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Abstract: A comparison of robust flutter analyses within the µ framework is presented. The
chosen test bed is the typical section with unsteady aerodynamic loads, which enables basic
modeling features to be captured and so extend the gained knowledge to practical problems
treated with modern techniques. The two main approaches to pose the LFT problem are
investigated and features such as numerical accuracy and physical uncertainty description are
assessed. A criterion is proposed to correlate the families of plants originated by the uncertainty
description of the aerodynamic operator when different approximation algorithms are employed.

Keywords: Robust stability, Flexible structures, Flutter analysis, Structured Singular Value

1. INTRODUCTION

The interaction among inertial and elastic forces in a
mechanical system is the subject of structural dynamics.
For systems such as lifting surfaces, blades or sails, the
external loading is represented by aerodynamic forces. The
study of these systems is then addressed by aeroelasticity,
which investigates the coupled problem of a deformable
structure surrounded by a fluid flow generating a pressure
dependent on its geometry.

Flutter is a self-excited instability in which aerodynamic
forces on a flexible body couple with its natural vibration
modes producing oscillatory motion. The level of vibration
may result in sufficiently large amplitudes to provoke fail-
ure and often this phenomenon dictates the design of the
aerodynamic body. Thus, flutter analysis has been widely
investigated and there are several techniques representing
the state-of-practice (Edwards andWieseman (2008)). The
major methods, for example k and p-k method, are based
on the frequency-domain as this is the framework in which
the aerodynamic loads are more often expressed.

Despite the large amount of effort spent in understanding
flutter, it is acknowledged that predictions based only on
computational analyses are not totally reliable. Currently
this is compensated by the addition of conservative safety
margins to the analysis results and expensive flutter test
campaigns. One of the main criticalities arises from the
sensitivity of aeroelastic instability to small variations in
parameter and modeling assumptions. In addressing this
issue, in the last ten years researchers looked at robust
modeling and analysis techniques from the robust control
community, specifically linear fractional transformation
(LFT) models and µ analysis (Packard and Doyle (1993);
Balas et al. (1998)). The so-called flutter robust analysis

⋆ This work has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement
No 636307, project FLEXOP.

aims to quantify the gap between the prediction of the
nominal stability analysis (model without uncertainties)
and the worst-case scenario when the whole set of un-
certainty is contemplated. This is believed to be a pow-
erful tool when used as a complement to the classical
techniques in that it could highlight weak points of the
model requiring more refinement and conversely identify
parameters that can be coarsely estimated as they do not
have a strong influence on the results. The most well-
known robust flutter approaches are those from Lind and
Brenner (2012), Borglund (2004), Idan et al. (1999), with
the first even including on-line analysis during flight tests.

Each of the aforementioned robust flutter approaches
used the same underlying µ analysis tools but a different
LFT model development path, in addition to relying
on different aerodynamic approximations (e.g. Roger or
Minimum State). The goal of each of those robust flutter
studies was to provide an end-to-end process, from robust
modeling to robust analysis, and demonstrate the validity
of the approach. Since this was their focus, no detailed
study or comparison was performed on the effect the
modeling choices have on the analysis –although it is
well-known in the robust control community that this is
a fundamental issue (Marcos and Balas (2004); Magni
(2004); Marcos et al. (2015)). Thus, the goal of this article
is to present a comparison of the modeling options and a
better understanding of their effects on the flutter analysis.

The layout of the article is as follows. Section 2 presents
the test bed adopted. This section also includes a cursory
description of the algorithms employed for the aerodynam-
ics rational approximations. Nominal flutter results are
presented in Section 3 followed by a very brief description
of LFT and µ analysis in Section 4. The comparison and
discussion of results obtained with the different approaches
is presented in Section 5, ending with the conclusions in
Section 6.



2. AEROELASTIC MODELING

2.1 Typical section

The typical section model was introduced in the early
stages of aeroelasticity to investigate dynamic phenomena
such as flutter (Bisplinghoff and Ashley (1962)). Despite
its simplicity, it captures essential effects in a simple model
representation, see Fig. 1.

Fig. 1. Typical section sketch

From the structural side, it basically consists of a rigid
airfoil with lumped springs simulating the 3 degrees of free-
dom of the section: plunge h, pitch α and trailing edge flap
β. The positions of the elastic axis (EA), center of gravity
(CG) and the aerodynamic center (AC) are also marked.
The main parameters in the model, see Fig.1, are: Kh, Kα

and Kβ -respectively the bending, torsional and control
surface stiffness; half chord b and dimensionless distances
a, c from the mid-chord to respectively the flexural axis
and the hinge location; xα and xβ dimensionless distances
from flexural axis and airfoil center of gravity and from
hinge location and control surface center of gravity.

For the aerodynamic loads model, the unsteady formu-
lation proposed by Theodorsen (1935) is employed. This
approach is based on the assumption of a thin airfoil
moving with small harmonic oscillations in a potential and
incompressible flow. Despite its simplicity, such an aerody-
namic force description is pertinent to flutter analysis since
this is a condition of neutral stability of the system. The
same hypotheses underline most of the other aerodynamic
approaches (Doublet Lattice Method is an example) later
developed to improve flutter analysis accuracy.

In order to present the basic model development approach,
X and La are defined as the vectors of the degrees
of freedom and of the aerodynamic loads respectively.
The set of differential equations describing the dynamic
equilibrium (Hodges and Pierce (2011)) can then be recast
in matrix form using Lagrange’s equations:

[

Ms

]

Ẍ+
[

Cs

]

Ẋ+
[

Ks

]

X = La (1)

where
[

Ms

]

,
[

Cs

]

and
[

Ks

]

are respectively the structural
mass, damping and stiffness matrices. The expression of
La, provided in the Laplace s domain, is:

La(s) = q
[

A(s̄)
]

X(s) (2)

where the dynamic pressure q and the dimensionless
Laplace variable s̄ (=s b

V
with V the wind speed) are

introduced.
[

A(s̄)
]

is called the generalized Aerodynamic

Influence Coefficient (AIC) matrix, and is composed of
generic terms A(s̄)ij representing the transfer function
from each degree of freedom j inX(s) to each aerodynamic
load component i in La(s).
It is remarked that Theodorsen’s aerodynamic theory as-
sumes harmonic motion, which means that the relation in
(2) is pertinent only if

[

A(s̄)
]

is evaluated at s̄=iω b
V
=ik,

where k is called the reduced frequency. The final aeroelas-
tic equilibrium is given by:

[

[

Ms

]

s2 +
[

Cs

]

s+
[

Ks

]

]

X = q
[

A(s̄)
]

X (3)

2.2 Rational Approximations

The AIC matrix does not have a rational dependence
on the Laplace variable s and this forces approximations
of the aerodynamic operator to be pursued in order to
provide an expression for (3) in state space, which is essen-
tial to deal with aeroservoelastic problems. The difference
between a quasi-steady and an unsteady formulation of the
aerodynamic loads is that the latter attempts to model the
memory effect of the flow, which results in phase shift and
magnitude change of the loads with respect to the former
one. This is commonly referred to as time lag effect. A gen-
eral two-part approximation model can then be obtained
based on quasi-steady (QS) and lag contributions:

[

A(s̄)
]

≈ ΓQS + Γlag (4)

In this paper two among the most established algorithms
are presented: Roger method and Minimum State method.
They propose a formally identical expression for ΓQS :

ΓQS =
[

A2

]

s̄2 +
[

A1

]

s̄+
[

A0

]

(5)

Where
[

A2

]

,
[

A1

]

and
[

A0

]

are real coefficient matrices.

Roger proposed (Roger (1977)) that Γlag could be approx-
imated as:

Γlag−Roger =
N
∑

L=3

s̄

s̄+ γL−2

[

AL

]

(6)

The partial fractions inside the summation are the so-
called lag terms and they basically represent high-pass
filters with the aerodynamic roots γi as cross-over frequen-
cies. The real coefficient matrices

[

Ai

]

with i = 0...N are
found using a linear least-square technique for a term-by-
term fitting of the aerodynamic operator. The resulting
state-space equation includes augmented states represent-
ing the aerodynamic lags, which are equal to the number
of roots multiplied by the number of degrees of freedom.

The MS method (Karpel (1981)) tries to improve the
efficiency of Roger’s in terms of number of augmented
states per given accuracy of the approximation. There is
no clear quantification of this advantage, but it has been
stated (Idan et al. (1999)) that the number of aerodynamic
states may typically be 6-8 times smaller for the same level
of model accuracy. The Γlag expression is:

Γlag−MS =
[

D′
]













1

s̄+ γ1
... 0

...
. . .

...

0 ...
1

s̄+ γN−2













[

E′
]

s̄ (7)

The coefficients of
[

D′
]

and
[

E′
]

are iteratively determined
through a nonlinear least square since (7) is bilinear in



these two unknowns, while the matrices defining ΓQS (5)
are now obtained imposing the constraint to match the
aerodynamic operator at k=0 and at another selected
reduced frequency kc. The number of augmented states
is now equal to the number of roots.
The impact that the differences in the expression of
Γlag have on robust flutter analysis when lag terms are
uncertain will be investigated in Section 5.

Both methods lead to the same short-hand state matrix:
[

˙̂
Xs

˙̂
Xa

]

=

[

χss χsa

χas χaa

] [

X̂s

X̂a

]

(8)

Where X̂s and X̂a are respectively the vector of structural
and aerodynamic states.

3. NOMINAL FLUTTER ANALYSIS

Nominal flutter analysis studies the conditions at which
the dynamic aeroelastic system loses its stability. As the
air stream speed V varies the system’s behavior in terms of
response and stability changes. The result is the prediction
of the so-called flutter speed Vf , below which the system
is guaranteed to be stable.

In principle it is possible to solve the problem studying
either (3) or (8). In the later case, the stability of the
system is related to the spectrum of the state-matrix. We
will use the Roger and MS approximations for nominal
comparison. In the former case (the most reliable and
currently adopted approach), the objective is to find the
flutter determinant roots s such that nonzero solutions for
X exist. The complexity arises since

[

A(s̄)
]

does not have
a polynomial dependence on s and thus iterative solutions
have to be sought. We will use the p-k method to baseline
the comparison.

The parameter values for these analyses are taken from
(Karpel (1981)). In Fig. 2 the eigenvalues corresponding
to the structural modes are depicted as speed increases.
The system exhibits a plunge-torsion flutter, featured by
the merging of the frequencies just before instability occur-
rence (binary flutter). Table 1 summarizes the results. For
the Roger method, 4 aerodynamic roots equally spaced
between -0.1 and -0.6 were selected (state-matrix size
equals 18), while for the MS method 5 aerodynamic roots
equally spaced in the same range were used (state-matrix
size equals 11). No substantial mismatches are found in
the flutter speeds.

Flutter Flutter
velocity [m

s
] frequency [Hz]

State Space - Roger 302.7 11.25
State Space - MS 302.5 11.2
Frequency-domain p-k 301.8 11.2
Ref. Karpel (1981) 303.3 11.15

Table 1. Nominal flutter analyses results

4. LFT AND µ ANALYSIS

In this section a very cursory presentation of the math-
ematical concepts behind linear fractional transformation
(LFT) modeling and robust µ analysis is given. The in-
terested reader is referred to Packard and Doyle (1993);
Balas et al. (1998).
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Fig. 2. Nominal system: pole locations in terms of speed

If the coefficient matrix M is defined as a proper transfer
matrix, Fu, namely the upper LFT, is the closed-loop
transfer matrix from input u to output y when the nominal
plant M22 is subject to a perturbation matrix ∆ (Fig. 3).
M11,M12 and M21 reflect a priori knowledge of how the

Fig. 3. Lower and upper LFTs

perturbation affects the nominal map. Once all varying or
uncertain parameters are pulled out of the nominal plant,
the problem appears as a nominal system subject to an
artificial feedback. The algebraic expression for Fu is given
by:

Fu(M,∆u) = M22 +M21∆u(I−M11∆u)
−1M12 (9)

This LFT is well posed if and only if the inverse of (I −
M11∆u) exists.

The structured singular value (s.s.v.) is a matrix function
denoted by µ∆(M) and defined as:

µ∆(M) =
1

min∆(σ̄(∆) : det(I −M∆) = 0)
(10)

where σ̄(∆) is the maximum singular value of ∆. Note that
this definition can be specialized to determine whether
the LFT Fu(M,∆) is well posed once the generic matrix
M in the above definition is replaced by M11 and ∆
belongs to the corresponding uncertainty set ∆. For ease
of calculation and interpretation, ∆ is typically norm-
bounded ‖∆‖∞ < 1 (without loss of generality by scaling
of M). In this manner, if µ∆(M) ≤ 1 then the result
guarantees that the analyzed system represented by the
LFT is robust to the considered uncertainty level. The
structured singular value is a robust stability (RS) test
but can be used also for robust performance (RP).

It is known that µ∆(M) is non-polynomial (NP) hard
with either pure real or mixed real-complex uncertainties,
thus the algorithms implement upper and lower bound
calculations (Balas et al. (1998)). The upper bound µUB

provides the maximum size perturbation for which RS/RP
is guaranteed, while the lower bound µLB guarantees the
minimum size perturbation for which RS/RP is guaran-
teed to be violated. Along with this information, the lower



bound also provides the matrix ∆LB = ∆cr satisfying the
determinant condition.

5. ROBUST FLUTTER ANALYSIS

Robust flutter analysis deals with flutter instability predic-
tions when the aeroelastic model is subject to uncertain-
ties. Examples of the latter are low confidence in the values
of parameters and coefficients of the matrices, or neglected
dynamics in the nominal model. Once a quantification
of the uncertainty and its mathematical description are
provided by means of LFT, µ analysis enables to predict
at a given speed if the set of uncertainties is capable of
leading to instability.

5.1 General preamble on flutter analysis with µ

The standard µ framework applies to systems represented
by rational transfer function matrices (or similarly de-
scribed by ODE), which are easily recast in state-space.
This is related to the existence of well established state-
space algorithms employed in servo-control applications
and marked the path for the development of the first ro-
bust flutter µ analyses. But in fact, the µ technique and the
intimately related concept of LFT are frequency-domain
based. Recalling (9), the core problem is to study the well-
posedness of the LFT describing a representative transfer
function of the plant. What can be different is the LFT
model development path applied. That is, either (3) or (8)
can be taken as a starting point to develop the proper LFT
framework. In this work both approaches are investigated,
trying to highlight benefits and shortcomings.

The considered uncertainties are of a multiplicative type.
This means that the generic uncertain parameter C is
written as C = C0(1 + σCδC) where σC defines the
uncertainty level, δC ∈ [−1, 1] and δC=0 corresponds to
the nominal value C0. The LFT Fu(M,∆S) describing the
plant affected by uncertainties in the structural parameters
is the same for both approaches and it is characterized by
the uncertainty block:

∆S
5,R = diag(δMs11

, δMs12
I2, δMs22, δKs11, δKs22) (11)

where the size of the uncertainties and their nature (real
R or complex C) is recalled in the superscripts. A range
of 10% from the nominal value is defined for Ms11, Ms22

and Ks22, while for Ms12 and Ks11 it is 1%.
It is well known (Packard and Doyle (1993)) that calcu-
lation with pure real uncertainties of the upper bound
is usually quite tight, while the accuracy of the lower
bound highly depends on the nature of the ∆ matrix. It
is desirable thus to formulate the problem in such a way
that complex uncertainties can be introduced.
For uniformity, all the following analyses are performed at
V=270m

s
, which is 10% smaller than the nominal flutter

speed. This choice is arbitrary since there is no interest
in evaluating the safety margin degradation of a specific
existent system.

5.2 State-space approach

This approach was firstly suggested by NASA (Lind and
Brenner (2012)). The uncertainties are substituted in the
state-matrix governing the nominal plant (8) so that the
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Fig. 4. Robust analysis: µ bounds for the case of structural
∆ in inertia and stiffness. State-space approach

nominal dynamics is separated from the uncertain terms.
In the present work this is accomplished by writing the
uncertain parameters in symbolic form and using the well
consolidated LFR toolbox (Magni (2004)) leading straight-
forwardly to an LFT representation of the uncertain sys-
tem which is a valid input for µ analysis.

In Fig. 4 the upper and lower bounds are reported for
the case when only structural uncertainties are considered.
The estimation given by µUB is that the system is flutter
free for structural uncertainties up to approximately 75%
(≈ 1

1.35
) of the assumed range, whereas no information is

provided by µLB about the minimum size of the pertur-
bation matrix which proves to cause plant instability.

Considering now errors in the aerodynamic model, gen-
erally uncertainties in the values of the lag roots are
contemplated (Lind (2002)). Although these terms have
the same physical meaning for Roger and MS methods,
the way they enter the equations is different, as previously
seen. An uncertainty of 5% in the value of the lag terms is
considered in the analysis. Choice of number and nominal
values for the roots reflects that of the nominal case. The
uncertainty LFT block sizes are:

∆MS
5,R = diag(δγ1

, δγ2
, δγ3

, δγ4
, δγ5

)

∆R
12,R = diag(δγ1

I3, δγ2
I3, δγ3

I3, δγ4
I3)

(12)

Results are shown in Fig.5. Remarkably different margins
of stability are predicted by the Roger and MS algorithms.
In other words, the capability of the two families of aero-
dynamic operators to perturb the stability is considerably
different when the same range of variation is allowed.
Nonetheless robust predictions are expected to be identical
as long as the aerodynamics’ uncertainty descriptions are
consistent. Consistency is here referred to a definition of
the range of variation for the parameters such that the
uncertainty operator ∆ maps the two approximations in
two similar families of plants. A rationale to perform this
range definition is here sought.

When the uncertainties are inserted in approximate op-
erators, each of them can be represented as an upper

LFT F(Â,∆) (subscripts R and MS will be used to
identify the two approximation options). It is known how
the size of a transfer function (in terms of its H∞ norm,
i.e. the maximum singular value over the frequency range
considered) affected by uncertainties can be determined
using a µ robust stability test (Zhou et al. (1996)). This
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procedure is generally employed in the calculation of ro-
bust performance. In particular the command wcperf of
the µ toolbox (Balas et al. (1998)) estimates the norm W̄
of the LFT Fu associated with a structured ∆ of size ᾱ:

W̄ (Fu,∆, ᾱ) = ‖Fu‖∞ (13)

Once defined a certain size ᾱ, W̄ could represent a term of
comparison among different uncertainty descriptions (and
range definitions).

The proposed validation method is prompted by the ob-
servation of the two aerodynamic operators corresponding
to the smallest perturbation leading to instability ∆cr in
the studied cases. The corresponding values for Roger’s
‖AR(∆

R
cr)‖∞ and Minimum State ‖AMS(∆

MS
cr )‖∞ are

respectively 13.3 and 13.7. These are just the values of
‖FR‖∞ and ‖FMS‖∞ when the corresponding sizes of
uncertainty ᾱ (respectively ‖∆R

cr‖∞ and ‖∆MS
cr ‖∞) are

defined.

Moreover, when the norm calculations are applied to the
set adopted for the analyses reported in Fig. 5, fixing
the size ᾱ=1, and considering a reduced frequency kT =
0.28 (approximately the robust reduced flutter frequency),
the values for ‖FR‖∞ and ‖FMS‖∞ are respectively 12.8
and 31. The discrepancies in the operator norms (despite
identical nominal values) confirm that setting the same
range of variation (5% in this case) for both of them lead
to very different families of plant.

When the range of variation of the aerodynamic roots
in FMS is specified so as to lead to the same W̄ (it is
found that this range has to be about 9 times smaller than
the one used in FR), the discrepancy in µ prediction falls
within 10% (Fig. 6). This mismatch is thought to be caused
by the discrepancies in H∞ norm shown before (13.3 and
13.7 for the two different cases).

5.3 Frequency-domain approach

Recalling Section 4, the matrix used by µ analysis for well-
posedness is M11. This is the transfer function seen by the
perturbation block of the uncertain plant. Borglund (2004)
proposed to perform the robust flutter analysis by starting
from the plant formulated in the frequency-domain (3),
with M11 manually assembled once the uncertain param-
eters are embedded. This procedure implies a gridding of
the frequency range under investigation: for each discrete
value ω in the range, the terms involved in the definition
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Fig. 6. Robust analysis: µ upper bounds for the case of
aerodynamic ∆ with the range of variation of lag
roots in MS approximation related to that of Roger
according to the proposed criteria

of M11 are constant matrices and then the algorithm
for the calculation of µ can be initialized. Theoretically,
the standard µ framework expressed through state-space
doesn’t need this discretization and thus it is capable of
ensuring the absence of any discontinuities in the results.
But the bounds algorithmic implementation implies this
gridding. As a result, if the transfer functions involved
in the uncertainty description have a rational dependence
on the Laplace variable (as for the structural case), this
procedure is identical to the former one. When the aerody-
namics is affected by uncertainties, the two formulations
are inherently different.

The main advantages of handling the analysis in this
framework are discussed here. For a real aeronautical ap-
plication (which relies on frequency-domain aerodynamic
operators for flutter analyses) this approach ensures that
both nominal and robust stability refers to the same start-
ing equation (i.e. no approximations are inserted during
the process). Uncertainties can be directly expressed in
the original AIC matrix, and not in the operators defining
the approximate expressions, enhancing physical consider-
ations in the uncertain definition. Matrix coefficients are
complex and so are the associated uncertainties, with no-
table improvement on the results accuracy. The weighting
matrices defining the range of variation of the uncertainties
can have whatever dependence on the frequency, while in
the former approach the rational dependence constraint
holds. An example of these features is provided in the
following examples.

The case of only aerodynamic uncertainties is first exam-
ined. On the basis of the nominal flutter analysis which
showed the merging of pitch and plunge modes at instabil-
ity, the three more critical transfer functions are expected
to be A12, A21 and A22. The uncertain description is
such that at each frequency they range in the disc of the
complex plane centered in the nominal value and having a
radius equal to 10% of the absolute nominal value:

∆A
3,C = diag(δA12

, δA21
, δA22

) (14)

The analysis for this plant is depicted in Fig.7. The
most remarkable observation is that now lower and upper
bounds coincide, leading to a precise estimation of the
robust margin as opposed to that seen in Fig.4. The
case of both structure and aerodynamic uncertainties,
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obtained combining (11) and (14), is plotted in Fig. 8. This
problem has mixed real and complex uncertainties, and the
calculated µ bounds are tight. The information obtained
through the perturbation matrix ∆cr can be useful to
make design actions or sketch out control strategies for
flutter suppression.

These results provide examples of the aforementioned
advantages when modeling is entirely approached in the
frequency-domain. It is worth remarking however that
these comments are pertinent to robust flutter stability
analysis. The scenario may change when other tasks are
involved, for example robust control design for flutter
suppression and/or on-line robust predictions during flight
tests. Indeed, the latter has only been demonstrated using
the state-space approach (Lind and Brenner (2012)) and
well-consolidated algorithms could dictate the same way
for the former task. These aspects deserve then a better
insight, and could be addressed in the future.

6. CONCLUSION

This work attempts to compare techniques developed to
study robust flutter analysis adopting the typical section
with unsteady loads as a test bed. The investigations
concern effect of the uncertainty description when two
different aerodynamic approximations for the unsteady
AIC matrix are employed. In the latter case, a criterion
to select the range of variation for the parameters in order
to define similar families of plants is proposed.

Numeric quality of lower and upper bounds calculation
for different sets of uncertainties and framework where
the problem is posed are highlighted. Advantages in terms
of uncertainty description and results accuracy of the
frequency-domain approach are assessed; the state-space
approach on the other hand offers a more straightforward
way to pose the problem, due to well established toolbox
and a general greater confidence in the formulation of the
plants in state-space. Although this is commonly true for
control problems, the role played by the aerodynamics in
the aeroelastic plant and its inherent frequency-domain
expression could alter this scenario when these kind of
stability analyses are pursued.
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