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Random Oracle Model
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We define a notion of adaptive proofs of knowledge (PoKs) in the Random Oracle Model
(ROM). These are proofs where the malicious prover can adaptively issue multiple statements
and proofs, and where the extractor is supposed to extract a witness for each statement. We begin
by studying the traditional notion of zero-knowledge PoKs in the ROM and then show how to
extend it to the case of adaptive adversaries and to simulation soundness, where the adversary can
also learn simulated proofs.

Our first main result is negative. Under common assumptions we can show that the well-known
Fiat-Shamir-Schnorr proof system is not adaptively secure. As for the second result we prove that
an existing construction due to Fischlin (Crypto 2005) yields adaptively secure simulation-sound
PoKs in the ROM. Since the purpose of this work is to motivate and introduce adaptive proofs, we
only briefly discuss some applications to other areas, for example that adaptive proofs seem to be
exactly what one requires to construct CCA-secure public-key encryption from IND-CPA secure
schemes.

1. Introduction

Proofs of knowledge [1, 2, 3, 4] are a generic tool to ensure correct operation in many cryptographic
constructions, including voting protocols, e-cash systems, or group signatures. More generally,
they can turn passively secure multi-party protocols into actively secure ones. The value of proofs
of knowledge in security arguments is that whenever a participant makes a proof of knowledge
on some statement as part of a protocol, one can “hop” into an alternate, virtual world in which
the participant outputs the witness along with the statement. This approach of pretending that
each proof makes its witness available in a security argument relies on the extractor that exists by
definition of a proof of knowledge: when a participant outputs a proof, we “freeze” the protocol,
and invoke the extractor to get the witness. This extraction is usually carried out by rewinding
the party and branching into another protocol execution. Then we resume the protocol with the
witness now being available.

The problem with the “freeze-extract-resume” approach is that its implementation can easily
become expensive. Each extraction and its rewinding can double the running time of a reduction
such that, if a participant makes a badly nested “chain” of n proofs, a naive approach ends up with
an exponential running time of 2n to get all the witnesses. This is certainly true for interactive
proofs of knowledge, but also in the case of non-interactive proofs of knowledge in the random or-
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acle model. Such random-oracle based proofs are paramount if efficiency is vital, especially in the
form of Fiat-Shamir transformed Sigma protocols a.k.a. “Schnorr-type” proofs. In this context the
rewinding problem was first mentioned explicitly by Shoup and Gennaro [5], who required nested
proofs in the random oracle model for the construction of CCA-secure public-key encryption from
IND-CPA secure encryption via the encrypt-then-prove approach (e.g., for signed ElGamal). In
this case, since the adversary against the CCA-secure version may ask for decryptions of adap-
tively chosen ciphertexts, one requires the notion of adaptive PoKs in order to be able to simulate
decryption queries. In contrast to the non-rewinding solutions based on common reference strings,
the more efficient PoKs in the ROM do not seem to concord well with this case. In fact, it is
currently unclear which adaptivity notions are appropriate for such scenarios.

1.1. Our Contributions

A DEFINITION OF ADAPTIVE PROOFS OF KNOWLEDGE. In this work we define adaptive proofs
of knowledge in the random oracle model (ROM). We first study the traditional notions of proofs
of knowledge (PoKs) and simulation-sound PoKs (ss-PoKs) and formalise them in a way that
reflects their use in security proofs. We then define adaptive proofs using the same principles
and formalism. Our definition of adaptive proofs works equally well with or without simulation
soundness, but in the ROM simulation soundness is usually less of a problem. All our definitions
are cast in the ROM, and we focus on non-interactive proofs, which we consider to be the most
relevant case in practice.

Adaptive proofs address the case where one has to extract from multiple proofs chosen adap-
tively by a possibly malicious prover. This is the case for example when using an extractor to
answer decryption queries in the CCA security game: one must decrypt the adversary’s first ci-
phertext before he sends the second ciphertext to be decrypted (this is exactly what makes CCA
security stronger than non-malleability (NM-CPA), as shown by Bellare and Sahai [6]).

We view the (non-adaptive) PoK property as a game between a prover (or adversary) and an
extractor. The prover wins the game by making a valid proof for which the extractor cannot return
a witness. The extractor wins if it can always return a witness to any proof, or the prover does not
make a valid proof. A scheme is a PoK if there is an extractor that can win against any prover. Of
course the PoK property can be specialised by considering only efficient provers or demanding an
overwhelming success probability relative to some security parameter.

The ss-PoK property is an extension of the above game in which the prover can additionally
make any number of simulation queries, similar to in the zero-knowledge notion.

Our adaptive versions of the games give the prover many attempts at making proofs — instead
of returning a proof to the extractor, the prover now makes extraction queries, to which the ex-
tractor must reply with a valid witness. The feature that makes this definition adaptive is that the
extractor returns the witness to the prover, who can use it to construct the next query. The prover
can make any number of extraction and simulation queries in any order. The prover wins if the
extractor ever fails to extract a witness or the simulator fails to produce a proof; the prover loses
if it does not provide a valid proof in an extraction query or a valid witness in a simulation query
or it asks an extraction query on a simulated proof. A scheme is called an n-proof if there is a
simulator/extractor pair such that the extractor can answer the first n extraction queries from any
prover (there is no bound on simulation queries); it is called an adaptive proof if it is a n-proof for
any n polynomially bounded in the security parameter.
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FEASABILITY AND INFEASABILITY RESULTS. We formalise adaptive proofs and show two main
results.
(1.) Simulation-sound adaptive proofs exist. We discuss that the construction of straight-line proofs
of knowledge by Fischlin [7] satisifies our notion. Fischlin’s transformation is an alternative to the
common Fiat-Shamir transformation and allows any Sigma protocol with unique responses to be
turned into a non-interactive proof.
(2.) Fiat-Shamir-Schnorr is not adaptively secure. The main technical result in this paper is that the
most common and efficient construction of proofs of knowledge via the Fiat-Shamir transformation
[8] is not adaptively secure. Our proof constructs a prover who makes a “chain” of n Fiat-Shamir-
Schnorr statement/proof pairs, following the ideas of Shoup and Gennaro [5]. We then show that
any extractor that wins the adaptive proof game against this prover either reduces to breaking the
one-more discrete logarithm problem or launches Ω(2n) copies of the prover. The key technical
tools in the proof are the meta-reduction paradigm and a technique which we term coin splitting.

Coin splitting allows us to perform a kind of hybrid argument on attackers which have rewinding
black-box access to several copies of the same algorithm. We can change these copies individually
as long as we can argue that the attacker does not notice the difference. Coin splitting is a technique
to show that some changes which we make to individual copies are indeed indistinguishable to an
attacker who cannot break a more basic security assumption. The idea of this technique originates
in papers on resettable zero-knowledge [9].

1.2. Related Work

A high-level overview and some details regarding the above contributions appear in the conference
version of this paper [24], which also sketches how to apply the concept of adaptive proofs in the
context of the encrypt-then-prove approach. The focus of this paper is on the notion of adaptive
proofs for which we provide a detailed treatment. In particular, we spell out the proof of insecurity
of the Fiat-Shamir-Schnorr transform which has led to follow-up work on Signed ElGamal [10].

Historically, the theory of NIZK proofs began with common reference string schemes, the most
relevant ones to our notions being [11, 12, 13, 14, 15, 16] for their treatment of simulation sound-
ness. ROM NIZK and simulation soundness was defined in a line of works starting with Bellare
and Rogaway [17, 18, 19]. The first formal definitions of (non-adaptive) simulation-sound PoKs
in the ROM were concurrently given by Bernhard et al. [20] and Faust et al. [21], and inspired the
current work.

2. Zero-Knowledge Proofs

In this section we discuss zero-knowledge proofs of knowledge and simulation soundness in the
random oracle model (ROM). The central idea for zero-knowledge and its extension of simulation
soundness is captured by a game between two players, a malicious prover P̂ and an extractor K.
The prover’s aim is to produce a statement and a proof that verifies such that the extractor cannot
extract a witness from this proof. The extractor’s goal is to extract a witness from the proof that
the prover provides.

We use a code-based game-playing model à la Bellare and Rogaway [17] to define adaptive
proofs of knowledge. The game mediates between all involved players, e.g., between the adver-
sarial prover and the extractor and possibly also the simulator in case of simulation soundness.
The game starts by running the initialisation algorithm which ends by specifying to which player
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it wishes to transfer control to first. Executions are token-based: at any time, either the game or
one of the players is running (“holding the token”) and a call from one participant to another yields
control. All game variables are global and persist between calls so the game may maintain state
between calls. The game eventually declares the winner among the prover and the extractor.

To ensure termination, we assume strict polynomial-time provers and extractors (in the size of
implicit parameters such as the size of the groups over which the proofs are constructed). Our
notions could also be achieved by having the game “time out” if one player does not reply in a
bounded number of time steps, though this would require a more involved model of concurrency.
The important property is in any case that all players in the game must, on receiving an input,
eventually produce an output. In particular, a prover cannot prevent a “perfect” extractor from
winning a game by entering an infinite loop instead of producing a proof.

2.1. Proof Schemes

A cryptographic group G consists of a group (in the sense of group theory) of prime order q with
a distinguished generator g. A group generation algorithm GrpSetup is an algorithm that takes
a security parameter λ ∈ N (in unary encoding, written 1λ) and outputs a cryptographic group
G(λ). A relation over cryptographic groups is a relation R′ parametrised by the “interface” of a
group. For example, in any cryptographic group G one can define the discrete logarithm relation
R′(G) := {(x,w) | x ∈ G ∧ x = gw} where g is the distinguished generator of G. For a group
generator GrpSetupand a relation R′ over groups one can define the relation R =

⋃
G(λ) R

′(G(λ))

for a sequence of groups G(λ), λ ∈ N; proof schemes typically prove relations R of this kind
that are in class NP.1 An algorithm over cryptographic groups is given by pseudocode that uses the
“interface” of groups. For example, the algorithms P and V below are algorithms over groups:
they can be implemented for any given group2 G.

Definition 1. A non-interactive proof scheme for a relation R over groups consists of two al-
gorithms (P ,V) over groups. P may be randomised, V must be deterministic. For any pair
(x,w) ∈ R, if π ← P(x,w) then V(x, π) must output “true”.

The elements of the relation R are called statement and witness. P is called the prover and its
outputs π are called proofs. V is called the verifier and a statement/proof pair on which V outputs
“true” is called a valid proof. In the random oracle model, bothP and V may call the random oracle
but the relation R′ itself must be independent of any oracles. The last condition in the definition of
proof schemes is called correctness and says that proofs produced by the genuine prover are valid.
In the random oracle model, the prover and verifier in the definition of the correctness property
have access to the same random oracle, i.e. the oracle answers consistently for both algorithms.

Our definitions of properties for proof schemes are centered around a game with multiple in-
terfaces to which various parties such as provers, extractors or simulators may connect. We give
our games as collections of algorithms where each algorithm has both a name and a description of
the interface to which it applies. A return statement in an algorithm terminates the algorithm
and outputs the return value on the same interface that called the algorithm. Where an algorithm
should terminate and send a value on a different interface, we use the keyword send instead. The
keyword halt in the code of a game terminates not just an algorithm but the entire game — when
this occurs, the game will announce a winner.

1Note that it would be pointless to ask whether R′ is in class NP or not, as R′(G) is a finite object for any finite group G.
2If we wanted to be really precise we could write P(G)(x,w) to capture the dependency on a group. We choose not to use subscripts in order

to avoid subscripted subscripts when the group itself depends on a security parameter.
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2.2. Zero-Knowledge

A proof scheme is called zero-knowledge if there is an algorithm S , called the simulator, which
is able to produce proofs indistinguishable from genuine ones after seeing only the statement but
no witness. Informally, π ← P(x,w) and π′ ← S(x) should be indistinguishable for any pair
(x,w) ∈ R.

In the (programmable) random oracle model we define zero-knowledge in such a way that the
simulator is responsible for the random oracle (if present). Formally, we treat the prover P as an
interactive algorithm that may issue oracle queries and get responses, and that eventually outputs a
proof. A simulator is a stateful interactive algorithm S that can respond to two kinds of queries: a
prove query which takes a value x as input and should produce a proof π as output, and a ro query
which takes an arbitrary x ∈ Σ∗ as input and returns a y ∈ Σ∗ (throughout the paper we assume
Σ = {0, 1}). A simulator does not have access to a random oracle, but simulates its own random
oracle towards its “clients”. A proof scheme is zero-knowledge in the random oracle model if the
following two games are indistinguishable:

• The first game internally runs a random oracle RO . On input a pair (x,w), if R(x,w) does
not hold then the game returns ⊥ and halts. If the relation holds, the game runs π ← P(x,w)
and returns π. The prover P uses the game’s random oracle. The adversary may then query
the game’s random oracle (which P used) directly, as often as she wants.

• The second game does not run a random oracle. On input a pair (x,w), again if R(x,w) does
not hold the game returns ⊥ and halts. Otherwise, the game runs π ← S(x) and returns π to
the adversary. The adversary may then issue random oracle queries which the game delegates
to the simulator’s random oracle.

We specify this property using pseudocode in Figure 1. We use the following notation: An
oracle is a stateful process which other processes can access via a well-defined set of queries. If
O is an oracle and q is one if its supported queries then we write O.q(x) to denote the invocation
of this query with parameter x. We write x←$ S for selecting x uniformly at random from the
set S and y←$AO1,...,On(x) for calling the (potentially randomised) algorithm A on input x to get
output y. The superscripts denote the oracles that A can use while it is running. Sometimes, we
will allow these oracles to call each other directly (for example if several oracles need access to a
random oracle) and to issue a command halt that halts the entire execution.

To maintain random oracle queries in later definitions we write [ ] for the empty list and L :: l
to concatenate element l to list L. When L is a list of pairs, we define L(x) to be y such that (x, y)
is the first element in L of the form (x, ·). If no such element exists then L(x) is defined to be ⊥.

In Figure 1 we give the games G1 and G2 and the methods that the adversary can call. Since it
will be helpful later on to give each kind of query a name, we call the adversary’s initial query with
parameters (x,w) a prove query. Similarly, we call the two operations that a simulator S admits
prove and ro queries.

At the moment, our code may seem like an unnecessarily complicated way of stating a simple
property. This level of formalism will become necessary when we move on to adaptive proofs
however.

Definition 2. A proof scheme (P ,V) is zero knowledge in the random oracle model for a relation
R if there exists a simulator S satisfying the following condition. For any security parameter λ let
δ(λ) be the distinguishing advantage of any efficient adversary between the games G1 and G2 of
Figure 1 and for relation R and simulator S . Then δ(λ) is negligible as a function of λ.
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Game G1

initialise():
//potentially generate parameters

A issues prove(x,w):

if ¬R(x,w) then return ⊥
π ← PRO(x,w)

return π

A issues ro(x):

return RO(x)

Game G2

initialise():
//potentially generate parameters

A issues prove(x,w):

if ¬R(x,w) then return ⊥
π ← S.prove(x)

return π

A issues ro(x):

return S.ro(x)

Fig. 1: Games for zero-knowledge (ZK) in the random oracle model. A scheme (P,V) is ZK if the two games G1 and G2 are
indistinguishable. The adversary A may issue prove once and ro any number of times. RO is a random oracle.

2.3. Proofs of Knowledge

A proof scheme is a proof of knowledge if there is an extractorK such that for any prover P̂ which
can make a statement/proof pair that verifies,K can deliver an associated witness. Formalising this
statement requires that we not only take care of random oracles but also the extractor’s ability to
“fork” the prover.

We first consider the non-rewinding case as a warm-up. A prover P̂ is a randomized interactive
algorithm that may make random oracle queries and eventually outputs a pair (x, π). A non-
rewinding extractor K is an algorithm that takes a pair (x, π) as input, may make random oracle
queries and eventually outputs a value w. We consider the game G that runs a random oracle RO
internally and connects a prover and an extractor as in Figure 2. A proof scheme is an R-proof of
knowledge if there is an extractor K such that for every prover P̂ , the game mediating between the
two algorithms outputs “K wins” with overwhelming probability.

The game as in Figure 2, in which both the prover P̂ and the extractor K can access a random
oracle and where the extractor is supposed to find a witness for a valid proof produced by the
prover, is actually too demanding to be useful: It basically says that anyone is able to extract a
witness from the proof. To derive some sensible notion we give the extractor some advantage and
allow it to inspect the random oracle queries made by the prover. That is, the extractor K can
make an extra query list in response to which the game G returns the list H . This gives us a notion
of straight-line proofs in the random oracle model which is actually sufficient for capturing the
approach used by Fischlin [7].

Definition 3. A proof scheme (P ,V) is a straight-line proof of knowledge in the ROM w.r.t. a
relation R if there is an extractor K such that for any prover P̂ , the game in Figure 2 augmented
with a list query that allows K to see the list H returns “K wins” with overwhelming probability.

The above definition is less general than the one first proposed by Bellare and Goldreich [4].
There the authors relate the extractor’s success probability to that of the prover (in producing a
valid proof), whereas our definition lets the extractor win by default if the prover does not make a
proof. However, our notion generalises more easily to the adaptive setting where the probability of
the prover making a valid proof is no longer well-defined, since it also depends on the extractor’s
response to earlier proofs.
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initialise:
H ← [ ]

start P̂

P̂ issues ro(x):

y ← RO(x)

H ← H :: (x, y)

return y to P̂

K issues ro(x):

y ← RO(x)

return y to K

P̂ outputs (x, π):

if ¬VRO(x, π) then
halt with output “K wins”

X ← x

send (x, π) to K

K outputs w:
if R(X,w) then

halt with output “K wins”
else

halt with output “P̂ wins”

K issues list :

return H

Fig. 2: The game G defining proofs of knowledge in the random oracle model. Capital-X is part of the game’s internal state that
persists between calls (so that the extractor’s witness is verified against the same statement that the prover provided earlier).

2.4. Rewinding Extractors

The next standard notion that we formalise in our game-based model is that of a rewinding extractor
in the ROM, running the prover multiple times. We model the extractor’s rewinding ability by
giving the extractor access to further copies of the prover, initialised with the same random string
as the main incarnation of the prover’s algorithm which connects to the proof of knowledge game.
We call these further copies “rewound copies”. Although all copies of the prover share the same
random string, this string is not available to the extractor directly. This prevents the extractor from
just simulating the prover on its own and reading off any witness used to make a proof.

The rewound copies of the prover connect to the extractor directly as sketched in Figure 3. In
particular, the extractor is responsible for answering the random oracle queries for the rewound
copies and can use this ability to “fork” them at any point. In order to apply the forking strategy to
proofs made by the main prover, the extractor may make use of the list H that records all random
oracle queries and answers for the main execution.

The game itself is the same as for non-rewound provers. For example, for the prover in
Schnorr’s protocol, one extraction strategy is to start a rewound copy of the prover and run it
up until the point that it asks the oracle query which the main prover used to make its proof. Then,
the extractor gives the rewound copy a different answer to the oracle query and hopes to obtain a
new proof with the same commitment, in order to extract via special soundness. If the main prover
made other oracle queries before the “target” one, then the extractor looks these up in the list H
and gives the rewound copy the same answers when it makes the relevant queries.

Definition 4. A proof scheme is a rewinding proof of knowledge in the ROM if it satisfies the
conditions of Definition 3 (proof of knowledge) for an extractor K that has black box access to
further copies of the main prover with the same random string.

7
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Fig. 3: Extending the straight-line proof of knowledge game to the rewinding case.

2.5. Simulation Soundness and Extractability

Sahai [11] introduced simulation soundness for the security proof of the Naor-Yung transformation.
A proof scheme is simulation sound if even a prover who has seen some simulated proofs from
the zero-knowledge simulator (possibly on false statements) cannot produce a new proof of a false
statement.

Simulation soundness does not guarantee that an extractor will still work after a prover has
seen simulated proofs, but this property is exactly what the encrypt-then-prove principle requires.
Groth [14] called this property Simulation Sound Extractability (SSE). It simultaneously implies
simulation soundness and extractability/PoK. SSE is still not adaptive in our sense, though: the
prover may be able to see many simulated proofs, but still only produces a single proof for the
extractor.

In the Random Oracle Model, SSE is easy to achieve but subtle to define (Groth [14] originally
defined it for CRS proofs): the usual Sigma protocol simulator only works if it controls the random
oracle but the extractor needs to access the oracle as well. The crux of the definition is that the
extractor must work w.r.t. the simulator’s random oracle.

We present the SSE game in Figure 4. The prover has access to a simulation oracle that replies
to prove queries, just as in the ZK game. The prover’s RO queries are handled by the simulator
as well. The list Π keeps track of the simulator’s replies as the prover is banned from returning
a simulated proof to the extractor. Since both the prover and extractor may ask RO queries, the
game has to do some extra bookkeeping (using the state C) to return the simulator’s RO replies
to the correct party. The state H and the list query allow the extractor to observe the prover’s RO
queries and launch and further copies of the prover, replaying RO answers. In addition, the game
itself needs RO access to run the verifier; we write VS.ro to mean that the game runs the verifier V
and delegates any RO queries to the simulator’s oracle. This means that even the notion of a “valid
proof” now depends on the simulator.

In addition to the main game G, we define an auxiliary game Ĝ that sits between the extractor
K and its rewound provers (there is one copy of Ĝ for each rewound prover). The task of Ĝ is to
“sanitize” prove queries made by rewound provers. When a rewound prover makes such a query,
the extractor must play the role of the simulator — after all, the extractor is already simulating
the rewound prover’s random oracle. (The extractor may run a copy of the simulator S internally.)
However, provers make prove queries containing both a statement x and a witness w whereas the
simulator only ever gets to see x. The auxiliary game Ĝ strips the witness from these proof queries.
Otherwise, Ĝ acts as a channel between K and a rewound copy of P̂ . This is slightly tedious to
write in our notation; we make the convention that Ĝ prefixes a string to every message from P̂ to
K to indicate whether the value is meant to be a random oracle, extraction or proof query. Messages
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initialise:
H ← [ ] ; Π← [ ]

start P̂

P̂ issues ro(x):
C ← “prover”; I ← x

send x to S.ro

K issues ro(x):
C ← “extractor”
send x to S.ro

S.ro returns a value y:
if C = “prover” then

H ← H :: (I, y)

send y to P̂
else

send y to K

K calls list:

return (H,Π)

P̂ outputs (x, π):

if ¬VS.ro(x, π) or (x, π) ∈ Π then
halt with output “K wins”

X ← x

send (x, π) to K

K outputs w:
if R(X,w) then

halt with output “K wins”
else

halt with output “P̂ wins”

P̂ issues prove(x,w):

if ¬R(x,w) then
halt with output “K wins”

X ′ ← x

send x to S.prove

S.prove returns π:
Π← Π :: (X ′, π)

send π to P̂

Fig. 4: The game G defining SSE in the random oracle model. It has three interfaces for the main prover P̂ , the extractor K and
the simulator S. The list H tracks the prover’s random oracle queries. The state C (for caller) tracks who made the last random
oracle query so that the result can be returned to the initiator. I (input) tracks the prover’s oracle inputs to update H correctly. X
and X ′ track the prover’s outputs and proof requests for verification in a later query.

(responses) flowing in the other direction can always be passed on unchanged — the prover will
hopefully remember what its last query was when it gets a response.

Definition 5. A proof scheme (P ,V) is simulation sound in the ROM for a relation R if it satisfies
the following conditions. An s-prover is an algorithm P̂ that can ask random oracle and proof
queries and eventually outputs an extraction query containing a statement/proof pair.

• The proof scheme is zero-knowledge w.r.t. R for a simulator S and a proof of knowledge w.r.t. R
for an extractor K.
• For every s-prover P̂ , if we connect K to P̂ through the game G of Figure 4 and give K access to

further rewound copies of the prover (with the same random string) through the auxiliary game Ĝ
of Figure 5 then with overwhelming probability the game G returns “K wins”.

3. Adaptive Proofs of Knowledge

Given our game-centric view of proofs of knowledge we can extend the approach to adaptive
proofs of knowledge. An adaptive proof is simply a proof scheme where the extractor can still
win if the prover is given multiple turns to make proofs. The adaptive part is that the game hands
the extractor’s witness in each turn back to the prover before the prover must take her next turn.
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K calls P̂ for the first time:

start P̂

K sends a value z:

send z to P̂

P̂ calls ro(x):

send (“ro”, x) to K

P̂ outputs (x, π):

send (“extract”, x, π) to K

P̂ calls prove(x,w):

send (“prove”, x) to K

Fig. 5: The auxiliary game Ĝ for SSE. It acts mostly as a channel between K and a rewound prover P̂ except that it strips witnesses
from proof queries. We use the convention that Ĝ indicates to K whether a value is for a random oracle, extraction or proof query
by prefixing a string.

Should a prover be able to produce a proof for which she does not know the witness, she could then
use the extractor’s ability to find a witness to help make her next proof. The intuition is essentially
the same for the cases with and without simulation soundness. We first introduce adaptive proofs
formally without simulation soundness using so-called n-proofs, where n is a parameter describing
the number of rounds the prover plays. In a later step we add simulation soundness.

3.1. Adaptive Proofs and n-proofs

P̂ G

extract
and ro

K
list

P̂

extract
and ro

Fig. 6: The adaptive proof game and the queries that the various algorithms can exchange.

Let (P ,V) be a proof scheme for a relationR. An adaptive prover P̂ in the ROM is a component
that can make two kinds of queries, repeatedly and in any order. The first are random oracle
queries; these are self-explanatory. The second are extraction queries which take a statement and
a proof as parameters. The response to an extraction query is a witness. (Correctness conditions
will be enforced by the game, not the prover.) Adaptive provers may also halt. For example, a
non-adaptive prover can be seen as an adaptive prover that halts after its first extraction query.

An adaptive extractor K is a component that can make list and random oracle queries and
receive and process extraction queries from an adaptive prover. In addition, an extractor may have
black-box access to further rewinding copies of the adaptive prover (with the same random string)
and answer all of their queries.

The n-proof game takes a parameter n as input and connects an adaptive prover and extractor.
It runs up to n rounds in which the prover may make a statement and proof and the extractor must
return a witness. The extractor wins if it can deliver all n witnesses or if the prover halts earlier
than this, or fails to make a valid proof. The extractor loses if it does not supply a valid witness to
one of the first n extraction queries.
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initialise(n):

H ← [ ]

K ← 0

start P̂

P̂ issues ro(x):

y ← RO(x)

H ← H :: (x, y)

return y to P̂

K issues ro(x):

y ← RO(x)

return y to K

K issues list :

return H to K

P̂ halts: halt with output “K wins”

P̂ issues extract(x, π):

if ¬VRO(x, π) then
halt with output “K wins”

X ← x

send (x, π) to K

K outputs w:
if ¬R(X,w) then

halt with output “P̂ wins”
K ← K + 1

if K = n then
halt with output “K wins”

else
send w to P̂

Fig. 7: The game G for adaptive proofs with parameter n.

Definition 6. A proof scheme is an n-proof in the ROM for a relation R if there exists an extractor
K such that for every adaptive prover P̂ the gameG of Figure 7 when connected to P̂ andK returns
“K wins” with overwhelming probability.

If K also has access to further copies of P̂ with the same random string then we call the proof
scheme a rewinding n-proof, otherwise we call it a straight line n-proof.

If for every polynomial p(x) there is an extractorKp(x) making a particular scheme a p(n)-proof,
we say that the scheme is an adaptive proof.

3.2. Simulation-Sound Adaptive Proofs

Adding simulation soundness to adaptive proofs works the same way as for non-adaptive proofs.
Adaptive s-provers may make random oracle, proof and extraction queries (the simulation sound
n-proof game only limits the number of extraction queries, not proof queries). We give the new
algorithms in Figure 8. Random oracle calls from the main prover go to the simulator; simulated
proofs are logged and provided on request to the extractor (via a list query) and are banned from
extraction queries. The rewinding copies of the prover are connected to the extractor through the
same games Ĝ as in the non-adaptive case: extraction queries and witnesses found by the extractor
are simply passed back and forth. Only the witnesses in prove queries are stripped out.

Consider a proof scheme (P ,V) that is zero-knowledge for a relation R with simulator S . The
simulation sound n-proof experiment for this scheme, an adaptive s-prover P̂ and an extractorK is
the following experiment. Connect the prover P̂ , the simulator S and the extractor K to the game
G of Figure 8. Let K have black box access to further copies of P̂ mediated by Ĝ as in Figure 5
that forwards all messages in both directions except that it strips witnesses from proof queries.

Definition 7. Let (P ,V) be a proof scheme for a relation R that is zero-knowledge with simulator
S. The scheme is a simulation sound n-proof if there is an extractor K such that for any adap-
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initialise(n):

H ← [ ] ; Π← [ ]

K ← 0

start P̂

P̂ issues ro(x):
C ← “prover”; I ← x

send x to S.ro

K issues ro(x):
C ← “extractor”
send x to S.ro

S.ro returns a value y:
if C = “prover” then

H ← H :: (I, y)

send y to P̂
else

send y to K

K issues list:

return (H,Π)

P̂ halts:

halt with output “K wins”

P̂ issues extract(x, π):

if ¬VS.ro(x, π) or (x, π) ∈ Π then
halt with output “K wins”

X ← x

send (x, π) to K

K outputs w:
if ¬R(X,w) then

halt with output “P̂ wins”
K ← K + 1

if K = n then
halt with output “K wins”

else
send w to P̂

P̂ issues prove(x,w):

if ¬R(x,w) then
halt with output “K wins”

X ′ ← x

send x to S.prove

S.prove returns π:
Π← Π :: (X ′, π)

send π to P̂

Fig. 8: Simulation sound n-proofs in the random oracle model.

tive s-prover P̂ , the simulation sound n-proof experiment returns “K wins” with overwhelming
probability. If the extractor works for all polynomially bounded n, we call the scheme an adaptive
simulation sound proof.

3.3. Discussion

We can classify the types of proofs that we have introduced with the following table. “poly” means
polynomially many and means that the number of queries is not bounded by the games involved
but an efficient algorithm will be able to launch at most polynomially many queries (in some initial
input or security parameter) in the first place. We see no reason to study explicit bounds on the
number of proof queries as our simulators are non-rewinding.
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type # extraction queries # proof queries

PoK 1 none
ss-PoK 1 poly
n-proof n none
ss-n-proof n poly
adaptive proof poly none
ss adaptive proof poly poly

The adaptive property of our proofs is strictly stronger than allowing the prover to make one
extraction query with a vector of many statement/proof pairs. Namely, the multiforking lemma of
Bagherzandi et al. [22] shows that Fiat-Shamir-Schnorr proofs are extractable for one such “paral-
lel” query yet we will show that such proofs are not adaptive proofs (under the one-more discrete
logarithm assumption). This separation has an analogue in the world of public-key encryption that
we will discuss soon. Sahai [11] shows that security against one “parallel” decryption query is
equivalent to non-malleability (NM-CPA) which is known to be strictly weaker than CCA security
where adaptive decryption queries are allowed. It is also known that adding a proof of knowl-
edge (of the message and randomness) to an IND-CPA secure encryption scheme can be used to
construct non-malleable encryption yet this technique is not guaranteed to achieve CCA security.

After establishing that simulation sound adaptive proofs exist by studying a construction due
to Fischlin [7], we show two main results. The negative result is that the Fiat-Shamir transformed
Schnorr protocol is not adaptively secure.

Adaptive proofs bear an interesting relationship to CCA security of encryption. Although
adaptivity is an interesting question for many applications in particular in multi-party compu-
tation, almost all known constructions of CCA secure public-key encryption use some form of
non-interactive proof of knowledge in their ciphertexts.3 This is sometimes known as the encrypt-
then-prove construction.

4. Fischlin proofs are adaptively secure

In this section we establish that simulation-sound adaptive proofs in the random oracle model exist.
An existing construction due to Fischlin [7] is adaptively secure. Fischlin gives a transformation
of Sigma protocols to non-interactive proof schemes as an alternative to the more common Fiat-
Shamir transformation. Below we describe this transformation and show that it yields adaptively
secure proofs.
THE PROTOCOL. The basic idea of Fischlin’s transformation is to select the verifier’s challenge in
a Σ-protocol such that a number of low-order bits in the hash of the proof are all zero, or at least
“small enough”. This forces the prover to ask repeated values of potential challenges to the random
oracle until he finds one with a suitable response; from any two such queries, which must appear
in the list of hash queries made by the prover, one can extract a witness using special soundness.

We begin with a Σ-protocol with a challenge space of ` bits size, such that ` = O(log λ) where
λ is the security parameter. We can associate the following algorithms to a Σ-protocol:

Commit takes some inputs and produces a commitment comm and auxiliary information aux (to
generate the response later). This algorithm models what the honest prover does at the be-

3The exception is the original construction via the Naor-Yung transformation [12] but this comes at the cost of having to encrypt twice.
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ginning of the protocol. We assume that the commitment has superlogarithmic min-entropy,
which is easy to satisfy by appending random bits to the value.

Respond(ch, aux) produces the response that the honest prover gives after receiving challenge
ch. All other information that he needs is contained in aux. We assume that Respond is
deterministic.

Verify(y, comm, ch, resp) verifies a protocol execution with respect to some initial input y. This
algorithm is run by the verifier at the end of the protocol. We assume that Verify is determin-
istic.

The transformation relies on parameters b, r, S, t subject to the following conditions.

b is the bit-size of the range of a random oracle H : {0, 1}∗ → {0, 1}b. We require b = O(log λ)
such that searching for a compliant answer can be done efficiently by the prover.

r is the number of repetitions of the basic Σ-protocol. We require r = O(log λ) and b · r =
ω(log λ). The latter ensures that a malicious prover cannot find a “low-weight” proof with
non-negligible probability.

S is the maximum sum of hash values for an accepting proof. We require S = O(r).
t is the size of challenges. We require t = O(log λ), b ≤ t ≤ ` and 2t−b = ω(log λ). These

choices ensure that the honest prover can find a proof with overwhelming probability.

The prover and verifier execute the following algorithms which we write (Prove,Verify) instead
of (P ,V) in this section, to be consistent with the original. By i← argminj∈If(j) we mean iterate
over all values of I and set i to be the value of j ∈ I for which f(j) is minimal. If the minimum is
attained for several values, pick the first such one.

procedure Prove (x,w)
100 for i = 1, . . . , r do
101 (comi, auxi)← Commit(x,w)

102 for i = 1, . . . , r do
103 chi ← argminj∈[0,2t−1]H(x, (comk)

r
k=1, i, j,Respond(j, auxi))

104 respi ← Respond(chi, auxi) // We assumed that Respond is deterministic so we get
the same value as above.

105 π ← (comi, chi, respi)
r
i=1

procedure Verify (x, π)
200 for i = 1, . . . , r do // Verify each sigma proof individually.
201 if Verify(x, comi, chi, respi) = 0 then
202 return 0
203 if

∑r
i=1H(x, (comk)

r
k=1, i, chi, respi) ≤ S then return 1 else return 0

For the full security proofs of this scheme we refer the reader to the original paper [7]; we repeat
the main points here according to our terminology. As shown in [7] the protocol has a straight-line
(non-rewinding) extractor: given only the hash queries made by any prover that produced an ac-
cepting proof, with overwhelming probability there are two queries H(x, (comk)

r
k=1, i, chi, respi)

and H(x, (comk)
r
k=1, i, ch

′
i, resp

′
i) such that chi 6= ch′i. The original Σ-protocol is required to have

14



special soundness, allowing to extract a witness from two accepting proofs for the same commit-
ment, and to satisfy the property of unique responses, which says that for any malicious prover
it is infeasible to find x, com, ch together with two valid responses resp, resp′. This suffices to
compute a witness w efficiently.

The following theorem establishes that Fischlin’s transformation yields simulation sound adap-
tive proofs in the random oracle model.

Theorem 1. Let (Commit,Respond,Verify) be a Σ-protocol with special soundness and unique
responses. Then the Fischlin transformation of this protocol is a simulation sound adaptive proof
in the random oracle model.

Proof. We show that the system in question is an adaptive proof. The extractorK stores all hash in-
put/output pairs that the main invocation of the adversary makes. The extractor does not launch any
other invocations. When the extractor K receives an extraction query, it searches for values in the
hash list from which it can extract a witness to the given proofs using special soundness and the fact
that responses are unique. That is, to extract for a statement x, algorithmK issues a list request and
then searches for entries H(x, (comk)

r
k=1, i, chi, respi) and H(x, (comk)

r
k=1, i, ch

′
i, resp

′
i) such

that chi 6= ch′i. If it finds such entries then it invokes the special-soundness extractor for the
underlying Σ-protocol to compute a witness. If there are no such entries then K returns ⊥.
COMPLETENESS. Before showing extractability, we first argue along the reasoning in [7] that the
scheme is complete, i.e., allows an honest prover to efficiently find a proof with overwhelming
probability.4 For this Fischlin first shows that the probability of the prover obtaining an extremely
large sum of hash values of value rS is at most re−(S+1)2t−b . By the choice of parameters, r being
logarithmic and 2t−b being superlogarithmic, this probability is negligible. Next, Fischlin shows
that obtaining any sum T between S + 1 and rS is also negligible, namely, er+(S+1)(r−2t−b). It
follows again by the choice of the parameters r and 2t−b that this is negligible.
ZERO-KNOWLEDGE. The zero-knowledge simulator in [7], programming the random oracle on
some points when giving a proof via S.prove(x) and otherwise answering with random values
for “other” random oracle queries S.ro(x), works as follows. When simulating a proof for each
i = 1, 2, . . . , r and each chi ∈ {0, 1}t the simulator first picks random hash values (denoted
hi,chi). For each i it picks the lexicographic first one chi with the smallest hash value (when
truncated to b bits). It then calls the zero-knowledge simulator for the Σ-protocol to create a
proof comi, chi, respi for the given challenge.5 For each i the simulator now implicitly sets the
random oracle at H(x, (comk)

r
k=1, i, ch

∗
i , resp

∗
i ) for valid proofs to hi,ch∗i for all ch∗i ∈ {0, 1}t. In

particular, for each i the hash value H(x, (comk)
r
k=1, i, chi, respi) for the created proof equals the

lexicographic first among the smallest ones over all challenges.
In [7] it is now discussed that the proof is perfectly zero-knowledge, unless the simulator

S.prove resets a previously defined hash value, or if the malicious prover asks the random ora-
cle about two tuples (x, (comk)

r
k=1, i, chi, respi), (x, (comk)

r
k=1, i, chi, resp

′
i) for respi 6= resp′i

for valid responses. The former happens with negligible probability by the superlogarithmic min-
entropy of the commitments, the latter would contradict the property of unique responses. For
details see [7].
SIMULATION SOUNDNESS. Recall that the extractor works by searching the list of hash queries
for two accepting proofs for some x, comi, chi. In our setting, we are concerned with the malicious

4As pointed out in [7], it can be turned into a perfectly complete proof scheme by letting the prover output a witness in clear in case it does not
manage to find an accepting proof.

5It was shown in [7] that any Σ-protocol with logarithmic challenge size is special zero-knowledge in the sense that one can pre-determine a
challenge value and the zero-knowledge simulator creates a corresponding proof.

15



prover outputting some valid pair (x, π) /∈ Π not in the list of previously proven statements, such
that the extractor fails (see Figure 8).

As in [7] we will first discuss the case that the prover P̂ re-uses x as in a previously simulated
proof, but for a fresh proofπ. First note that if the prover uses some simulated proof containing
tuples (x, (comk)

r
k=1, i, chi, respi), but where it leaves x, (comk)

r
k=1, i and now uses a fresh chal-

lenge ch′i 6= chi for some i and augments it by a valid response resp′i, then our extractor is able
to find a witness by the special soundness. This is independent of the fact that the first prove is
simulated only.

Next, Fischlin shows that, for any tuple (x, (comk)
r
k=1, i, chi, respi) in the proof π, the adver-

sary cannot have made hash queries (x, (comk)
r
k=1, i, chi, resp

′
i) for valid responses resp′i 6= respi,

by the property of unique responses. If the adversary, on the other hand, made only the calls
(x, (comk)

r
k=1, i, chi, respi) to the random oracle, then he proves that the probability of finding a

proof with sum at most S inQ hash queries (for S = O(r)) is at most (Q+1) ·(S+1) ·2(log(ec)−b)r,
which is negligible by the choice of parameters. Put differently, for a single extraction query the
extractor finds a witness with overwhelming probability.

The final step is now to argue that the probability of success remains non-negligible even after
polynomially many repetitions, whether in sequence or in parallel. More precisely, let q(λ) be a
bound on the number of proofs the extractor must extract from in total. Let ε(λ) be the probability
that the extractor fails on a single proof. We know that ε(λ) is negligible, so from some λ0 onwards
we can assume q(λ) < 1/ε(λ)2. But limλ→∞ (1− 1/λ2)

λ
= 1, so the success probability of

the extractor converges to 1. From some λ0 onwards we can therefore assume that the extractor
succeeds with constant (greater than zero) and hence non-negligible probability.6

5. Fiat-Shamir-Schnorr proofs are not adaptively secure

Our second result is negative. It shows that Fiat-Shamir Schnorr is an example that separates proofs
of knowledge from adaptive proofs.

Theorem 2. The Fiat-Shamir-Schnorr (FSS) proof scheme is not adaptively secure under the one-
more discrete logarithm assumption. Specifically, for any n there is a prover P̂ who makes a
sequence of n FSS proofs. For any extractor K who can win the adaptive proof experiment against
P̂ , either K calls at least 2n rewinding copies of P̂ or there is a reduction that solves the one-more
discrete logarithm problem in the underlying group with a comparable success rate to K.

We start with a high-level overview of our approach and then provide the details. The prover
in question follows the same ideas as Shoup and Gennaro’s CCA attacker [5]. While the cited
work gave the attacker as an example why the “obvious” proof fails, it did not show any inherent
limitation of the Fiat-Shamir technique; it did not show that this limitation cannot be overcome by
using a different proof technique. Our paper is the first to give a proof that Fiat-Shamir transformed
sigma protocols have an unavoidable limitation.

The core of the proof is a metareduction. For any extractor that wins the adaptive proof game
against our prover, we construct a second “meta-extractor” that finds a discrete logarithm to one
of the Schnorr challenges involved if the extractor’s rewinding strategy satisfies certain conditions
that we call “event E”. We then replace the prover by a one-more discrete logarithm challenger

6 The proof so far can be extended to any non-interactive proof scheme with a straight-line extractor that takes the transcript of all queries made
by the adversary so far as input and has an overwhelming probability of extraction.
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procedure initialise (λ):

G← GrpSetup(λ);
i, j ← 0;C ← ∅;
return G

procedure finalise ({xi}i∈[n]):

If n > j and gxi ∈ C for all i
then return 1

else return 0

oracle challenge ():
i+ +;Xi←$ G;
C ← C ∪ {Xi};
return Xi

oracle dlog (X):
j + +;
return dlogg(X)

Fig. 9: Experiment for defining the one-more discrete logarithm problem. We demand that xi 6= xj mod |G| for all i 6= j.

to deal with the other proofs that may arise from rewinding copies. We reuse our coin splitting
technique to argue that this game hop is undetectable by the extractor.

We use a combinatorial argument to show that any extractor who does not make at least 2n

calls to different rewinding copies of the prover must trigger event E. The gist of the argument is
that we map the prover’s n queries to a path in a depth-n binary tree where each node represents
a discrete-logarithm problem. Each query that the extractor answers successfully reveals certain
nodes in this tree and answering all n queries implies that the entire tree is revealed. We treat each
rewinding operation that the extractor performs as exploring a path in the tree. If the extractor
explores the complete tree we get the claimed 2n rewinding operations. The event E is that the
extractor “jumps” from one leaf in the tree to another without exploring the path in between. If
this occurs, our reduction solves the one-more discrete logarithm problem. It is impossible, even
for a computationally unbounded extractor, to reveal the whole tree (answer all n queries) without
either exploring the whole tree (taking exponential time) or performing at least one jump (solving
a one-more discrete logarithm instance).

Before we proceed with the details of the proof, we recall the one-more discrete logarithm
(OMDL) assumption. We first recall this assumption and then present our proof.

5.1. The One-More Discrete Logarithm Problem

Formally, we consider the experiment Expomdl
A,G (λ) defined in Figure 9. The notation follows the

code-based game-playing model of Bellare and Rogaway [23]: there are procedures called ini-
tialise and finalise and oracles called chal and dlog. The experiment begins with the game running
the initialisation algorithm and handing its return value to the adversary. The adversary may then
call the two oracles in any order and as many times as she wishes before she returns an output value
which is passed to the finalisation algorithm — in our case a set of candidate discrete logarithms
for the challenges. The output of the finalisation is taken to be the game result. The adversary’s
aim is to make the game result beome 1 and the OMDL assumption holds in a family of groups if
no efficient adversary can make the game return 1 with more than negligible probability.

The experiment involves an adversary A that works against group G defined by GrpSetup. The
adversary has access to two oracles, one that provides fresh random group elements, and one that
returns the discrete logarithm for aribtrary group elements. For the OMDL experiment, the game
output is the boolean value that indicates whether the number of challenges obtained from the
challenge oracle is strictly greater than the number of discrete logarithm queries made, and that the
adversary has returned the discrete logarithms of all of the challenges she has received.
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procedure P̂Ψ
n (G):

c0 ← 0

for i← 1, . . . , n do
xi←$ Ψ(1, c0, c1, . . . , ci−1)

ai←$ Ψ(2, c0, c1, . . . , ci−1)

Xi ← gxi ;Ai ← gai

ci ← ro(Xi, Ai)

for i← n, . . . , 1 do
si ← ai + cixi
wi ← extract(Xi, (Ai, si))

halt if gwi 6= Xi //check answer wi

halt //give up, extractor wins

procedure AchallengeΨ,dlog
n (G):

c0 ← 0

for i← 1, . . . , n do
Xi ← challengeΨ(1, c0, . . . , ci−1)

Ai ← challengeΨ(2, c0, . . . , ci−1)

ci ← ro(Xi, Ai)

for i← n, . . . , 1 do
si ← dlog(Ai ·Xci

i )

wi ← extract(Xi, (Ai, si))

halt if gwi 6= Xi //check answer wi

halt //give up, extractor wins

Fig. 10: Adversary P̂ is against the adaptive property of the Fiat-Shamir-Schnorr. Adversary An simulates P̂ using the oracles
from the one more discrete logarithm experiment.

For an adversaryA we define its advantage against the one more discrete logarithm problem by
Advomdl

A,G (λ) = Pr[Expomdl
A,G (λ) = 1] and we say that the problem is hard with respect to a group

generator GrpSetup if for any efficient adversary A, its advantage is negligible.

5.2. Overview

We begin by defining a particular adversary P̂ which makes a chain of n proofs following the ideas
of Shoup and Gennaro [5]. Our adversary uses a random function Ψ but this is only for illustration
purposes (one could also replace Ψ with a pseudorandom function).

Next, we construct a reduction R which simulates multiple copies of the prover P̂ . We claim
that no extractor K in the adaptive proof game can distinguish whether it is interacting with R
or multiple copies of P̂ . The reduction R does not require a random function. R reduces to the
one-more discrete logarithm problem and the main challenge in this step is ensuring that R can
simulate a potentially unbounded number of copies of P̂ using only one OMDL challenger.

In the adaptive proof game between K and R (the latter playing all copies of the adversary at
once), we define an event NZP. If this event occurs, R can solve the one-more discrete logarithm
instance that is is interacting with.

For any execution of the game that K wins against R without event NZP occuring, we show
via a combinatorial argument that K must have interacted with at least 2n copies of the adversary
(simulated by R). Since an efficient extractor (in the sense of the adaptive proof definition) must
win the game with overwhelming probability but cannot take exponential time, we conclude that
such an extractor always triggers event NZP and therefore we have an efficient OMDL adversary
which always succeeds.

5.3. Construction

In Figure 10 we give the prover P̂ and a “hypothetical” OMDL reduction An. We cannot use this
reduction directly as the extractor has the ability to rewind its adversary, but a reduction cannot
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rewind the challenger. The reduction An is intended only as an illustration of how our reduction
R will work later.

The prover P̂ runs two loops. First, it builds up a chain of n Schnorr statement/proof pairs
by picking statements, commitments and challenges (Xi, Ai, ci). Whenever a random value is
required, P̂ uses its random function on the entire “history” of random oracle queries so far. This
has the effect that if an extractor runs two copies of P̂ and “forks” them at any point by giving
them different answers to a random oracle query, they will behave from then on as if they had
independent sources of randomness.

In the second loop, P̂ completes the proofs by computing the responses si and asks extraction
queries in reverse order (note that the loop counter j runs from n down to 1). Whenever the
extractor returns a witness wi, P̂ checks this and halts if it is incorrect. While the main prover does
not need to check witnesses (the adaptive proof game does this already), if the extractor tries to
give a bad witness to a rewinding copy of the prover then this copy halts and refuses to divulge any
further responses si which the extractor could use to apply special soundness.

The algorithm An shows the idea behind our reduction R. The Schnorr proof statements and
commitments become OMDL challenges and we use one dlog query to compute the response. We
can already see that if the extractor correctly answers any extract query of the main copy of the
adversary without launching any other copies of the adversary then we must win the OMDL game
since we used two challenges but only one discrete logarithm query for the proof in question and
the extractor’s reply is the second discrete logarithm. We can open all other proofs with one extra
dlog query in which case we have obtained 2n challenges and solved them all with only 2n − 1
dlog queries, which means that we win the OMDL game. The reduction R in the next step keeps
track of OMDL queries across all copies of the adversary so that we can make a similar argument
to win OMDL whenever there are fewer than 2n copies of the adversary in play.

5.4. Reduction

The key idea in our reduction R is to track the history H of all challenges (random oracle re-
sponses) in each copy of the adversary. We give the code of the reduction in Figure 11. The calls
to ro and extract pass control to the extractor which may choose to activate a different copy of the
adversary before returning a value7.

The reduction shares state between the copies of the adversary that it simulates through the
OMDL challenger and two global maps L and Φ, which are shared between all copies of the
adversary simulated by R. In the first loop, the adversary makes a chain of n Schnorr statement/-
commitment pairs. The map L tracks the pair that the adversary makes when its history is H and
we write L[H] for the value stored at key H , if any. This allows the reduction to simulate several
copies of the adversary consistently: whenever a copy with history H is supposed to make a state-
ment/commitment pair, it looks first in the list H if another copy has already made the required
pair and re-uses the same pair if this is the case.

If a copy of the adversary needs to make a fresh statement/commitment pair because it is the first
copy to reach history H , it calls the newchallenge subroutine. This draws two OMDL challenges,
records them in L and makes an entry in Φ which we will describe in a moment.

In each pass through the second loop, each adversary copy completes a proof, asks and verifies
an extraction query. Since the aim of the OMDL game is to open all challenges with fewer dlog
calls than challenge calls, consider a potential Φ defined as the number of challenge calls minus

7For those with knowledge of software engineering terminology: the copies of the adversary simulated by R are coroutines with shared state
and the ro and extract calls are “yield” calls.
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procedure adversary(id):

H ← [ ]

for i← 1, . . . , n do
if (Xi, Ai)← L[H] then

ci ← ro(Xi, Ai)

H ← H :: ci
else

(Xi, Ai)← newchallenge(H)

ci ← ro(Xi, Ai)

H ← H :: ci
for i← n, . . . , 1 do

(φ, c, s, x, a)← Φ[(Xi, Ai)]

if φ = 2 then
si ← firstproof(Xi, Ai, ci)

elseif φ = 1 then
si ← secondproof(Xi, Ai, ci)

else
si ← a+ c · x

wi ← extract(Xi, (Ai, si))

if gwi 6= Xi then halt

procedure newchallenge(H):

X ← challenge()

A← challenge()

L[H]← (X,A)

Φ[(X,A)]← (2, ?, ?, ?, ?)

return (X,A)

procedure firstproof(X,A, c):

s← dlog(A ·Xc)

Φ[(X,A)]← (1, c, s, ?, ?)

return s
procedure secondproof(X,A, c):

(φ, c′, s′, x′, a′)← Φ[(X,A)]

if c = c′ then
return s′

else
x← dlog(X)

a← s′ − c′ · x
s← s′ + (c− c′) · x
Φ[(X,A)]← (0, c, s, x, a)

return a+ c · x

Fig. 11: The reduction R simulating a copy of P̂ . The reduction R itself consists of multiple copies of this algorithm each with a
unique identifier id. The variables C,L,Φ are shared between all copies.

the number of discrete logarithm calls made so far at any point in the execution of the reductionR.
We will see that this potential can never become negative. If we ever manage to collect all discrete
logarithms while the potential is strictly positive, we can win the OMDL game.

The potential Φ can be expressed as the sum of the local potentials φ over all pairs (X,A) of
statements and commitments made by the reduction. The map Φ tracks this potential and some
extra bookkeeping information. Whenever the newchallenge procedure draws two new OMDL
challenges, it adds a new entry for them in Φ. Each such entry is a 5-tuple (φ, c, s, x, a) where the
first element φ is the local potential of the pair and the last four elements can take the special value
? (undefined). When a pair is first created, two OMDL challenges have been used to create it and
no discrete logarithms for this pair are known yet so the local potential is set to φ = 2 and the other
entries are undefined.

The first time we make a proof on a pair (X,A), we use one dlog query to get the required
response s and drop the local potential to φ = 1. We also record the challenge c and response c
used in the map Φ.

If we need to make a proof on a pair (X,A) at local potential φ = 1, there must have been a
previous proof on this pair (or the potential would still be at 2). We have two cases: if we have
been given the same challenge as in the previous proof, we just replay the same response. This
is why we record challenge/response pairs in the map Φ. If we are given a fresh challenge, this
means that the extractor has “forked” two copies of the adversary on this proof and is about to
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obtain the witness by special soundness. In this case, we drop the potential to 0 with a dlog query
to get x, the actual witness on which we are making our Schnorr proof, and use the previously
stored information to find a.

If the extractor forks multiple copies of the adversary on the same proof more than once (i.e.
it gives three different copies three different challenges for the same statement/commitment pair)
then after the second proof, the local potential will be at 0 but we will have recovered x and a
already. Therefore, we do not need any further dlog queries to complete the third proof but can just
compute the response the usual way.

Lemma 1. For any extractor K connected to the adaptive proof game, our reduction R is statisti-
cally indistinguishable from multiple copies of the adversary P̂ .

Proof. The proof is by induction over all queries sent to the extractor K. Before the first time
the extractor receives anything, it obviously cannot distinguish anything. The reduction receives
a random oracle query from the adversary whenever a rewinding copy of the adversary passes
through its first loop. The elements in these queries are completely characterised by the following
description:

• If the history of the current copy (making the random oracle query) is a prefix of any other copy’s
history, then the current copy returns the exact same query as the previous one. After all, all copies
run the same algorithm on the same initial random string.
• If the current copy’s history is “fresh” — either the current copy has advanced further than any

other copy or the extractor has forked it — then the two elements in the random oracle query
are uniformly random group elements independent of any previous elements. This is because the
elements are drawn using a random function on a fresh input.

By inspection of the code of the reduction, we see that it has the same loop structure and
meets the same invariants. The list L ensures the first condition that copies with the same history
return the same elements and fresh copies trigger challenge calls which return fresh, uniform group
elements by definition of the OMDL problem. Therefore, the pattern of random oracle queries is
statistically indistinguishable between the reduction and the adversary copies. The argument for
the main copy is identical although the extractor only gets to see the oracle queries in response to
list queries to the adaptive game rather than immediately.

For extraction queries the induction argument is even simpler: statement/commitment pairs of
each copy are exactly the ones asked earlier in the random oracle queries (in reverse order) and the
responses si are completely determined by the statement, commitment and challenge (which came
from the extractor).

5.5. The event NZP

We write NZP for the event that throughtout its execution, R receives a correct response to an
extract query while the local potential of the associated statement/commitment pair is φ = 1 (it
can never be 2 as the reduction had to drop it to 1 just to get the response s to ask the extract query
in the first place).

Lemma 2. In any execution, the moment event NZPoccurs, the reductionR can immediately win
the OMDL game that it is playing.

The only way that the extractor can ever answer an extraction query without triggering event
NZP is if it has interacted with a different copy of the adversary, giving it a different challenge for
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the same pair. This triggers the secondproof algorithm which drops the local potential to 0. This
is exactly extraction by forking and special soundness. In other words, event NZP is the event that
the extractor finds a witness by some other means than special soundness.

Proof. When the reduction receives the correctw for a pair (X,A) at potential 1, the entry Φ[(X,A)]
is of the form (1, c, s, ?, ?) such that (X,A, c, s) is a correct Schnorr transcript. Since w is the dis-
crete logarithm of X , the reduction can compute a← s− c · x and has both discrete logarithms of
a pair of challenges at potential 1. The reduction next opens all other challenge pairs: pairs at po-
tential 0 are already opened; for pairs (X ′, A′) at potential 1 the reduction asks x′ ← dlog(X ′) and
proceeds as before to get a′; for pairs (X ′′, A′′) at potential 2 it just asks dlog(X ′′) and dlog(A′′).
The result is that the reduction has made exactly one fewer dlog query than challenge query and
has all discrete logs, which wins the OMDL game.

Note that the reduction can check the correctness of a candidate w from the extractor itself.
If the extractor passes the reduction’s “main adversary” an incorrect witness, the reduction loses
the adaptive proof game. If a rewinding adversary simulated by the reduction gets an incorrect
witness, event NZP is not triggered but this copy halts and so is of no further use to the extractor.

There is one other case that lets the reduction win OMDL immediately: if two challenges
returned from the OMDL challenger ever collide. We could simply ignore this event as it happens
with negligible probability but even then, since one discrete logarithm call in this case gives the
answer to two challenges, the reduction can open all further challenges at a cost of one discrete
logarithm call each and win the OMDL game.

5.6. Combinatorial argument

Lemma 3. Suppose that the extractor K wins an execution of the adaptive proof game against
the reduction R without R winning its OMDL game (whether by event NZP or by a collision in
the challenger). Then the extractor must have interacted with at least 2n copies of the adversary
(simulated byR).

Proof. Consider an arbitrary execution of K withR in which K wins the adaptive proof game. We
identify each instance of the adversary thatR simulates through the sequence of answers it received
to its random oracle calls. For example, the main adversary is identified through I0(c0, c1, . . . , cn):
sinceK was successful it returned answers to all of the extraction queries (and in particular to all of
the random oracle queries). Different random oracle answers imply that K talks to different copies
of the adversary. At the same time, we ignore duplicates: if K had induced identical executions in
two different copies then we count them as one.

Since we consider an execution where R cannot solve the OMDL problem, by Lemma 2 it
holds that event NZP does not occur. Then we can construct the following complete binary tree:
the nodes of the tree are of the form (I, k) where I is an identifier (for a copy of the adversary)
and 1 ≤ k ≤ n. The nodes of the tree satisfy the invariant that if (I, k) is present in the tree, then
copy I must have run up to the point where it made its k-th extraction query and received a valid
answer. We set the root of the tree to be (I0, n): the main adversary completed so K must have
answered all of the n extraction query of I0.

For each node (I, k) that occurs in the tree and for which k > 1 we recursively add two
children: the first child of (I, k) is (I, k − 1). If an invocation I asked k extraction queries then it
certainly also asked k − 1 queries and got answers to all previous ones, so the first child meets the
required invariant. For the second child of (I, k), consider the pair of OMDL challenges (X,A)
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that I made its k-th extraction query about. Since event NZP has not occurred, there must have
been some invocation I ′ in which a second extraction query was made on the same (X,A) (as
otherwise the potential of (X,A) would be one).

With overwhelming probability the other execution I ′ must have been about the same n−k first
hash queries (and answers) as I, or else the value (X,A) would not occur in the random oracle
call made by I ′. Furthermore, I ′ can only reduce the potential for (X,A) if it has run up to the
k-th extraction query, which implies that it received valid answers for the first k − 1 queries. The
invariant is satisfied, so we can add (I ′, k − 1) as the second child of (I, k) to our binary tree.

To summarize, if a node N ′ = (I ′, k′) is a child of a node N = (I, k) then k′ = k− 1 and I ′ is
an execution that received identical answers to the first n− k hash queries as I. Furthermore, the
two children of N = (I, k) correspond to adversaries that differ in the responses to their n−k+1-
st hash query. Therefore, for any node N = (I, k) at level k > 1, all identities appearing in the
subtree rooted at the first child of N shared the first n − k + 1 hash answers with I; all identities
appearing in the subtree rooted at the second child of N shared the first n− k hash answers with I
but got a different answer to the n− k + 1-st hash query.

The leaves of the binary tree will thus be of the form (Ii, 1), where each different Ii corresponds
to a different adversary that R simulates. The tree has 2n leaves and it only remains to show that
the identities in the leaves are pairwise distinct. Suppose that two of these identities I and I ′ in
different leaves are identical. There is a unique path in the binary tree that connects these two
leaves and a unique node N = (I ′′, k′′) on this path with a highest index k′′ among all nodes on
this path. Without loss of generality, the path from N to (I, 1) passes through the first child of
N , and that to (I ′, 1) through the second child of N . But this is a contradiction: all identities in
the subtree rooted at the first child of N differ from those in the second at least in the response to
the n − k′′ + 1-st hash query, therefore they are distinct. We conclude that an extractor K which
does not trigger event NZP must access 2n distinct copies of the adversary. In other words, for
any efficient K the probability of winning the adaptive proof game against our adversary without
triggering event NZP is negligible.

5.7. Proof

Suppose that Fiat-Shamir-Schnorr is an adaptive proof with respect to a group generator GrpSetup
and the discrete logarithm relation. Then there is an efficient extractor K that can win the adaptive
proof game with overwhelming probability against P̂ for n = λ in the groups G(λ) created by
GrpSetup. By Lemma 1 the reduction R is statistically indistinguishable to an adversary from
(many copies of) P̂ , so with overwhelming probability,K still wins the adaptive proof game against
R (w.r.t. GrpSetup).

SinceK is efficient, from some λ0 onwardsK makes strictly fewer than 2λ queries; in particular
it launches fewer than 2λ copies of the adversary. However, by Lemma 3, since K triggers event
NZP in R whenever it wins the adaptive proof game with fewer than 2λ copies of the adversary,
we conclude that R (interacting with K and the adaptive proof game) wins the OMDL game with
overwhelming probability w.r.t GrpSetup.

Actually, since the probability that R solves OMDL is negligibly close to the probability of
K winning the adaptive proof game (for λ > λ0), our Theorem even holds for extractors with
only non-negligible success probability and yields an OMDL adversary with a comparable success
probability. This concludes the proof of Theorem 2.
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6. Conclusion

It has been known for a long time [5] that Fiat-Shamir proofs can be problematic in adaptive
settings. Our notion of adaptive proofs captures the kind of proofs we would like to have in such
scenarios (and which are achievable via the Fischlin transformation). Since the publication of
the first version of this work [24], the chain-of-proofs technique has been developed further to
prove that CCA security of Signed ElGamal cannot be reduced to IND-CPA of plain ElGamal [10]
(unless Schnorr proofs leak the witness, in which case any use of Signed ElGamal is questionable).
This does not follow directly from the theorems of this work here which do not exclude an extractor
tailored specifically to Signed ElGamal that uses the ElGamal ciphertext as well as the attacked
PoK. The cited work validates our intuition that adaptive proofs are a useful tool to study the
security of real-world public-key constructions.

Furthermore, it is known that allowing only a single, parallel extraction query results in a proof
system which is sufficient to construct NM-CPA encryption, and that the common Fiat-Shamir
transformation on Sigma-protocols meets this notion [25]. An intriguing question is to study other
restriction on the power of malicious prover. In particular such restrictions may lead to new con-
structions for encryption scheme that satisfy stronger notions than NM-CPA yet weaker than IND-
CCA, e.g. those put forth in [25].
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