eigenvalue of T̂disc is equal to unity. Because equation (70)
indicates that the largest eigenvalue of T̂disc is equal to t tba- +[( ) ]ℓ*1 max , we obtain

b
a

b= =ˆ ( )
*

*1
71c,disc

max
c

regardless of τ. Under the restriction that t b-{ } 0 min , 11 , matrices t tb- + ¢( ) ℓ( )I A1 are non-
negative. Then, we can apply arguments similar to those in appendix C to show that b b b=ˆ ( )*c,disc c,disc c .

As a demonstration, we calculated the epidemic threshold for the discrete-time SISmodel for the ht09 data
set (table 1). The epidemic threshold for the aggregate networkwas equal to b =* 0.046c .With t = 0.2 and
t = 0.5, we obtained b = 0.079c,disc and 0.098, respectively, confirming that the epidemic threshold increases
as τ increases in the discrete-time SISmodel.
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