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Modeling and Robust Body Freedom Flutter Analysis
of Flexible Aircraft Configurations

Andrea Iannelli, Andres Marcos and Mark Lowenberg1

Abstract— Body Freedom Flutter (BFF) is a dynamic insta-
bility concerning coupling between rigid-body and elastic modes
of the aircraft. Flexible configurations with adverse geometric
properties have been found susceptible to this phenomena.
In this work a simple model, based on the typical section
framework and incorporating basic features of the problem, is
proposed. A sensitivity study of the role played by two mean-
ingful parameters (wing bending stiffness and tail horizontal
distance) is performed both with classical (p-k method) and
robust (µ technique) tools. The analyses performed showcase the
potential and prowess of the latter, not only in inferring critical
features of BFF but also in its capability for more complete and
complex robust parametric analysis.

I. INTRODUCTION

The coupled problem of a flexible structure surrounded
by a fluid flow generating a pressure depending on its
geometry is the subject of aeroelasticity. The interaction
among inertial, elastic and aerodynamic forces can lead
to critical phenomena as flutter, which is a self-excited
instability whose level of vibration may result in sufficiently
large amplitudes to provoke failure. It is common practice
to assume the occurrence of a lifting surface’s flutter as
unrelated to the rigid-body motion of the vehicle where it
is mounted, and thus it is extensively accepted to rely on
restrained body models (e.g. cantilever wing).
However, recent studies [1], [2] have demonstrated that struc-
tural sizing aimed to achieve very light weight structure, and
thus a significant degree of flexibility, could lead to multiple
flutter mechanisms. In particular, a detrimental coupling
between the rigid-body modes and the first elastic modes
of the vehicle could arise, leading to the so-called Body
Freedom Flutter. Air vehicle layout in terms of geometry
and stability derivatives plays also a decisive role in the
extent of this phenomena. As a result, the aeroelastic sizing
required to ensure flutter free behavior of the vehicle entails
a multidisciplinary approach.

Furthermore, it is acknowledged that flutter analysis in
general doesn’t provide highly confident numerical predic-
tions due to simplifying modeling assumptions and to their
sensitiveness to small variations in parameter values [3],
which are often only estimated. In addressing this issue,
in the last decades researchers looked at robust modeling
and analysis techniques from the robust control community,
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specifically Linear Fractional Transformation (LFT) models
and µ analysis [4]. The so-called flutter robust analysis [5],
[6] aims to quantify the gap between the prediction of the
nominal stability analysis (i.e. model without uncertainties)
and the worst prediction when the whole set of uncertainty is
contemplated. This results in a powerful tool when used as a
complement to the classic techniques in that it can highlight
weak points of the model requiring more refinement and
conversely identify parameters that can be coarsely estimated
as they do not have a strong influence on the results.

In this work the capability of the typical section framework
in studying flutter of simple wing geometries is addressed
first and validated against the Goland wing, a well-known
benchmark problem from this field’s literature (Section II).
Then an elementary model to study BFF is proposed, that
includes: longitudinal dynamic of the vehicle described by
its angle of attack and pitch rate (the so-called short period
approximation), the first bending and torsional modes, and
their coupling terms (Section III). A range of aircraft con-
figurations, differing in geometric properties and degree of
flexibility, are analyzed within this framework and the results,
in terms of mismatch between restrained and BFF model
predictions, are discussed (Section IV). Introduced by a
cursory description of LFT and µ analysis, finally the robust
BFF analysis (Section V) is performed in order to show
how µ analysis can be advantageously employed to highlight
critical parameters of the problem and quantitatively assess
stability degradation due to uncertainties in the models.

II. RESTRAINED FLUTTER ANALYSIS

A. Typical section model

The typical section model was introduced in the early
stages of aeroelasticity to investigate dynamic phenomena
such as flutter [7]. Despite its simplicity, it captures essential
effects in a simple model representation, see Fig. 1.

From the structural side, it basically consists of a rigid air-
foil with lumped springs simulating the degrees of freedom
of the section, in this case limited to plunge h and pitch α
(optionally also the trailing edge flap could be considered).
The main parameters in the model, refer to Fig.1, are: Kh

and Kα respectively the bending and torsional stiffness;
half chord b; dimensionless distances a from mid-chord to
flexural axis and xα from flexural axis to airfoil center of
gravity. The position of the relevant points elastic axis (EA),
center of gravity (CG) and the aerodynamic center (AC) is
also marked.
For the aerodynamic loads model, the unsteady formulation
proposed by Theodorsen [7] is employed. This approach is



Fig. 1. Typical section sketch

based on the assumption of a thin airfoil moving with small
harmonic oscillations in a potential and incompressible flow.

The premise of the typical section modeling is that the
dynamics of an actual wing can be simulated choosing
the aforementioned properties to match those at a span
station about 70% distant from the centerline. Experience
has confirmed that this assumption is reasonable for wings
configurations having large aspect ratio, small sweep angle
and spanwise characteristics varying smoothly.

In order to present the basic model development approach,
XE(t) and La

E(t) are respectively defined as the vectors
of the elastic degrees of freedom and the corresponding
aerodynamic loads:

XE(t) =

[
h(t)
b

α(t)

]
; La

E(t) =

[
−L(t)

MA(t)

]
(1)

The set of differential equations describing the dynamic equi-
librium can then be recast in matrix form using Lagrange’s
equations: [

Ms

]
ẌE +

[
Ks

]
XE = La

E (2)

where
[
Ms

]
and

[
Ks

]
are respectively the structural mass

and stiffness matrices (structural damping is assumed null).
They can be written as:

[
Ms

]
= mwb

[
1 xα
xα r2

α

]
;
[
Ks

]
=

[
bKh 0

0 Kα

b

]
(3)

where mw is the mass ratio (wing weight per unit span)
and rα is the dimensionless radius of gyration of the section
about the elastic axis.

Theodorsen model provides an expression of La
E in the

Laplace s domain framework as:

La
E(s) = q

[
A(s̄)

]
XE(s) (4)

where the dynamic pressure q and the dimensionless Laplace
variable s̄ (=s bV with V the wind speed) are introduced.[
A(s̄)

]
is called the generalized (complex-valued) Aerody-

namic Influence Coefficient (AIC) matrix. The final aeroe-
lastic equilibrium is written in frequency-domain as:[[

Ms

]
s2 +

[
Ks

]
− q
[
A(s̄)

]]
XE(s) = 0 (5)

B. Application to wing flutter analysis

The first goal of this work is to show how this formulation
can be used to evaluate the flutter speed of a finite span
(3D) wing. As benchmark for this assessment the Goland
wing [8] is selected. It consists of a uniform rectangular
wing with constant structural and inertial properties along the
span. Wing elasticity is described by means of the bending
stiffness EI and torsional stiffness GJ .

An equivalence in terms of the first uncoupled bending
and torsional natural frequencies [9] of a cantilever beam is
imposed in order to find the values for the typical section
stiffness parameters Kh and Kα.

ωb =
(

0.597
2π

L

)2
√
EI

ms
=

√
Kh

ms

ωt =
π

L

√
GJ

Iα
=

√
Kα

Iα

(6)

Flutter analysis studies the conditions at which the dy-
namic aeroelastic system loses its stability, as the air stream
speed V is increased. The result is the prediction of the so-
called flutter speed Vf , below which the system is guaranteed
to be stable. The major methods used to accomplish this
task are based on frequency-domain as this is the framework
where the aerodynamics loads are most often expressed. The
p-k method is employed next to analyse the wing’s nominal
flutter. The objective is to find the flutter determinant roots
s such that nonzero solutions for XE exist in (5). The
complexity arises since the AIC matrix does not have a
polynomial dependence on s and thus iterative solutions have
to be sought.

In Fig. 2 the eigenvalues corresponding to the two modes
are depicted as the airstream speed is increased. The system
exhibits an instability dominated by the torsion mode, with a
flutter speed Vf=141 m

s . This shows a satisfactory matching
(error below 3%) with results in [8] which comprise 3D
effects.
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III. BODY FREEDOM FLUTTER MODELING

In aircraft design, vehicle dynamics modeling and analysis
are often addressed considering separately the rigid-body
dynamics and the structural dynamics, on account of a wide
frequency separation between the two natural modes set.
However, the increasing effort towards an optimal structural



sizing and lightweight material selection on one side, and
the conception of geometric layout with low static stability
(or rather statically unstable) compensated with full-authority
control systems on the other, are reducing the applicability
of the aforementioned hypothesis, enhancing the coupling
between the rigid and flexible dynamics.

Reference [10], which provides a comprehensive study on
the different aspects of this broad subject, is here adopted
for the development of a simple framework to deal with this
phenomena. The noninertial vehicle-fixed coordinate frame
used to derive the equations of motion is the so-called
mean axes. It has the properties that the origin is coincident
with the instantaneous center of mass of the vehicle and
the relative translational and angular momenta (about the
origin) due to elastic deformation of the structure undergoing
unforced vibrations are null. This choice is instrumental to
avoid inertial coupling between the rigid-body and elastic
degrees of freedom.
Only the longitudinal dynamic is retained in this model,
which is described by: the vehicle angle of attack ᾱ, the pitch
angle θ̄ and its pitch rate q̄. This is the short period approxi-
mation, which for conventional aircraft involves rapid heave
and pitch oscillations at almost constant translational speed.
As testified in [2], the phugoid mode has a marginal role
in BFF and thus surge velocity is neglected. Therefore, the
rigid-body motion equilibrium can be written in frequency
domain (for level flight) as[

(V − Z ˙̄α)s− Zᾱ −(Zq̄ + V )s
−(M ˙̄αs+Mᾱ) s2 −Mq̄s

] [
ᾱ(s)
θ̄(s)

]
=

[
0
0

]
XR(s) =

[
ᾱ(s)
θ̄(s)

]
; q̄ = sθ̄

(7)
Where the vector of rigid degrees of freedom XR and the
aircraft stability derivatives Zᾱ, Z ˙̄α, Zq̄ , Mᾱ, M ˙̄α, Mq̄ have
been introduced. They are evaluated with first approximation
formula [10].

The final task is to determine the coupling terms, since the
equilibrium of the elastic degrees of freedom has already
been stated in (5). The crucial aspects to address are the
understanding of how the deformation affects the overall
aerodynamic forces generated by the vehicle, and how the
motion of the vehicle contributes to change the loads acting
on the structure. A proposed simplification commonly ac-
cepted [11] is to consider fuselage and tail as rigid, which
means that all the elasticity is concentrated in the wing.
The effect of the elastic deformation on the lift generated by
the local wing sections is highlighted by the expression of
the local angle of attack αloc

αloc = α0 + α+
ḣ

V
(8)

where α0 is the rigid angle of attack of the section, related to
ᾱ. The aeroelastic stability derivatives describing the effect
of deformation on the vehicle forces and moments can then
be derived starting from the expression of the wing lift

coefficient CLW , comprising rigid and elastic effects:

CLW = CRLW + CELW

CLW = CLα(α0 + α+
ḣ

V
)

CRLW = CLα
α0

CELW = CLα
(α+

ḣ

V
)

(9)

The latter coefficient enables thus to relate the elastic defor-
mation to the vehicle loads. Note that for these coupling
terms, determining the effect from Elastic to Rigid, the
hypothesis of quasi-steadiness has been assumed. The main
reason is that these terms enter the equilibrium of the rigid
DOFs of the plant and thus, it is desired to keep consistency
with the assumptions taken in evaluating the aerodynamic
stability derivatives in Eq.7.
Vehicle rigid motion governed by (7) determines in turn the
loads La

R acting on the wing. In particular a change in angle
of attack ᾱ and pitch rate q̄ causes terms of the type of ḣ

b
and α (from XE in (1)) to originate loads on the structure,
as introduced in (4). Thus it is possible to write this cross-
coupling term as:

La
R(s) = q

[
A(s̄)

][
T
]
XR(s) (10)

with
[
T
]

a transformation matrix which allows to express
the typical section degrees of freedom in terms of XR.
A short-hand expression of the overall equilibrium is[

s2

[
MRR MRE

MER MEE

]
+ s

[
CRR CRE

CER CEE

]
+

[
KRR KRE

KER(s̄) KEE(s̄)

]] [
XR(s)
XE(s)

]
=

[
0
0

] (11)

with the subscripts highlighting the kind of influence terms,
e.g RE is from elastic to rigid while EE is elastic on elastic.

The intrinsic simplicity of this framework has to be
ascribed to the choice of the typical section as representative
of the structural dynamics of the wing. However, note that
the basic physical features of the rigid-elastic coupling are
kept. As shown in [10], the aeroelastic derivatives calculation
process is prompted by the same line of reasoning, with
integrals employed to take into account variability of the
properties along the span. Moreover, it is known [12] that
BFF is well predicted using linear models for the aircraft
and is not the result of non-linear aerodynamics or structural
nonlinearities.

IV. NOMINAL ANALYSIS

A. Air vehicle configuration

The aircraft geometry used in this work to perform the
BFF analyses is presented in Fig. 3. It is remarked here that
this study is not aimed at investigating stability of a specific
existent air vehicle layout. The chief goal is instead to show
that the simple model described above enables to highlight
reckoned features of BFF. Although it is claimed that BFF is
a phenomena concerning mostly flying wing, it is reported in



Fig. 3. Aircraft Model Geometry

literature [12] that wing/fuselage/tail configurations can also
undergo this instability for an adverse combination of design
parameters.
The wing is described by the parameters defining Goland
wing [8], with the only exception of EI , which is assumed
as a design variable that reflects the tendency towards a
lightweight-oriented structural sizing. This design variable is
given by EI=σsEIG with EIG set as the Goland wing value
and σs therefore defined as a free parameter capturing the
range of bending stiffness and taking values from 0.05 (max-
imum bending flexibility) to 1 (maximum bending rigidity).
The wing mass ratio mw is kept constant at the Goland wing
value since it is assumed to trade stiffness off for payload
capability on the wing and thus no overall weight reduction
is achieved. Torsional stiffness is also kept constant because
as shown in Fig. 2 torsion is dominating the flutter behavior
of this wing and thus a design constraint in terms of its lower
value is assumed to hold.
Finally, the parameters defining the geometric and inertial
properties of the aircraft are obtained scaling the values in
[11] considering Goland wing mass and length as reference.
The position of the tail D is considered a free parameter, as
previously done for the bending stiffness. It is acknowledged
indeed that the coupling of the rigid-body short period and
wing first bending mode resulting in BFF is enhanced in low
tail volume VH configurations. This parameter is defined as

VH = (X̄acH − X̄CG)
SH
S

(12)

where X̄acH and X̄CG are respectively the dimensionless
(dividing by the mean aerodynamic chord) distance of tail
aerodynamic center and aircraft center of gravity from the
nose, SH and S are the tail and wing surface. Thus, once the
lifting surfaces sizes are fixed, VH is a function of D, which
is expected to vary in a range between 5 m and 10 m in
order to be compatible with the static stability requirement.

B. Results

Fig. 4 shows the flutter speed Vf , i.e. the lowest speed
at which the system loses stability, calculated considering
variations in the aforementioned design parameters (EI , D).

The first feature, familiar to aeroelasticians [7], is that the
tendency for instability is more pronounced as the bending
ωb and torsional ωt frequencies become closer. This is seen
by the curve representing the restrained wing (solid line
in Fig. 4), where it is evident how Vf increases as σs
(equivalently EI) is reduced. This is due to the fact that
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Fig. 4. Flutter speed of the simplified aircraft as the two design variables
EI and D vary

a decrease in EI implies an analogous trend in the bending
frequency, as expressed by (6). Since the torsional stiffness is
kept constant in these analyses, a decrease in σs can be then
interpreted as a reduction in the ratio between the uncoupled
bending and torsional natural frequencies.
The flutter velocities evaluated within the BFF model (curves
for D=5,8,10m) maintain this trend too, as long as the
tail volume of the vehicle doesn’t become critical to the
stability. In fact, there is a whole range of degree of bending
flexibility of the wing (0.2<σs<1) where VH proves to be
negligible to flutter occurrence and the BFF model predicts
a relatively small decrease in flutter speed with respect to
the restrained model. As the bending flexibility increases
(σs<0.2), it becomes distinct the interaction between the
short-period and the bending mode, which leads to an abrupt
decrease of flutter speed. Tail volume is confirmed to play
a crucial role both in prompting rigid-elastic coupling (as it
changes the σs threshold at which the leap occurs) and in
the Vf value itself. Fig. 4 clearly shows how a lower VH
(i.e. lower D) anticipates the transition to BFF mechanism
and determines a lower flutter speed than for the scenario
with greater VH .
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This twofold behavior can be explained observing the root
locus of two aircraft configurations as speed varies. Tail
distance D is for both cases equal to 5m, while the bending
stiffness parameter σs is equal to 0.6 in one case and to 0.12
in the other. In Fig. 5 the modes branches are identified (and
labeled) according to their genesis of pure rigid-body or pure
elastic modes. For the first aircraft configuration, depicted in
Fig. 5(a), the eigenvalues of the system exhibit a pattern
qualitatively similar to the one already shown in Fig. 2 for a



restrained wing model. In fact the flutter mechanism doesn’t
involve rigid-body coupling and it is the torsional mode
which goes unstable (at Vf=146.7 m

s and ω=75.3 rad
s ).

However, when bending flexibility becomes more prominent
(i.e. case with σs=0.12) two distinctive flutter mechanisms
can be observed in Fig. 5(b). The first imaginary axis cross-
ing takes place at a speed Vf1=150.3 m

s ; this low frequency
instability (ω1=12.3 rads ) is a result of the interaction between
short-period and bending modes (that is, the Body Freedom
Flutter). The second crossing takes place at Vf2=162.8 m

s at
a higher frequency (ω2=69.3 rads ) and is dominated by the
bending-torsion instability already encountered.
In conclusion, the trend depicted in Fig. 4 is motivated by
a change in the mode reaching earlier the flutter condition,
which for the curves D=5,8m in the left side is the rigid-
elastic coupled mode, while in the other cases is still the
torsional mode.

V. ROBUST ANALYSIS

Robust flutter analysis [5] deals with flutter instability
predictions when the aeroelastic model is subject to uncer-
tainties. Examples of the latter are low confidence in the
values of parameters and coefficients of the matrices, or
neglected dynamics in the nominal model. Once the problem
is described within the LFT framework, µ analysis enables to
predict for a given speed if the set of uncertainties is capable
to lead to instability. As an introduction to this final section,
a very brief description of these tools is provided (see [4]
and references therein).

A. LFT and µ analysis

The coefficient matrix M is defined as a proper transfer
matrix. Fu, namely the upper LFT, is then the closed-loop
transfer matrix from input u to output y when the nominal
plant M22 is subject to a perturbation matrix ∆ (Fig. 6).

Fig. 6. Upper LFT

M11,M12 and M21 reflect a priori knowledge of how the
perturbation affects the nominal map. Once all varying or
uncertain parameters are pulled out of the nominal plant, the
problem appears as a nominal system subject to an artificial
feedback. The algebraic expression for Fu is given by:

Fu(M,∆u) = M22 +M21∆u(I−M11∆u)−1M12 (13)

This LFT is well posed if and only if the inverse of (I −
M11∆u) exists.

The structured singular value µ∆(M) of a matrix M ∈
Cn×n with respect to the uncertain matrix ∆ is:

µ∆(M) =
1

min∆(σ̄(∆) : det(I −M∆) = 0)
(14)

where σ̄(∆) is the maximum singular value of ∆ and
µ∆(M) = 0 if there is no ∆ satisfying the determinant

condition. Note that this definition can be specialized to
determine whether the LFT Fu(M,∆) is well posed once
the generic matrix M in the above definition is replaced by
M11 and ∆ belongs to the corresponding uncertainty set ∆.
For ease of calculation and interpretation, this set is typically
norm-bounded ‖∆‖∞ < 1 (without loss of generality by
scaling of M ). In this manner, if µ∆(M) ≤ 1 then the result
guarantees that the analyzed system is robustly stable (RS)
to the considered uncertainty.

B. Results

Recalling last section, the matrix used by µ analysis to
address the well-posedness is M11. This is the transfer
function from the signal w to z associated to the LFT
expression of the uncertain plant. Since the BFF problem
is here formulated in the frequency-domain (11), once the
uncertainties are introduced and the nominal dynamics is
separated from the unknown terms, it is possible to build
M11 from its definition (see [6] for a comprehensive descrip-
tion of the algorithm). This procedure implies a gridding of
the frequency range under investigation: for each frequency
value ω the terms involved in the definition of M11 are
constant matrices and then the algorithm for the calculation
of µ can be initialized.

The BFF robust stability test case is formed by using
parametric uncertainties in D (nominal value corresponding
to 6 m), EI (nominal value corresponding to σs=0.15) and
three terms of the AIC matrix (the uncertain description is
such that they range in the disc of the complex plane centered
at the nominal value and having a radius equal to 3%). A
small amount of aerodynamic uncertainty is included since it
considerably enhances the numerical accuracy of µLB . The
resulting upper LFT is defined by the nominal plant (11) and
the relative uncertain block

∆ = diag(δDI7, δEI , δA12 , δA21 , δA22) (15)

where I is the identity matrix indicating the number of
repeated uncertainties in the ∆-structure. The flutter speed
Vf for the nominal plant is 162 m

s .
The goal is to show that µ analysis can be used to

infer the conclusions discussed above with respect to BFF
phenomena. This is done by assessing the role played by
each uncertainty in the BFF RS calculation, i.e. a type of
parametric sensitivity analysis performed in this case within
the µ analysis framework. If a generic uncertain parameter
C is considered, σC is used to define the uncertainty level
and its relation with the nominal value C0 is written as
C = C0(1 + σCδC).
In Fig. 7 the analysis at 150 m

s with two different levels of
uncertainty is shown. Since the upper and lower bounds are
close in each case, only the former are plotted for clarity.
When the first uncertainty level set is considered (σEI=0.3
and σD=0.2), the instability detected by µ analysis is dis-
tinctly the BFF, as testified by the peak frequency ω1 (slightly
greater than 10 rads ). Moreover, µLB analysis provides an
expression of the critical perturbation matrix ∆cr, which
shows that the instability is reached through a reduction
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of both EI and D (negative values for δEI and δD), in
accordance to Fig. 4. The other peak at ω2 denotes the flutter
mechanism due to the torsion-bending coupling, which is
not critical for this plant, as testified by the µ value lower
than 1. The examination of ∆cr at ω2 reveals that a positive
perturbation δEI is predicted. This agrees with this flutter
mechanism, for which as previously commented instability
is more pronounced as the bending stiffness is increased and
thus bending and torsional frequencies become closer.
The analysis performed with the second (reduced) uncer-
tainty level set (σEI=0.1 and σD=0.1) shows that this change
barely influences the peak at ω2, while the peak at ω1 is
highly affected. The behavior pointed out by µ analysis
reflects the fact that for the BFF instability (low frequency
peak) EI and D play a crucial role and thus a change in the
uncertainty levels considerably affects the RS of the plant,
while the torsional-bending instability (high frequency peak)
is less dependent on them.
This analysis shows that once the plant described in (11)
is recast in the robust analysis framework through LFT
modeling, µ analysis enables both: (i) to quantitatively assess
the effect of the different parameters on RS, and (ii) to
infer the type of instability that is taking place. The above
observations in fact provide a different perspective on the
same features outlined in Section IV through Figs. 4-5 and
the corresponding comments. However, when dealing with
either more complex models or a greater number of variables,
a parametric study as the one performed in Fig. 4 can
become rapidly ineffective. The work presented in [13] is
an example of sensitivity study of aeroservoelastic system
affected by model uncertainties. Further investigations within
the presented framework (not shown here due to space
limitations), which include examination of other effects and
additional uncertain parameters such as wing mass, confirms
that µ analysis can cope with the additional complexity and
still provide invaluable understanding.

VI. CONCLUSION

This work investigates the Body Freedom Flutter (BFF)
phenomena, affecting mainly flexible aircraft configurations

with adverse geometric properties. First, the capability of the
typical section aeroelastic framework in studying the flutter
of a cantilever wing (restrained flutter) was demonstrated
with the Goland wing benchmark. Following the presentation
of a simple model capturing the basic features of BFF,
a conventional air vehicle configuration (wing/fuselage/tail)
was studied with a standard flutter algorithm (p-k method)
focusing on the effect of two key parameters, wing bending
stiffness and horizontal tail distance from the nose. Among
other things, this parametric study showed that there is a
range of wing bending flexibility where the rigid elastic
coupling is not relevant and the instability predicted by the
BFF model closely resembles the one obtained with the
restrained wing assumption. As the flexibility increases, the
tail distance turns to be meaningful for the destabilizing
mechanism and the rigid-bending mode becomes the one
reaching earlier the flutter condition.
Finally, robust analysis is performed to study the plant when
it is affected by uncertain parameters. It is shown that the
same observations obtained with the previous parametric
analysis can be inferred employing µ technique. Indeed, µ
analysis is able to quantitatively assess stability degradation
due to uncertainties in the models, as shown also in other
works. Compared to these, the present contribution focuses
more on: the LFT-oriented approach adopted to model the
plant, the detection of two distinct mechanisms leading to
flutter and the attempt to reconcile numerical analyses (both
nominal and robust) with physical effects, gaining an insight
on the type of instability affecting the system.
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