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Abstract

Data of physical contacts and face-to-face communications suggest temporally varying networks as
the media on which infections take place among humans and animals. Epidemic processes on
temporal networks are complicated by complexity of both network structure and temporal
dimensions. Theoretical approaches are much needed for identifying key factors that affect dynamics
of epidemics. In particular, what factors make some temporal networks stronger media of infection
than other temporal networks is under debate. We develop a theory to understand the susceptible-
infected-susceptible epidemic model on arbitrary temporal networks, where each contact is used for a
finite duration. We show that temporality of networks lessens the epidemic threshold such that
infections persist more easily in temporal networks than in their static counterparts. We further show
that the Lie commutator bracket of the adjacency matrices at different times is a key determinant of
the epidemic threshold in temporal networks. The effect of temporality on the epidemic threshold,
which depends on a data set, is approximately predicted by the magnitude of a commutator norm.

1. Introduction

A majority of infectious diseases, ranging from seasonal influenza to Ebola outbreaks and sexually transmitted
infections, can be viewed to occur on contact networks of humans and animals, which are composed of
individuals and dyadic links between them. Epidemic processes are one of the most widespread applications of
network analysis. Structure of contact networks has been shown to affect, for example, the likelihood and speed
of an infection penetrating into a significant part of a population, effectiveness of intervention strategies, and
identification of super-spreading individuals [ 1-3].

Accumulating data evince that contact networks underlying epidemic and other processes are often highly
dynamic, constituting temporal networks [4, 5]. For example, links may be only occasionally used for actual
physical contacts. Individuals may be socially active in some restricted periods of time. Temporality of networks
may alter effects of networks on epidemic processes [6, 7]. This is a practical enquiry because various instances of
epidemics in human and animal populations, and also viral spreading of information in human society, seem to
occur on temporally varying networks. However, our understanding of epidemic processes in temporal
networks is still limited. Theory based on the branching process enables us to understand long-tail behaviour of
the number of newly infected individuals [8—10]. Other theoretical approaches include analysis of epidemic
spreading on theoretically tractable generative models of temporal networks [11-21]. However, these studies
assume network models such that they may miss effects of the properties of temporal contact networks that are
present in empirical data but not modelled. On empirical temporal networks, the most popular approach has
probably been to run numerical simulations of epidemic processes on the empirical networks and their variants
(e.g., [7,22-24]).

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Schematic showing a temporal network with N = 4 nodes and # = 4 snapshots, and the corresponding aggregate network.
The link weight in the aggregate adjacency matrix, A*, is equal to the sum of the link weight over the four snapshots divided by four.

Valdano and colleagues introduced a temporal-network variant of the individual-based approximation to
understand the susceptible-infected-susceptible (SIS) model of epidemic spreading [25, 26] (also see [27] for a
similar approach to a different disease model). In this approach, the probability that each node is infected is
tracked over time using the matrix algebra. They showed how to calculate the epidemic threshold (i.e., strength
of infection above which infection can remain prevalent in the population) and the prevalence (i.e., fraction of
infected nodes in the stationary state) in terms of the spectral radius of a relevant matrix. Their theory is
applicable to arbitrary temporal network data.

Despite these and other developments, we are yet left with fundamental questions regarding mechanisms of
infections in given temporal networks. Why is the epidemic threshold large in one temporal network and small
in another? How do two time scales, one of network dynamics and the other of the epidemic process, interact? In
the present study, we use the individual-based approximation to reveal factors controlling the epidemic
threshold for the SIS model on arbitrary temporal networks. We show theoretical and numerical evidence that
the epidemic threshold decreases (i.e., infection is more likely to occur) as the network becomes more temporal
in the sense that the network changes more slowly (but not quiescent) relative to the time scale of the epidemic
process. We use the continuous-time SIS model on networks switching with regular intervals to reach this
conclusion. This result is consistent with those derived for particular temporal network models [16, 18]. Impacts
of the temporality of networks on the epidemic threshold vary across networks [25-27]. We find that non-
commutativity of the adjacency matrices at different times, as quantified by the Lie bracket of the adjacency
matrices, is a key indicator that influences the epidemic threshold.

2.Model

We consider the continuous-time SIS model on undirected temporal networks having N nodes, as schematically
shown in figure 1. Each node assumes either the susceptible or infected state. An infected node infects each of its
susceptible neighbours at rate 8. An infected node transits to return to the susceptible state at rate . To model
exogenous dynamics of networks, we consider an infinite sequence of adjacency matrices {A®, A, ...} and
sequentially apply each of them for time 7. In other words, A s applied between time #/7 and (¢’ + 1)7. We
refer to each network applied for time 7 as the snapshot network, or snapshot in short.

This switching network modelling of temporal networks is common in studying synchronisation processes
[28-30]. Itis also in accordance with observation of temporal network data at regular time intervals 7. Here we
regard 7 as a free parameter. It controls the relative time scale of the epidemic and network dynamics;
multiplying 7 by a constant ¢ (>0) is equivalent to not changing 7 and instead changing fand vy to ¢ and ¢,
respectively. In addition, changing (7, 3, y) to (cT, 3/¢, 7/ c) does not change the dynamics. Therefore, we set
~ = 1withoutloss of generality.

The model simplifies over real epidemic processes. Heterogeneities are considered only through the
quenched disorder of the network. A more refined model would account for heterogeneity also in the
parameters, drawing 3 and -y separately for each node and 7 for each snapshot from probability distributions. We
suppress these refinements for the sake of tractability of the model.
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Table 1. Properties of empirical temporal networks. The number of nodes (N), that of links (M),
that of events (Meyent), and that of snapshots (r) are shown. The largest connected component of
the aggregate undirected network is used for each data set. The length of the aggregating time win-
dow used for figures 2 and 6 is also shown. In the reality mining data set, we have ignored the first
27 weeks, because the time stamps for these entries are false [32].

Data N M Mevent r Aggregating window
Hospital ward [31] 75 1139 32424 97 1h
Reality mining [32] 104 3525 781 653 54 7d
ht09 [33] 113 2196 20 818 59 1h
School2011 [34] 126 1710 28 561 76 1h
School2012 [34] 180 2220 45 047 203 1h
School2014 [35, 36] 242 8317 125773 33 1h
School2013 [37] 327 5818 188 508 101 1h
Online message [38] 1892 13 835 59 831 195 1d
Hospital [39] 5607 60177 936 101 105 7d
Sexual contact [40] 15 810 38 540 50116 75 30d

3. Infections persist more easily in temporal than static networks

We denote the probability that node i (1 < i < N)isin the infected state at time ¢ by x;(¢). Under the assumption
that the states of different nodes are independent of each other, the individual-based approximation to the SIS
dynamics linearised around the disease-free configuration (i.e., x; () = 0 for all i) is given by

x(t) = (BAD — Dx@t) CT<t<( + D7), (1)

where x () = (x(t),...,xn (t)), T denotes the transposition, and I is the identity matrix. When the network is
static, equation (1) is simplified to % (t) = (BA — I)x (t), where A is the adjacency matrix. The epidemic
threshold, denoted by (3., is defined as the value of 3 above which infection can persist in the network. According
to the individual-based approximation, (3 for a static network is given by the value of G at which the leading
eigenvalue of BA — I isequal to zero. The leading eigenvalue of A — I is given by B, — 1, where oy 1s
the leading eigenvalue of A. Therefore, we obtain 5. = 1/aumax [3,41,42].

When the network varies in time, equation (1) yields

x(¢7) = T(7)x(0), 2
where
T (1) = exp[(BA“"D — D)7] - exp[(BAD — D7]. (3

The leading eigenvalue of T (7), which depends on sequence {A”, ..., A~V },is denoted by ... The epidemic
threshold, 3., satisfies 1., = 1. Valdano and colleagues were the first to derive this result by analysing the SIS
model in discrete time [25].

For two temporal networks, we simulated the SIS model dynamics using the quasistationary state (QS)
method [43] tailored to the case of temporal networks (appendix A). We aggregated the original data over several
time windows to define snapshot networks A“); the size of the aggregating window is shown in table 1. The
average prevalence of infection for values of fand 7is shown in figure 2. Similarly to [25], we assumed a periodic
boundary condition such that the first snapshot ensues after the last snapshot. The theoretical estimates of 3. are
shown by the arrows in figures 2(a) and (b), which are fairly accurate.

Figure 2 suggests that the epidemic threshold, denoted by (3., decreases as 7 increases in both networks. To
formulate this point, we compare (. with the epidemic threshold for the SIS dynamics occurring on the
aggregate, static network, denoted by 3. We start with defining the aggregate network as the adjacency matrix

A* = Z?; 5 A /¢ applied for 0 < t < £7. With this normalisation, the temporal and aggregate networks
have the same time average of the weight of each link [30] (figure 1). The epidemic threshold for the aggregate
network is given by 3% = 1/a% ., where " is the largest eigenvalue of A*.

Any real-valued, continuous spectral function ¢ that acts on the spectrum of its matrix argument and only
attains finite values satisfies ¢ (eMe?) > ¢ (eM+M) for arbitrary symmetric matrices M, and M, [44].
Although a generalisation of this inequality to the case of more than two matrices is false in general, we
conjecture that it remains true if the involved matrices have only non-negative entries and ¢ is the spectral
radius. We have the following evidence. First, to the best of our knowledge, all counterexamples involve matrices
with negative entries [45]. Second, the theoretical results for two model temporal networks presented in
section 4 are consistent with this inequality. Third, all numerical calculations performed in this paper on real
data sets and synthetic networks are consistent with this inequality. By admitting this generalised inequality, and

applying it to matrices ﬂTA(f/) 0 < ¢ < ¢ — 1),weobtain

3
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Figure 2. Stochastic simulations of the SIS model on the (a) online message data set [38] and (b) sexual contact data set [40]. See table 1
for details on the data sets. We imposed periodic boundary conditions. The theoretically obtained (3. is shown by the arrows. We
calculated the theoretical 3, value by a bisection method on the leading eigenvalue of T (7). We expanded T () up to the term of the
order of O (7'%) and calculated its leading eigenvalue using the power method.

fmax = S(exp[(BAC™D — 7] -+ exp[(BAY — D)7])
= exp (—£r) 6 (exp [BrAC—D] -+ exp [BA”])

£—
> exp(—£71)¢ [exp [ﬁﬁ' ZIA(KI)]]

£'=0

= ¢ (exp[(BA" — D£T]). 4)

Equation (4) implies that > lat 3 = 37. Therefore, 5. < 3.

Several remarks are in order. First, equation (4) implicitly assumes the periodic boundary condition for the
temporal networks. However, because ¢ is arbitrary, equation (4) holds true for arbitrary sequences of networks.
Second, in the limit 7 — 0, equation (4) is satisfied with equality such that 3. = 3¥ = 1/a’ .. Third, ifeach
snapshot is composed of a single link, numerical results suggest that the epidemic threshold increases as the
temporality of the network increases (appendix B), which is opposite to the current result. In this situation, the
probability that the infection is extinguished is not negligible even for a large infection rate. A theory that
accounts for stochasticity, which is different from the deterministic individual-based approximation, correctly
predicts the direction of the change in the epidemic threshold as 7 increases (appendix B). It should be noted that
anetwork mainly composed of isolated single links is realistic for sexually transmitted infections through
monogamous relationships [11]. This situation is out of the scope of the following analysis. Our theory requires
that each snapshot has a relatively large connected component such that the SIS dynamics on the snapshot are
not significantly influenced by disconnected single links even if they are present. The stochasticity and the
absorbing configuration (all nodes susceptible) become relevant not only for disconnected single links
(appendix B) but also snapshots of increasing size as 7 — 0. If T exceeds the typical time of reaching the
absorbing configuration on a snapshot, the epidemic ceases due to stochasticity.

4. Analysis of model networks

4.1. Temporal networks with clique snapshots
To investigate the distance between the epidemic threshold for aggregate and temporal networks and its
dependence on parameters, we start by calculating the epidemic threshold for two temporal network models. In
the first model, snapshots consist of a disjoint union of cliques, each with dj + 1nodes, and isolated nodes. A
clique may be a suitable model for conversation events in a small group [23, 46—48]. The clique size remains the
same across different cliques and snapshots. The number of nodes stays constant across snapshots, but the
number of cliques may depend on a snapshot.

We assume that snapshots are randomly and independently drawn from a set of possible snapshots with
equal probability, which we call the random sampling with replacement. Whether the expected prevalence is
positive or not can be determined by A = lim,_, . (¢7) !In p1, ., which is equal to the maximum Lyapunov

4
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Figure 3. Comparison between the epidemic threshold £, (solid line) and its lower bound ﬁc (dotted line). The Lyapunov exponent,
which was used for calculating [;’c, was computed with a Monte Carlo algorithm [50]. (a) Network with random clique snapshots. (b)
Activity driven model. Weset N = 100, d = dpy, = 10,and r = 100. The value of g; (¢ < a; < 1)is distributed according to a
power law with exponent equal to 3. We adjust ¢ such that the mean of g; equals 0.04.

exponent associated with the switching linear dynamics induced by operator T (7) (equation (3)) as £ — oo
[49-51]. The epidemic threshold corresponds to A = 0.Itis algorithmically undecidable to determine whether
A < 0ornot[52], hindering us from deriving the exact value of .. Therefore, we evaluate the expected state
vector, E[x (¢)], where E is the expectation. The expected state vector evolves according to

Elx((Z' + )71 = T(nE[x(£'D)], 5)

where#' =0, 1, ...,and

T(r) = }Zexp[(ﬂA ~Drl. ©)
A

Here, the summation runs over all possible snapshots, and r represents the number of possible snapshots. We
denote the leading eigenvalue of T'(7) by /1, ; (In /i, )/ approximates \. It holds true that (In fi, )/7 > A
(appendix C). In addition, we numerically verified (. ~ (3. for some networks and a range of parameter values,
where the estimate of the epidemic threshold Bc is obtained from [, = 1(figure 3).

As shown in appendix D, we obtain

B~ Lln[l L 1)]. %)

Td Omax

Equation (7) isexactas 7 — 0, yielding B.=1/ o Ttisalso exactas T — 00, yielding B =1/dy.

In figure 4, we test the accuracy of the theory against numerical simulations using a synthetic temporal
network constructed as follows. In each snapshot, every node is independently activated with probability 4;,
which obeys a power-law distribution. Each activated node triggers a clique of size d 4+ 1byinvolving d other
nodes drawn with equal probability. We allow multiedges in a snapshot. The degree of the aggregate network up
to the leading order in terms of Nis given by d;* ~ a;dq + (a)d3, where (a) = >N | a;/N.Figure 4(a) suggests
that equation (7) (dotted line) is sufficiently close to the exact value of BC obtained through equation (6) (solid
line). The small discrepancy between the exact and the approximated values are caused by the fact that cliques
may overlap in the synthetic temporal networks, which the approximate theory does not assume. All these
estimates accurately locate the position of the epidemic threshold obtained from direct numerical simulations
(figure 4(b)).

Different temporal networks generated by the present model can have the same aggregate network. In
equation (7), a’X . is the same for all temporal networks sharing an aggregate network. Therefore, the epidemic
threshold depends on the temporality of networks solely through d.,. Equation (7) implies that the epidemic
threshold decreases as dj increases for all values of 7 > 0. This observation implies that infection is more likely
to be prevalent when snapshots are highly variable in the sense that some snapshots have many links and others
have few links, as compared to when different snapshots have similar densities.

5
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Figure 4. Epidemic threshold for temporal network models. (a) and (b) Temporal networks with clique snapshots. (c) and (d) Activity
driven model. (a) Epidemic threshold for the clique network model. The epidemic threshold, ﬁc, obtained from the bisection method
on equation (6) is shown by the solid line. The approximation, equation (7), is shown by the dotted line. The two lines severely overlap
in the entire range of 7. (b) Fraction of infected nodes for the clique network model. The results for direct stochastic simulations are
shown by the curves. The epidemic threshold predicted by equation (6) and equation (7) are shown by the solid and dashed arrows,
respectively. (c) Epidemic threshold for the activity driven model. The exact value obtained from equation (6) is shown by the solid
line. The approximation, equation (8), is shown by the dotted line. (d) Fraction of infected nodes for the activity driven model. The
epidemic threshold predicted by equation (6) and equation (8) are shown by the solid and dashed arrows, respectively. We set

N = 2000, dyg = dpup = 15, = 1000, and let each a; obey the power-law distribution with the probability density function

(1 —ma; /(1 — e'="),where ¢ < a; < 1. Weset ) = 3 and adjusted € to ensure {(a) = 0.0025.

4.2. Activity driven model

In the temporal networks composed of cliques (section 4.1), the degree of nodes is essentially homogeneous
within each snapshot (i.e., d. or 0). In this section, we study the case in which a snapshot consists of a disjoint
union of stars, allowing snapshots to be heterogeneous in the node’s degree. Each star is assumed to have one
hub node connected to dy, leaves. A leafis only adjacent to the corresponding hub. The value of d;, is assumed
to be the same for different stars and snapshots. Different snapshots may contain different numbers of stars. Asa
special case of this model, we consider the discrete-time version of the activity driven model [17, 21]. In each
snapshot, every node i is activated with probability a; independently of other nodes. The variable a; plays a
similar role to that in the case of clique snapshots but is distinct from it. For each activated node, d},;, nodes are
drawn with equal probability and connected to the activated node. Although stars in a single snapshot may
overlap, we consider the case in which the overlap is rare.
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As shown in appendix E, the epidemic threshold is approximated as

B ~ ln[l 4 Yo (o 1)]. (8)

*
max

T dhub

It should be noted that both equation (8) and a more exact estimate given by equation (39) (appendix E) converge
to 3% = 1/, inthelimit 7 — 0and to 1//dpy in thelimit 7 — c0. The high accuracy of equation (8) is
confirmed in figure 4(c).

Equation (8) indicates that the epidemic threshold is small for a large value of dy,. This result is consistent
with that for the network model with clique snapshots. In other words, if the aggregate network is the same,
temporal networks that sometimes have dense snapshots and otherwise sparse snapshots would make the
epidemic threshold small, as compared to temporal networks that have similar density oflinks across time.

According to the heterogeneous mean field approximation [17, 21], the epidemic threshold for the activity
driven model is equal to

Be ©))

1
T d (@) + (@)

In fact, we obtain o, ~ dpyp, ({a) + m ), yielding 3F = f3. (see appendix F for the derivation of o’f ). In
their framework, network switching occurs sufficiently fast as compared to epidemic dynamics such that
epidemic spreading is effectively occurring on the static, aggregate network. Their epidemic threshold is different
from the well-known value for the configuration model [53] because the aggregate network of the activity driven
network is different from the configuration model having the same degree sequence. In contrast, the present
results capture how the time scale of the network dynamics as described by the activity driven model and that of
the SIS dynamics interact.

5. Non-commuting snapshots lower the epidemic threshold

The amount of the shift in the epidemic threshold as we slow down the dynamics of the network (by increasing
7) depends on individual temporal networks. The online message network (figure 2(a)) experiences a larger shift
than the sexual contact network (figure 2(b)). In the model networks examined in section 4, the epidemic
threshold is sensitive to the change in 7when d or dyy, is large (equations (7) and (8)). In this section, we
propose a quantity to predict the sensitivity of the epidemic threshold, 3, to temporality of networks, 7.

First of all, g, is independent of T if any pair of adjacency matrices of the snapshots commutes. This is
because the time evolution operator for the temporal network, T (7) (equation (3)), and that for the aggregate
network, exp [ (3A* — I)#7], coincide in this case. To quantify the difference between 3. and 37 when matrices
are non-commuting, we use Zassenhaus’ formula [54] given by

exp [s(My + M)] = exp[sMi]exp [sMy] [] exp[s"C,(Mi, My)], (10)
n=2
where M, and M, are matrices, sis a real number, and [, , indicates a matrix product in ascending order of the
indices. Matrices C,, (Mj, M,) (n > 2) are given by linear combinations of nested commutator brackets, where
the commutator bracket of M, and M, is defined by

M, My] = MiM, — M, M,. (11)

For instance, the first two matrices are given by
CaM, My) = =~ [My M] (12)
and
G (M, M) = %(2 (M, [Mi, Mp]] + [M;, [Mi, Ma]]). (13)

By iteratively applying equation (10) with s = 73, we obtain

-1 -1
expl(B4* — D7) = T [T T exp| @8)'Ci| A0, ST A, (14)
£'=1 n>2 £"=0
which relates the time evolution operator for epidemic dynamics on the aggregate network on the left-hand side
to that of the temporal network, T (), on the right hand side. In particular, x,,,, equals
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Figure 5. Relationship between the epidemic threshold and the degree of non-commutativity for the synthetic temporal networks.
Each point corresponds to a different sequence of snapshots manipulated from the original one such that the aggregate network is the
same. The original sequence was generated with r = 50 snapshots and N = 10 nodes each. We used a small N value because it was
computationally costly to generate snapshots with larger N. Weset 7 = 1.

¢'=1 £"=0 £'=1 £"=0

-1 -1 -1 -1
Fmax = @ expl(BA* — Mﬂ{l — ()G (A“’% ZA“’”J — (18’ 3 Cs (A“’% ZA%] + }

=1¢"=0

— * _ 2 2 A @) A" (fT)
—olr+ @ —ner+ 4o — 12 + §j§jA LAY i
(15)

Equation (15) suggests that nested commutator brackets between adjacency matrices of snapshots control the
difference between (1., and ¢ (exp[(BA* — I)£7]). On the basis of equation (4), this difference yields a
difference between 3. and 3. Therefore, we define the degree of non-commutativity by

£—1¢'-1

=SS [1AYY, AL, (16)

max f’* 1£"=0

C

(f

where ||-||, is the spectral norm defined by || M||, = /¢ (MM"). The multiplicative constant 1 /a5, in

equation (16) normalises the leading eigenvalue of the aggregate network to unity. If C= 0, all pairs of the
adjacency matrices of snapshots commute, and (. is independent of 7. If C > 0, atleast some adjacency matrices
do not commute.

We carry out numerical simulations to examine the relationship between Cand the epidemic threshold.
First, we generate r = 50 commuting adjacency matrices of snapshots (appendix G), yielding C= 0. Then, we
manipulate Cby gradually swapping elements of adjacency matrices of different snapshots with the aggregate
network fixed (appendix G). For each sequence of adjacency matrices thus obtained, we estimate the relative
change of the epidemic threshold given by AB. = (3¥ — 3.)/3%. Figure 5 indicates that A (3. increases roughly
quadratically in Cand suggests a high predictive power of C.

Across several temporal network data sets summarised in table 1, the dependency of AS. on Cis shownin
figure 6(a). The figure also contains results for temporal networks with clique snapshots and the activity driven
model. These networks were generated with different values of d.j and dy,, under the condition that the
aggregate network was approximately the same within the same model (appendix H). Consistently with figure 5,
Cisastrong determinant of the decrease in the epidemic threshold across various temporal networks. It should
be noted that Cand A3, are strongly correlated despite different sizes of the empirical networks.

Various types of temporal correlation in empirical data are known to affect epidemic processes [7, 22—24].
Therefore, the epidemic threshold may be influenced by the order of snapshots, whereas Cis not. To examine
this point, we calculated the epidemic threshold for each network using the order of snapshots given by random
sampling with replacement. The results are shown in figure 6(b). For these decorrelated temporal networks as
well, Cand Af, are strongly correlated. Comparison between figures 6(a) and (b) reveals that the loss of
temporal correlation somewhat decreases A, for all data sets. However, Cis clearly a stronger determinant of
A, than the order of snapshots is.
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Figure 6. Relationship between the shift in the epidemic threshold and the degree of non-commutativity for real temporal networks
(circles), temporal networks with clique snapshots (triangles) and the activity driven model (squares). (a) Periodic boundary
conditions. (b) Random sampling with replacement. Properties of the data sets are summarised in table 1. Temporal networks with
clique snapshots and the activity driven model have N = 200 nodes, r = 200 snapshots, and d, dpu, € {4,...,10}. Weset 7 = 1.

6. Discussion

We have provided evidence that the epidemic threshold for the SIS model on temporal networks is smaller than
that for the corresponding static networks for arbitrary temporal networks. We have also shown that the degree
of commutativity of the adjacency matrices of the snapshot networks predicts the impact of temporality of the
network on the epidemic threshold. Our results are opposite to the previous results concluding that infection in
the SIS model is less likely in temporal than static networks [11, 17, 20]. However, our results do not contradict
theirs, for which the aggregate network obtained from the temporal network is not equal to the static network
used for comparison. In contrast, we compared temporal networks with static networks such that they are the
same if we ignore the temporal information in the former.

In the discrete-time SIS model on temporal networks [25], the epidemic threshold is larger for the temporal
network than the corresponding aggregate network when a sequence of snapshots is randomly drawn with
replacement (appendix I). This result is opposite to the current results for the continuous-time dynamics.
Because a discrete-time model is a proxy to the continuous-time counterpart, which is usually more realistic, the
present continuous-time framework is useful. For instance, the discrete-time SIS model implicitly assumes that,
for time 7, each node is allowed to make at most one transition between the infected and susceptible states.
Therefore, the propagation speed is restricted, which is not the case in the continuous-time framework. In
particular, the discrete and continuous-time versions only coincide when 7 — 0, in which limit both reduce to
the SIS model on the aggregate network.

We modelled temporal networks by switching networks. In practice, we cannot manipulate the duration of
each snapshot (i.e., 7) because it is specified by the data, reflecting the temporal resolution of the observation.
Rather, our interpretation of 7is the relative time scale between the epidemic dynamics and network dynamics.
Alarge 7, with which the epidemic threshold decreases, corresponds to fast epidemic dynamics relative to
network dynamics. The present results imply that infection is pronounced when the network varies over time
(i.e., temporal network) but only slowly. In this situation, there are times when some snapshots strongly favour
infection as compared to typical snapshots, and such snapshots enhance infection more than other snapshots
suppress it. [t should be noted that the time scale of the epidemic dynamics does not affect the equilibrium of the
SIS model in the case of static networks. A future extension of the model may relax the assumption of equal
duration 7 of each snapshot and explore the effect of a (possibly broad) distribution of time spans. In a further
step, a dependence of 7 on the nodes’ state may be considered to model contact avoidance and quarantine of
infected nodes.

Our commutativity result opens the way to contain infection by devising the set of snapshots without
changing 7 or the structure of the aggregate network. In a hospital, it may be undesirable to change aggregate
interactions between doctors, nurses, and patients because the amount of the interactions may be positively
correlated with service quality. We can increase the epidemic threshold (therefore, less epidemic) by designing a
sequence of interactions such that the corresponding adjacency matrices commute as much as possible. The
method explained in appendix G is useful in systematically generating commuting adjacency matrices. For a

9
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similar attempt in synchronisation dynamics using single-link snapshot networks, see [55]. The adjacency
matrices obviously commute when the snapshots do not have any nodes in common. Therefore, designing
interactions such that different sets of nodes are active at different times as much as possible may be effective at
increasing the epidemic threshold. This point warrants further work. Examining the influence of 7 on the
epidemic threshold and the relevance of the commutativity of the adjacency matrices in more complex
compartmental models of epidemic dynamics also warrants future work.
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Appendix A. QS method

The QS method is used for computing the average prevalence in the SIS model in finite populations [43]. The QS
method for the SIS model in static networks works as follows. We distinguish active states, which are
configurations with at least one infected node, from the absorbing state, which is the configuration with no
infected nodes. We keep a total of 2000 active states in memory. After one update event in the SIS model, we are
either in an active or an absorbing state. If an active state is reached, it replaces a randomly chosen state in the
memory with the probability proportional to the expected time to the next update, where the proportionality
constantis set to 0.5. It should be noted that the probability does not exceed unity because the mean time to
recovery is normalised to unity such that the expected time to the next update in the entire network is less than
unity. If the absorbing state is reached, one active state is chosen uniformly at random from the memory to
replace the absorbing state. After a transient of 10° time units, the QS is calculated as the average of the system’s
state over the next 10° time units.

We modified the QS method for temporal networks. Our implementation is slightly different from that in
[25]. Assume that we are currently using the nth snapshot. In other words, (n — 1)7 < ¢ < n7.The QS may
dependont — (n — 1)7,i.e., the time since the beginning of the current snapshot. Therefore, for different
valuesof t — (n — 1)7 and the current snapshot, we generate a memory, i.e., a list of active states to be used
when the process dies. To this end, we divide the time window [0, 7) into those of length 7 I < 7', weset
7/ = 7 and the time window is not divided. For every combination of the currently used snapshot and discrete
time n'7’, which covers n'7' <t — nr < (W' + D)7’ (0’ = 0, 1, ...), weallocate memory to store 2000 active
states. When the process is in an active state at time t — nT = n'7’, it replaces a randomly chosen active state in
the memory corresponding to n'7’ and the current snapshot with probability 0.5. If the process reaches the
absorbing stateattime t — nr € [n'7’, (' + 1)7’), the network state is replaced by an active state randomly
chosen from the memory corresponding to the elapsed time 7" and the current snapshot. Then, the process is
restarted at time t = nt + n'7’. After a transient of time 103r7, where ris the number of snapshots, we calculate
the steady state as the fraction of the infected nodes averaged over the 10°r subsequent measurements conducted
when snapshots switch from one to another. We used 7/ = 0.5 and confirmed that the results remained
unaffected with 7/ = 0.1.

Appendix B. Stochastic SIS model on single-link snapshots

Consider a temporal network in which each snapshot contains disjoint single links drawn at random. The degree
of every node in a snapshot is at most one. Numerical results on a temporal network generated from this model
with N = 2000 nodes and 500 links in each snapshot are shown in figure I1. Contrary to the results shown in the
main text, the epidemic threshold increases as 7 increases.

This result is caused by the fact that the individual-based approximation does not work, even qualitatively,
when snapshots are composed of small fragments such as disjoint single links. For such networks, stochasticity
of the dynamics that the individual-based approximation does not account for plays a significant role. In short,
even if the infection rate is very large, infection will die out if we apply a snapshot for long 7. To understand this
situation, here we analyse the stochastic SIS model on a single link (N = 2) by the master equation rather than
by the individual-based approximation.

The SIS model with two distinguishable nodes has 22 = 4 states, where each node is either susceptible or
infected. We assume that the two nodes are bi-directionally coupled. We denote the time-dependent
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probabilities of the states by pyq (none infected), p;¢ (only node 1 infected), pg; (only node 2 infected), and p,,
(both nodes infected). It should be noted that psg + pig + pg; + p;; = L. The probabilities evolve as

bss = Pis + Psp> 17)
pis = (=6 — Dpg + py> (18)
by = (=6 — Dpg + py> (19)
Py = B(pis + Ps) — 2Py (20)

To exploit the symmetry, we consider u = p; + pgand r = p;s — pgin place of p;gand pg;. They evolve as
= (=0 — Du+ 2py (1)

and
F=(=p— Dr. (22)
The equations for r, u, and py; fully describe the dynamics. The solution of equation (22),

r(t) = r(0)e B+be (23)

is decoupled from the dynamics of u and p;;. The linear dynamics composed of equations (20) and (21) have the
eigenvalues given by

A= %(73 ~ B+ ), (24)

with kK = /1 + 68 + (3. The corresponding left eigenvectors are given by (1 — 8 & x)/(23) 1). For initial
conditions u(0) and p;; (0), the solution reads

e(-3-A)1/2

1 1—-38+ .,
u(t) = T X {[ﬂu(O) - 5(1 - B - /{)pn(o)]#eh /2

1 1—-08-—
+ [—ﬁu(O) + E(l — ﬂ + Ki)pH(O):l#e_ﬁt/Z}’ (25)

e(7376)t/2

) = T X {[ﬂu(O) - %(1 - 65— H)pll(o)]em/z

+ [—ﬁu(O) + %(1 -8+ li)pH(O)]e"“/z}. (26)

In what follows, we assume that one node is initially infected and the other is initially susceptible, yielding
u(0) = 1,r(0) € {—1, 1},and p;;(0) = 0. Then, the solution at time 7 is given by

o(-3-P)7/2
H(T)Zz—{(l — B4 m)e? — (1 = = ke /2
K
e(-3-B)7/2
=—+——{(1 — B)sinh(k7/2) + kcosh(k7/2)}, (27)
K
e(*S*ﬂ)’r/Z ) 5
Py = 1B — e
(=3-B)r/2
_ 28T T b/ 2), (28)
K
and
r(1) = r(0)e-F-D7, (29)
We denote the probability for nodes 1 and 2 to be infected at time 7 by p, (7) and p, (7), respectively. They are
given by

() = %r(r) n %u(r) +py ()

e(—ﬁ— DT e(—3—ﬂ)7’/2
=r(0) 5 + o {k cosh(k7/2) + (1 + 30)sinh(x7/2)} (30)
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and

P (1) =— %r(r) v %u(r) +py ()

e-B-Dr  o(-3-p)7/2
=—r(0) 5 + o [x cosh(k7/2) + (1 + 303)sinh(k7/2)]. (31)

The expected number of infected nodes, p, (1) + p, (7), when one node is initially infected is shown in
figure I12(a). The individual-based approximation developed in the main text would predict that the number of
infected nodes monotonically increases in time when J1is sufficiently large. However, figure 12(a) indicates that
the infection eventually dies out even for a large (3 value. Next, we estimated the epidemic threshold as the 5 value
atwhich p,(7) + p,(7) = 1. This estimate gives a T-dependent lower bound on the epidemic threshold in
temporal networks, (.. The epidemic can only spread if the expected number of nodes after time 7is larger than
the number at time 0. The relationship between the estimated epidemic threshold and 7 is shown in figure 12(b).
We find that the epidemic threshold increases as T increases.

Appendix C. Relationship between the Lyapunov exponentand /i
We assume random sampling with replacement of snapshots. The maximum Lyapunov exponent is given by
A = limy oo (£7) 'In pu,., where £ is the length of a sequence of snapshots. It should be noted that, while s,
is arandom value for any #, the maximum Lyapunov exponent is a deterministic value owing to theorem 2 in
[49]. In this section, we show that (In /i, ) /7 > A.

We use theorem 1 in [51]. Suppose that any adjacency matrix of the snapshot is a matrix with non-negative
entries and that, for each pair (i, j) (I < i, j < N), thereis a sequence of adjacency matrices
{A©, AD, ., A“~D} for some ¢ such that T (7); > 0. Under this condition, the theorem states that for every
pair (i, ) satisfying lim,_, . (7¢) "' In [T (7);;] = 0, we obtain

1
flirgcﬁln[T(T),]] =\ (32)

The condition of the theorem is satisfied if the aggregate network is connected.
We denote the ensemble average over the set of snapshots by E. By using Jensen’s inequality, we obtain

[hm —1n[T(T),J]] lim —h’lE[T(T),]] = hm LRt )il (33)
f—oo 0T t—o00 T 0 T

Iflimy_, o (Z7) ' In [T (1);] = 0, equation (33) implies
lim ——In[(1* )il > 0. (34)
t—o0 €T
Iflimy_, o (Z7) "' In [T (7);] = 0, we combine equations (32) and (33) to obtain

lim f—ln[(T )il = E[Al = A (35)

—00

. . N f . .
Because the largest eigenvalue of s equal to ,umax and T" is symmetric in the case of undirected snapshots,
we obtain

07 = max xTfo. (36)
xT

We distinguish two cases.
If there is an i such that lirnfﬂoo (z,” 7) n [T (7);;] = 0, welet x have 1 in the ith element and zero elsewhere

in equation (36) to obtain /1°

max

(T )ii- By combining this inequality with equation (35), we obtain
—ln flnax = A (37)
-

Otherwise, lim,_,.(£7)"!In [T (7);;] = 0 forall i, and equation (34) with i = j holds true. In this case, we let
x tohave 1 / V2 in the ithand jth elements and zero elsewhere in equation (36) to obtain
umax [(T Yi + (T )]] + 2(T )ijl/2. We find iandj such that lim _, . (£7)~! ln[(T )il = A. By combining
these equations, we obtain

T i T 2 T [
~Infi,, > lim L[ T £ @)+ 2T > lim 2= In[(1* )il = (38)
£ —00 fT 2 £—00 fT

12
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Appendix D. Epidemic threshold for temporal networks with clique snapshots

We denote by A the adjacency matrix of the network in which nodes 1, ...,dq + 1formaclique and nodes
da + 2,...,N areisolated. Restricted to the clique part (i.e., principal minor of size d. + 1), the eigenvalues of
Agareequal to dqand —1, where —1 has multiplicity dj. We definea (dg + 1) X (dq + 1) matrixby

Lol 1fz L [
Jdg+1 2 2V 3 da+1Y da+1
L1 L [
Jda+1 2 2V3 da+1V dg+1
ch == 1 0 _ E 1 dq ) (39)
[da+1 3 da+ 1Y dg+1
1 dg
0 0 _ e
dg+1 da+1

where the first column of Q. is an eigenvector corresponding to d, restricted to the clique part, and the
remaining columns span the eigenspace of the eigenvalue —1. Then, we obtain

7d T
swons o= (3 )

- dars —B _ 4 —
_ _¢ I R— e®™” + dge dg 1(dc11 0)
= e?™ — e YAy + + (da+ DI
A 1[( )Ad i 0 0 (da+1)
(40)
Equation (40) remains true if a snapshot consists of multiple cliques.
By combining equations (6) and (40), we obtain
. - datp -8 _ —
Fr) = =S| (ot — ey px 4 ST dae da = 1pe o (ay+ 11|, (41)
dcl +1 dd

where A* = 3", A/r is the aggregate network, and D* is the diagonal matrix with degree d;* of the aggregate
network on the diagonal.

We denote the eigenvector corresponding to i, .. = 1byuq = (4, ..., uy) . The normalisation is given by
>N u; = 1. Byusing equation (41), we obtain

e  dye ™% — dg — 1
dcl

(et — e~ Ry (AF, ug) + dfu; = (dq + 1)(€ — Du;, (42)

where we abbreviated the ith row of matrix A* by A;*and (,) denotes the scalar product of two vectors.
Summation of equation (42) over i yields

edamic — dd —1

eddec <d*> ucl> +
dcl

<d*) ucl> = (dcl + 1)(eT - 1)) (43)

where d* = (df, ..., dy) . By solving equation (43), we obtain

B. = ! ln[l + <d*d—d>(€T - 1)]- (44)

Tdq > Ul

It should be noted that u, depends on 7.
When 7 = 0, ug is the eigenvector of A* corresponding to o’ such that

N N
(d*, ug) = ZA;ui = Zaiaxuj =a’.. (45)
iji=1 =1
Therefore, ,@’C convergesto 3% = 1/a¥_ inthelimit 7 — 0.In thelimit 7 — oo, @C convergesto1/d,
representing the fact that just one snapshot is used indefinitely long, and the epidemic threshold in a single
snapshot is that of a clique.
Finally, we approximate (d*, u) ~ o’ for general 7 values in equation (44) to obtain equation (7). It
should be noted that equation (44) is independent of (d*, uy) in the limit 7 — 0 and 7 — 00 such that
equation (7) is exact in these two limits.
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Appendix E. Epidemic threshold for temporal networks with star snapshots

We denote by Ay the adjacency matrix of the network in which a star of size dy,, + 1is embedded. Without loss
of generality, we assume that node 1 is the hub, nodes 2 to dyp, + 1 are leaves connected only to the hub, and
nodes dp,, + 2 to Nareisolated. The adjacency matrix restricted to the star part (i.e., principal minor of size
dnup + 1) has three distinct eigenvalues + \/m and 0, where the eigenvalue 0 has multiplicity dp, — 1. We
definea (dyyp, + 1) X (dpy + 1) matrix by

1 1
2 V2
1 1 R [M
2dpyb 2dnuy V2 2V3 dhub N iy — 1
! 1 S S S O S U
Qg = | V2dnb V2dhu J2 2N dha N dhay =1 (46)
! ! o — [* ... 1 [dw-2
V2t 2dhub 3 dnup N dhap — 1
L L 0 o — [Fw=2
szhub \IZdhub dhub -1

where the first column is an eigenvector corresponding to eigenvalue +/dyyy, , the second column is an
eigenvector corresponding to eigenvalue — /dpy , and the remaining columns span the eigenspace of the zero
eigenvalue. Then, we obtain

Q 0) eTmﬂ
st

To
0 I e—Tmﬁ st

0 I
I

=e 7 ! sinh (7 dnu 8)Ag +
Ahub d

exp[(BAs — D7]= e‘T(

1

hub

[ cosh (7+/dpw 3) — 11A2 + 1]. (47)

If more than one star is embedded in a snapshot, appropriately permutated versions of equation (32) are added
together. By applying equation (47) to equation (6), we obtain

1 1 YA (48)

2
[cosh (T dnhw B) — 1] =— + I],
r

T(r) = eT[ sinh (7+/dpgy ) A* + y

hub hub

where the summation of A* runs over all possible snapshots and  is the number of the possible snapshots. When
dpa, = 1, we obtain 3" A?/r = D* such that equation (48) is consistent with equation (41).

As aspecial case, we consider the discrete-time version of the activity driven model [17, 21]. In each
snapshot, every node iis assumed to be activated with probability a; independently of the other nodes.

If node iis a hub, the probability that it connects to a node j in a snapshot is equal to dy,/N. Therefore, we
obtain up to the order of 1/N

(a; + aj)dnub
N >
where we neglected the probability that both 7and j are hubs and are connected to each other. If node kis a hub,

the probability that it selects both nodes i and j (i) as leaves is equal to dy,p, (dpy, — 1)/[N (N — 1)]. Then, for
i = j weobtain

Af ~ (49)

[ZAZ] ~ ﬁ’: 4 Anub (dhuy — 1)
ij

k
r k=1;k=i,j NN -1

7\ b (dhay — 1)
~ (a) N (50)

wherea = (a;,...,ay)', (a) = Zfil a;/ N, and we have neglected O (N—2) terms. We also obtain

2
(EA%) =df ~ (a; + (a))dpu, (51)
where d;* is the degree of node i in the aggregate network.

The epidemic threshold satisfies fi,,,,, = 1. We denote the eigenvector corresponding to fi,,.. = 1by uy. By
substituting equations (49)—(51) in equation (48), using (d*) = 3 fi L d*/N = 2(a) dyp, which is derived from
equation (51), and performing steps similar to those in equations (42) and (43), we obtain
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<d*, ust> Sinh(T\/mﬂAc) I (<d*> L <d;, ust> )COSh(T\/mBC) ~e — 1+ <dzi + <d*, ust> . (52)

hub 2 hub dhub
We substitute BC = (7+/dhw )~ ' In 1) in equation (52) to obtain
<d*) ust> <d*) ust>

<d*> <d*> ust> <d*) ust> 2 <d*>
- + - + —
( 2 Ahub ~ Ahub ]1/) [ 2 Ahub thub
) )
~ Z(e 1+ ot i )w. (53)

By solving this quadratic equation, we obtain

1 c; + w/c32 — 4q0
In
7 dhub 2¢

B~ , (54)

where

* * *
q= <d > _|_ <d > ust> + <d > ust> (55)

2 dhub Vo
* * *
o= (d*) + <d s Ust) . (d*, uy) (56)

2 dhub \/ dhub ’
2 <d*) ust>
dhub .

3 =2(e" — 1) + (d*) + (57)

We obtain an approximate formula for 3. by replacing (d*, ug) with o . ~ dugp ((a) + /(a2)) (see
appendix F for the derivation of %), which is exact for 7 = 0 and 7 = 00 as in the case of temporal networks
with clique snapshots (appendix D). We additionally simplify this formula by performing a Taylor expansion of
B.intermsof € — laround 7 = 0. By neglecting higher order terms, we obtain equation (8).

*
max

Appendix F. Derivation of o, ,, for the activity driven model

We derive the leading eigenvalue of the aggregate matrix for the activity driven model, of, ., where the aggregate
adjacency matrix is given by equation (49). Each row of A*uy = o’ u is given by
i ) d
Oé*maXUi — <A:!<, ust> ~ (a + <a ust>) hub. (58)
N
Summation of equation (58) over 7 yields
Upax & ((a) + (@, 1)) . (59)
By multiplying both sides of equation (58) with a; and summing over i, we obtain
o (@ ) ~ ((a%) + (a) (@, ug)) dnu, (60)

where (a?) = Zfi La?/N.Because entries of u are all non-negative and uy, is a non-zero vector, (a, uy) = 0.
By removing (a, uy) using equations (59) and (60), we obtain

(a;knax)2 - 2<El> dhllba?;ax + <a>2d§ub - <a2> dﬁub ~ 0, (61)

which results in

oo & dna ((a) + (@), (62)

Appendix G. Generating temporal networks with the same aggregate network and
different values of C

To generate commuting matrices, we use the fact that symmetric matrices commute if and only if their
eigenspaces coincide. We start by the matrix in which all entries are equal to unity. Its eigenvalues are Nand 0.
We denote the eigenvectorsby u; (i = 1, 2, ...),whereu; = (1 --- 1) /</N is the eigenvector corresponding
to eigenvalue N. Because all entries of this matrix are positive, small changes in the eigenvalues will resultin a
matrix with positive entries. We choose eigenvalues \; € [N — 1, N 4+ 1]Jand A; € [—¢, €] 2 < i < N),

€ > 0 uniformly at random and calculate a new adjacency matrix as
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Figure I1. Results of stochastic simulations on a temporal network composed of disjoint links. We set N = 2000 and r = 1000. Each
snapshot contains 500 disjoint links.

N
Z)\iu;uiT. (63)
i=1

Weset € = 10 in the numerical simulations. We repeat this procedure until we obtain r matrices with positive
entries. The radjacency matrices commute within themselves.

We manipulate the r commuting matrices to increase the degree of commutativity, C (equation (16)), while
conserving the aggregate matrix as follows. First, we select two matrices. Then, we randomly select (3, ),
1 <4, j < N and swap the (i, j) entry of the two matrices. To keep both matrices symmetric, we also swap the (7,
i) entry of the two matrices. We repeat this procedure 2000 times during which Ctends to increase.

Appendix H. Generation of temporal networks with different 4. and dy,;, values and the
same aggregate network

We generate temporal networks with clique snapshots and the activity driven model with different values of d
and dy,,, and the common aggregate network as follows.
For temporal networks with clique snapshots with given d and a, the aggregate matrix up to the order of
1/N is given by
d dcl (dcl )

A~ (a; + a) =2 + (a 64
A% ~ ( ) N (a) N (64)

Therefore, for a choice of d, we need to find a’ satisfying
dc’l(a{ + %(a'> (dy — 1)) =dqg [a,- + %(a)(dd - 1)]. (65)

Equation (65) implies
r_ da 1lda—1 ( dcl_l)dcll_l

a =" = — 4+ == a, 66
C’l{ N[ 2 2 dc’1+1] (66)

where Jis the matrix in which all entries are equal to unity.
For the activity driven model with given dy,,;, and a, the aggregate matrix up to the order of 1 /N is given by
equation (49). Therefore, for a choice of dy;,, we need to find a’ satisfying
(a] + a)dpyy,  (a; + a)dpup

_ , 67
I N (67)

which implies

a = d},’uba. (68)
dhub

In figure 6, we chose dj, dpyp, = 10 and drew a; from a power-law distribution with exponent 3 and
mean (a) = 0.05.
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Figure I2. Stochastic SIS dynamics on two nodes connected by alink. (a) Expected number of the infected nodes as a function of time
when one of the two nodes is initially infected. The curves from the top to bottom correspond to 3 = 10, 5,2, 1,and 0.5. (b) A lower
bound for the epidemic threshold as a function of 7. For each point (7, (3.), the value of 7 is the time when the corresponding curve in
(a) intersects with the dashed horizontal line.

Appendix I. Epidemic threshold for temporal networks in discrete time

In this section, we show B gic > 37, where (3. gi is the epidemic threshold for the discrete-time SIS model in
which snapshots are randomly sampled with replacement from a given set.
For the SIS model in discrete time, the time evolution operator is given by equation (8) in [25] as follows:

Taise (1) = [(1 — )] + 7BAY"V][(1 — NI + 784 D] - [(1 — 1) + TBAV]. (69)

Because the probability of infection and recovery is given by 73 and T, respectively, 7 must be smaller than
min {31, 1}. The epidemic threshold, 3. 4is. is equal to the value of 3 at which the largest eigenvalue of T, (T)
is equal to unity.

Welet

Taise = ElTaisc (7)1 = [(1 — 7)I + 78A*) (70)

and denote by Bc,disc the value of B at which the largest eigenvalue of Ty is equal to unity. Because equation (70)
indicates that the largest eigenvalue of Ty is equalto [(1 — 7) + 780’ , we obtain

1 *

Bc,disc = % = /Bc (71)
max

regardless of 7. Under the restriction that 0 < 7 < min{8~!, 1}, matrices (1 — 7)I + TBA(K/) are non-
negative. Then, we can apply arguments similar to those in appendix C to show that 5 gisc > Bc,disc (=65).

As a demonstration, we calculated the epidemic threshold for the discrete-time SIS model for the ht09 data
set (table 1). The epidemic threshold for the aggregate network was equal to 3% = 0.046. With 7 = 0.2 and
7 = 0.5, we obtained [ gis,c = 0.079 and 0.098, respectively, confirming that the epidemic threshold increases
as T increases in the discrete-time SIS model.
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