
                          Gibbins, D., Railton, C., Craddock, I., & Henriksson, T. N. T. (2016). A
Numerical Study of Debye and Conductive Dispersion in High Dielectric
Materials Using a General ADE-FDTD Algorithm. IEEE Transactions on
Antennas and Propagation, 64(6), 2401-2409. DOI:
10.1109/TAP.2016.2550056

Peer reviewed version

Link to published version (if available):
10.1109/TAP.2016.2550056

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via 	Institute of Electrical and Electronics Engineers (IEEE at http://dx.doi.org/10.1109/TAP.2016.2550056.
Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73983827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/TAP.2016.2550056
http://research-information.bristol.ac.uk/en/publications/a-numerical-study-of-debye-and-conductive-dispersion-in-high-dielectric-materials-using-a-general-adefdtd-algorithm(a2e5b944-915a-41ec-82b5-08c331198357).html
http://research-information.bristol.ac.uk/en/publications/a-numerical-study-of-debye-and-conductive-dispersion-in-high-dielectric-materials-using-a-general-adefdtd-algorithm(a2e5b944-915a-41ec-82b5-08c331198357).html


> AP1403-0454.R2< 
 

1

1 
Abstract— A new formulation of the Auxiliary Difference 

Equation (ADE) Finite Difference Time Domain (FDTD) 
algorithm for the simulation of dispersive materials has been 
presented in the literature. Although flexible and efficient, this 
algorithm suffers from instability when modelling lossy high 
contrast dielectrics. 

In this paper we adapt this ADE-FDTD formulation and 
present alternative algorithms for modelling static conductivity 
and Debye dispersion. The stability of these algorithms is 
assessed by numerical simulation in a wide variety of dielectric 
media and their performance is compared to the existing 
algorithm by means of a simulation of the reflection of a plane 
wave from a dielectric boundary. Results and comparison with 
theory demonstrate the stability and accuracy of the new 
methods. The flexibility, computational efficiency and ability to 
model a wide range of materials make these new methods highly 
attractive compared to other dispersive FDTD algorithms, 
particularly for modelling materials with multiple dispersion 
models. 
 

Index Terms—FDTD methods, electromagnetic propagation in 
dispersive media, dispersive media. 
 

I. INTRODUCTION 

N most instances the Finite Difference Time Domain 
(FDTD) method is used to model materials with frequency- 

independent values of permittivity. In cases when a large 
frequency bandwidth or highly lossy materials are to be 
investigated, it often becomes necessary to model their 
frequency-dependent or dispersive behavior; this may require 
the combination of a number of different dispersion models. A 
classic example of this is the use of the Stogryn model [1] that 
combines Debye and static conductive dispersion to model the 
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properties of saline water. This same model can be used as an 
approximation of biological tissues at microwave frequencies 
[2] 
There are a number of different methods available that allow 
the simple “Yee” form of the FDTD equations [3] to be 
modified, enabling dispersive behavior to be modelled. These 
can be grouped into three main types; Z-transform methods 
that make use of digital filtering theory [4]; methods based on 
the discrete convolution of the dispersion relation in the time 
domain [5]; and those that employ the Auxiliary Differential 
Equation (ADE) approach [6]-[11]. The ADE method offers a 
more general, flexible implementation of the dispersion 
relation that lends itself to modelling arbitrary permittivity 
functions  

[6].     
In general ADE algorithms need a different formulation for 

each type of dispersion and for multi-pole materials the 
calculation can become complicated and cumbersome. In [5] 
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TABLE I 
ALGORITHMS DISCUSSED IN THIS ARTICLE  

ALGORITHM NAME ALGORITHM DESCRIPTION 

E-FIELD UPDATE ALGORITHMS 

E-field update 1 
 

Original two part ADE E-field update 
as presented in [5] 

 

E-field update 2 
 

New two part E-field update that uses 
ETD to incorporate static conductivity 

into part 1 of the update in the 
calculation of D  

 

P-FIELD UPDATE ALGORITHMS 

ATD update 
 

Equation for polarization density, 
presented in [5], that uses 

approximate time differencing to 
unify all forms of dispersion into a 

single, general formulation 
  

ETD Debye update 
 

Update equation for Debye type 
dispersion polarization density 

formulated using exponential time 
differencing 

 

RSL conductivity update 
 

Update equation for effective 
conductivity polarization density 

formulated using the restart stabilized 
leapfrog method  
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an ADE FDTD formulation is presented that allows complex 
media to be modelled using the same general form. Multiple 
dispersion types or poles can be included by adding additional 
polarization density (P) terms to the update equations. The 
algorithm is based on the idea of splitting the E-field FDTD 
update into two parts. In part 1 the Electric displacement (D) 
is calculated from the magnetic (H) fields using the standard 
Yee equation. In part 2 the E-field is calculated from D and P, 
using a permittivity model that includes the effects of 
dispersion. In addition a general formulation for the FDTD 
update equations for P is presented that unifies all the different 
dispersion models e.g. Lorentz, Drude and Debye, into a 
single form. The formulation is flexible and computationally 
efficient. However, when modeling high loss and/or large 
dielectric contrasts it becomes unstable.  

In this paper we introduce new time update equations for P 
for static conductivity 	  and Debye dispersion ( ) that are 
stable in such conditions. The numerical update for  is 
derived using the using the Exponential Time Differencing 
(ETD) [12] method to solve the differential time domain 
Debye susceptibility equation. The update for  is derived 
using the Restart Stabilized Leapfrog (RSL) [13] method in a 
similar fashion. In addition a new ADE formulation is 
presented that is also capable of simulating high loss materials 
in which the standard lossy ETD FDTD equations are 
extended to incorporate the effects of dispersion. While not as 
processor-efficient the new ETD-ADE formulation is more 
memory-efficient than the RSL implementation of static 
conductivity. A summary of the algorithms discussed in this 
paper can be seen in Table I. 

II. ADE-FDTD EQUATIONS 

The complete two part E-field update presented in [6] at 
iteration n of the ADE-FDTD algorithm is given by: 

 
∆ /  (1) 

 
∑

  (2) 

 
Where  is the curl of the H-fields, ∆ is the FDTD 

time-step,  is the polarisation density contribution from 
polarization term i, 	  is the permittivity of free space and  
is the relative permittivity when the angular frequency ∞. 
Henceforth the update equation for D in (1), will be referred to 
as part 1 of the update scheme, the update equation in (2) will 
be referred to as part 2 while the combination of (1) and (2) 
will be referred to as E-field update 1. 

A previous attempt [6] has been made to produce a general 
formulation for the time domain update equations for P that 
unifies the all the different dispersion models e.g. Lorentz, 
Drude and Debye, into a single form. The resulting update 
equation is given by:  
 

  (3) 
 
where the coefficients ,	  and  are calculated as: 

 
∆

∆
 (4) 

 
∆

∆
 (5) 

 
∆

∆
 (6) 

 
The constants a, b, c and d are determined by the dispersion 

type and are found by comparing the frequency domain form 
of the polarization density for the particular dispersion model 
with the general form:  

 
	  (7) 

 
For more details of this derivation see [6]. Due to the way that 
the time derivatives are approximated to obtain equations (4) 
to (6), this formulation of the update equations for P 
(henceforth referred to as the Approximate Time Derivative 
(ATD) method) results in solutions that become unstable for 
high values of permittivity as shown in the results section.   
 

A. Stable time domain ADE algorithm for static conductivity 
using ETD  

In this section an alternative 2-part derivation for the E-field 
update equations is presented. In this new form the 
contribution from static conductivity is incorporated into part 
1 of the update, rather than being treated as a polarization 
density term and included in part 2 of the update as is done in 
E-field update 1. The starting point for deriving part 1 of the 
update equation is: 
 

  (8) 

 
In order to find a numerical solution to this equation it must 

be in the form of a first order Ordinary Differential Equation 
(ODE) in terms of D(t). In this form the equation may be 
solved using one of a number of different techniques including 
linearly implicit methods [14], projection methods [15] or 
Exponential Time Differencing (ETD) methods [12]. Of these 
ETD has already been used to produce an alternative 
formulation of the basic lossy FDTD algorithm [17] and 
generally produces high accuracy, stable solutions. To obtain 
the correct form the right hand side of the equation needs to be 
expressed in terms of D(t) and so an equation is required 
relating 	to D(t). Multiplying both sides of the non-
discretized version of (2) by the conductivity provides this 
relationship: 

 
D t   (9) 

  
Where the term ∑ , the total polarization 

density, is introduced for clarity. Substituting this result into 
(8) and grouping D(t) terms on the right hand side gives: 
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H t  (10) 

 
This equation is now in the form of an ODE that can be 

solved for D using the ETD method. The detail of this process 
can be seen in appendix A. The resulting numerical solution 
is:  

 
∆

1
∆

…   

H   (11) 

 

The  term in this equation is not directly available as it 
is calculated at the same time intervals as the E-field, but it 
can be approximated by averaging the polarization field values 
at n and n+1:  
 

  (12) 

 
Applying this averaging gives the final update equation for 

D: 
 

∆

1
∆

…   

H   (13) 

 
This equation forms part 1 of the E-field update. The  

calculated here is used in conjunction with part 2 of the 
original formulation (2) to complete the E-field update. It 
should be noted that if modelling only static conductivity with 
no other forms of dispersion i.e. 0, the equation 
reduces to the standard ETD-FDTD equation for D. From this 
point on the E-field update that comprises (13) (part 1) and (2) 
(part 2) will be referred to as E-field update 2.  

B. Stable time-domain update for static conductivity 
polarization density 

E-field update 1 can also be used to simulate the effects of 
static conductivity by representing it as an effective 
polarization density term  in part 2, equation (2). Although 
the ATD formulation can be used to produce such an update 
this becomes unstable in highly lossy conditions (see section 
IV). A new derivation for  is now presented that is stable in 
such conditions. The time domain equation for the 
conductivity term is given by: 

 

  (14) 

 
The most basic solution to this equation is found using 

Euler’s method [13]. This is the simplest example of the 
Runga-Kutta class of numerical methods for solving 
differential equations. Using the Euler method an update of 
length Δ is calculated from the solution at (n-1) using the 

gradient at the same point. When applied to (14) Euler’s 
method gives the update for  at the nth time step, as:  
 

∆   (15) 
 

The Euler method is 1st order accurate and uses derivative 
information from only the beginning of the interval. As a 
result, the local step error is ∆  while the global error is 
∆ . This method is considered to be neither very accurate 

nor very stable when compared to other methods using the 
same step size.  

An alternative numerical technique is the Leapfrog method 
[13]. Used by Yee to produce the original FDTD equations [3] 
this method is of the 2nd order Runga-Kutta class and amounts 
to solving an initial value problem for a system of ODE’s with 
the Mid-Point (MP) method [13]. Specifically, the solution at 
iteration n is found using an update 2Δ in length from the 
solution at (n-1) based on a derivative calculated at (n). This 
progression can conveniently be started using the Euler 
method (15). Applying the leapfrog method to (14) gives: 

 
2∆   (16) 

 
Because the Leapfrog method is 2nd order accurate the local 

error for this method is ∆  and the global error is ∆ , 
significantly more accurate than the solution in (15).  

Equation (15) is the solution obtained using the ATD 
formulation (3) and will be referred to as the ATD conductivity 
update. As shown in Section IV, this becomes unstable for 
large values of σ as the solution tends to drift apart at odd and 
even time steps, leading to instability and eventually rapid 
divergence. The Leapfrog method maybe stabilized for 
practical purposes by “restarting” the sequence every 20 
iterations using a single Euler step, realigning the odd and 
even terms [13]. Using this approach a new update for , 
referred to as the Restart Stabilized Leapfrog (RSL), is defined 
as the Leapfrog solution (16) restarted every 20 iterations with 
a Euler step (15).   

C. Derivation of Stable Debye time update equation for 
polarization density 

The time-domain polarization density for a single Debye pole 
P(t)	is given as [16]: 
 

   (17) 

 
Where  is the static permittivity, and τ is the relaxation 

time as described above. The term 	represents the 
ability of the dipoles responsible for the dispersion to become .  

As in the case of (10) this is in the form of an ODE that may 
be solved using the ETD method to produce a time domain 
numerical solution for the polarization density ( :  
 

∙
∆

1
∆

	 (18) 

 
For detail of this derivation see appendix B. This will be 
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referred to as the ETD-Debye update. Comparing this equation 
with (3) equivalent values of ,  and  can be identified 
and compared with the equivalent coefficients for the ATD-
Debye update [6] (see Table II). The fact that	  coefficient is 
zero in the ETD case means that neither a coefficient nor 

	field values needs to be held in memory resulting in 
savings in both time and computational costs and a more 
efficient algorithm compared to the ATD approach. A 
comparison of the stability of these algorithms can be seen in 
the results section.  
 It should be noted that an attempt was made to stabilize the 
ATD Debye update using an Euler restart. While this proved 
partially successful in stabilizing the simulation, a shorter time 
step was required than was prescribed by the Courant stability 
limited and for large values the simulation still rapidly 
diverged.  

III. NUMERICAL EXPERIMENTS 

To test accuracy and stability of the algorithms presented 
above a simple numerical experiment was devised. This 
experiment comprises calculating the reflection coefficient of 
a plane wave normally incident on a boundary between free 
space ( 1, 0, 1) and a homogeneous, dispersive, 
non-magnetic 1) dielectric test material with complex 
permittivity  and conductivity .  

An FDTD model, shown in Fig. 1, was developed to model 
this scenario consisting of a workspace (3.75, 3.75, 37.5) mm 
half of which is free space while the other half (object c) is 
filled with the dispersive test material. The simulation space, 
delineated by a thick black line, is bounded by a Perfect 

Electric Conductor (PEC) on the y-direction boundaries, a 
Perfect Magnetic Conductor (PMC) condition on the x-
direction boundaries and Mur’s 1st order Absorbing Boundary 
Condition (ABC) on the z-direction boundaries. A y-direction 
polarized current source excitation surface is placed at the z-
boundary (object a in Fig. 1). This surface is excited with a 
Single Cycle Sinusoid (SCS) time-domain waveform with a 
width of 50ps and a central frequency of 20GHz. This 
arrangement ensures that the wave front has the form of a 
normal plane wave at the material boundary. The model is 
meshed with 0.0375mm cubic cells and a time interval size 
(Δ) of 95% of the Courant stability factor for 3D FDTD is 
used in all simulations [8]. 

Simulations were run for 1100ps (8000 iterations) during 
which, the time domain incident fields and fields reflected 
from the air/test material interface were observed. This 
simulation time is approximately 5 times longer than that 
required to observe the return pulse so as to ensure the 
stability of the simulation of the simulation in the long term. 
In experiments where Δ was altered the number of iterations 
was increased to maintain the same run time. The 
experimental frequency domain reflection coefficient	  
was calculated from the Fourier transform of these fields 
windowed to 300ps (2200 iterations) so as to isolate the 
response from the material boundary from long term effects 
such as reflections from the ABC at the end of the z+ extreme 
of the simulation domain. 

 Three variations of this experiment were carried out 
(henceforth referred to as Case 1-3) modelling the test material 
with different material values and algorithms: 
Case 1. This tests the implementation of static conductivity 

using E-field update 1 and the RSL update for . A lossy 
test material was simulated using the RSL algorithm with  
̂ 1	 and various values of . The results of this will be 

compare to modelling the same material using E-field 
update 1 and the ATD conductivity update.  

Case 2. This tests the implementation of Debye dispersion in 
conjunction with the E-field update 1. In this case the test 
material properties were based  on  that of a single-pole 
Debye model of water ∞ 1.8, 81, 9.4
10 	. The value of  was varied in order to access the 

TABLE II 
ETD AND ATD COEFFICIENTS FOR THE NUMERICAL UPDATE OF DEBYE 

POLARIZATION DENSITY    

COEFFICIENT C1 C3 C2 

ETD 
∆

 0 1
∆

 

ATD 
2∆

 1 
2 ∆

 

 

 
 
Fig. 1.  Numerical FDTD model used to validate the dispersive ADE –FDTD code: a. excitation surface, b. field probe, c. dispersive material 
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stability of the ATD and ETD Debye pole 
implementations. 

Case 3. This tests the implementation of static conductivity 
using E-field update 2. In this case the material simulated 
is the Debye-dispersion water model in case 2 and also a 
Debye-dispersion model of methanol	 ∞ 2.05,
35.5, 48.3 10 , both simulated using the 
ETD - Debye update, but with 1, 5, 10 and 20S/m of 
additive conductivity. It is necessary to perform the test 
for E-field update 2 in conjunction with another 
dispersion type as without a polarization density term this 
method reduces to the well-known and well tested ETD-
FDTD algorithm [17]. 

 To verify the accuracy of the simulated reflection 
coefficient, in each case it will be compared with the 
theoretical reflection coefficient which, for a normal plane 
wave incident on a boundary between free space and a 
dielectric medium with a permittivity ̂  is given by the 

equation [18]: 
 

  (19) 

 
Where ̂  is the complex frequency domain permittivity 

of the test material including a conductive term defined by 
̂ / . 

IV. RESULTS AND DISCUSSION 

A. Case 1: Static conductivity 

 Fig. 2 demonstrates the instability seen when performing 
simulations using the ATD conductivity update. For the range 
of  conductivity values evaluated, both the incident pulse and 
the inverted pulse reflected from the dielectric boundary are 
visible.  After this point the simulations become unstable and 
the solution diverges to infinity. The point at which this 

happens is dependent on the value of σ, the greater the value 
the more rapidly the simulation destabilizes. When the ATD 
simulation was run with 0.1 the solution remained stable 
throughout the entire 1100ps of the simulation, though will 
probably diverge at some point beyond this. Varying the time 
step used in the simulation between 95% and 15% of the 
Courant limit, resulted in little change in the point at which the 
simulations diverged. This indicates that this is not a Courant 
instability, but a more severe long-term problem likely due to 
the approximations of the derivatives used to produce the 
solution (see II.B).   

With the introduction of a “restart” into the leapfrog scheme 
every 20 iterations (RSL update for conductivity - see II.B), 
the simulations seen in Fig. 2 become stable and all cases run 
for the full 1100ps without diverging. Fig. 3 demonstrates the 
ability of this method to model the effects of static 
conductivity.   It shows the frequency domain reflection 
coefficient of the lossy dielectric interface, obtained from the 
stable RSL waveforms and the equivalent response as 
calculated by theory. The two responses show a good level of 
agreement, the simulated response deviating from the 
predicted value by less than 0.1dB between 5 and 40GHz. At 
lower frequencies larger differences are probably due to the 
fact that the wavelength is becoming large in relation to the 
test setup and boundary effects, not accounted for in the 
theoretical solution, become more prevalent.  

B. Case 2: Simulation of Debye Type Dispersion 

Fig 4 shows the time domain fields reflected from various  
vacuum/material interfaces for case 2. The instability of the 
ATD formulation for Debye dispersion is demonstrated by 
simulating five different values of static permittivity, varying 
from 70 to 5. This corresponds to values of 68.2 – 3.2 for 

, the term driving the Debye pole. The behavior 
shown is similar to that of the ATD formulation for 
conductivity; The greater the value of the  term the more 

 

 
Fig. 2 simulated time domain wave forms illustrating the implementation of
conductivity with the RSL and ATD conductivity updates.  
  

 
Fig. 3 Comparison of frequency domain reflection coefficient of vacuum –
lossy dielectric interface ( ̂ 1, 2 ) as found via the RSL conductivity 
algorithm and theory.  
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rapidly the simulation diverges.  
Varying the time-step between 0.95% and 15% of the 

Courant stability criterion has a negligible effect on the point 
at which the simulation becomes unstable. Once again 

demonstrating that, rather than being a Courant instability, the 
volatility of the algorithm is due to an inherent flaw in the 
formulation of the solution. As the approximations of the 
derivatives, in this case, are made in the same manner as for 
the simpler formulation for conductivity, it is reasonable to 
assume that the instability has the same root cause (see II.B).  
This confirms that the ATD-Debye algorithm is inappropriate 
for large dielectric contrasts and more specifically the 
approximation of the time derivatives in the ATD derivation is 
not valid. 

 Fig 4 Also shows the responses for a single-pole Debye 
water model simulated using the ETD implementation of 
Debye dispersion. In this case the plot shows the incident 
pulse as it propagates toward to the interface and the inverted 
reflected pulse and thereafter tends to zero.  
Fig. 5 shows the frequency domain reflection coefficient of 
the vacuum/water interface as calculated via theory and the 
Fourier transform of the ETD-Debye waveform in Fig. 4. This 
shows an excellent level of agreement between the simulated 
and theoretical values across the entire bandwidth, confirming 
the ETD–Debye update is a practical implementation of 
Debye type dispersion. 

C. Case 3: Simulation of static conductivity using E-field 
update 2 with Debye Dispersion 

Fig. 5 also shows the reflection coefficient from the 
combined property interface for water with various levels of 
additive static conductivity, calculated from simulation and by 
theory. As expected these responses show more complex 
behavior than the water seen in case 3 as the conductive 
component dominates at low frequencies, while at high 

frequencies the Debye pole dominates and the form is much 
the same as the case without additive conductivity. In each 

case the response is in good agreement with the theoretical 
behavior. The main disagreement is that the simulated results 
exaggerate the effect of conductivity, deviating by a maximum 
0.05dB across the 0-40 GHz frequency range for the +20S/m 
simulation. This difference is likely due to the same modelling 
errors seen for the RSL conductivity update in case 1.  

The above experiment was repeated with methanol instead 
of water. The methanol was modelled using a single Debye 

 

 
Fig. 5 Comparison of Frequency domain reflection coefficient of
vacuum/water interface as found via the ETD stabilized Debye pole with
varying amounts of additive static conductivity. Theoretical response
denoted by dashed line, FDTD simulation by solid line. 

 

 
Fig. 4 Simulated time domain wave forms illustrating the reflection from a
vacuum/water interface modelled using the ATD and ETD implementation
of Debye dispersion.  
 

 

 
Fig. 6 Comparison of Frequency domain reflection coefficient of
vacuum/methanol interface as found via the ETD stabilized Debye pole, with
varying amounts of additive static conductivity. Theoretical response
denoted by dashed line, FDTD simulation by solid line. 
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pole. Fig. 6 shows the reflection coefficient calculated by 
simulation and theory. As for the previous case the results 
from simulation agree closely with the theoretical values. The 
methanol only results confirm the efficacy of the ETD–Debye 
update implementation of Debye type dispersion. The additive 
conductivity results generally show better agreement than 
those for water, though the maximum deviation occurring at 
lower frequencies with deviation of 0.2dB for the +10S/m case 
at 1GHz.  

To further test the stability of the combination of the ETD–
Debye update and E-field update 2 in different scenarios two 
further tests were carried out. In the first the planar interface 
was replace by a 0.5mm radius sphere. This was modelled 
using the single pole Debye model of water with various 

levels of additive static conductivity. The resulting time-
domain waveforms can be seen in Fig. 7. For all cases the 
resulting waveforms were very similar and as a result cannot 
be discerned from one another. Both the incident pulses and 
smaller return pulses are visible and shaped as expected, while 
the simulation remained stable after interaction with the 
sphere tending to zero in the long term.  

In a second test of stability the same arrangement was used 
as in Fig. 1, with the material in object c being modelled with 
a single pole Debye model of water, with various levels of 
additive static conductivity. In this case the z+ Mur boundary 
and the x+ and x- boundaries, were replace with PEC 
boundary conditions. Leaving only the z- boundary as a Mur 
absorbing condition. Removing the absorbing boundary 
conditions removes their damping effect on the electric field in 
the simulation, testing the stability of the algorithm in the most 
extreme conditions. This simulation was run for a total of 
16000 iterations or 2200ps twice that of the previous 
simulations.  

The results of this experiment can be seen in Fig. 8. As for 
the case of the sphere, all plots are very similar. The resonance 
within the simulation volume, caused by removing the 
absorbing boundary conditions, can clearly be seen, but the 
field remains dynamically stable for the whole simulation 
time, tending towards zero after some initial fluctuation 
caused by the interaction with the material interface.    

These results demonstrate the accuracy of the ETD–Debye 
update and E-field update 2 combination across a wide range 
of frequencies and material parameters and the stability of the 
algorithm in different simulation scenarios. 

Both E-field update 2 and the RSL conductivity update/ E-
field update 1 implementations of conductivity have been 
shown to be practicable implementations of static 
conductivity. In terms of computational efficiency the E-field 
update 2 requires 2 extra coefficients and 1 field component to 
be stored and requires 4 extra floating point operations to 
execute compared to the non-dispersive algorithm. The RSL 
conductivity update/E-field update 1 implementation requires 
2 extra coefficients and 2 field components to be stored and 
requires 3 extra floating point operations to execute, though its 
complexity is increased slightly by the “restart” procedure. 
Therefore where memory is important the E-field update 2 is 
preferable while the RSL conductivity update/E-field update 1 
implementation is slightly quicker to execute and is preferable 
in situations where execution time is critical. 

 

V. CONCLUSION 

A number of new algorithms have been presented that 
enable stable simulation of dispersive media with large 
dielectric material values with an ADE-formulation of the 
FDTD equation. Two methods have been presented to model 
static conductivity, one as a separate dispersion term and the 

 

 
Fig. 7 .Simulated electric field showing an incident pulse (first) and the
subsequent return (second) pulse from a sphere of water with varying
degrees of additive static conductivity.  

 

 
Fig. 8 .Simulated electric field at field probe (b. in Fig. 1) for case when all
but the z- boundary are set as PEC.  
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other as an extension of the standard ETD-FDTD formulation. 
A further method has been presented that allows the stable 
simulation of Debye type dispersion using ETD. The accuracy 
of these algorithms has been demonstrated by comparison of 
theoretical reflection coefficient of a plane wave interacting 
with a material boundary with that obtain via simulation. 
While the generalized ATD form given in [6] is abandoned it 
is felt that the improvement in efficiency offered by this ADE 
formulation in conjunction with the ability to model a wide 
range of materials make these new algorithms highly 
attractive. Future work includes the derivation of stable 
formulations for other types of dispersion e.g. Lorentz and/or 
Drude dispersion types.  

APPENDIX A: DERIVATION oF STABLE TIME DOMAIN ADE 

ALGORITHM FOR STATIC CONDUCTIVITY USING ETD  

Define the integrating factor  and multiply 
(10) throughout: 

 

∙ ∙ …  

			 ∙  (20) 

 
Which simplifies due to the product rule: 
 

∙

…  

			 ∙  (21) 

 
To obtain the final solution this equation will be solved over 

a single iteration of the FDTD algorithm. It is assumed that 
over this period  and  change slowly and can 
be approximated with constants  and . This 
assumption is valid since the same approximation is made 
concerning the E field in the original FDTD algorithm and 
both ×H and  change at the same rate. This allows both 
sides of (21) to be integrated with respect to t as:  
 

∙

  (22) 

 
Solving and rearranging the result to make  the subject: 
 

t /2 /2 ∙  (23) 

 
c may be found by finding applying the initial condition to 
(23) and rearranging the result: 
 

0 ∙  (24) 

 

0  (25) 

 
Substituting (25) into (23) and rearranging gives the final 

solution: 
 

t 0 ∙ 1 …   

  (26) 

 
This equation is discretized by setting t=0 at iteration n and 

t=Δ at iteration n+1. Due to the nature of the FDTD grid The 
values of  and  are sampled at n+1/2.This results in 
the update equation for D (11): 
 

∆

1
∆

…   

   

APPENDIX B : DERIVATION oF STABLE DEBYE TIME UPDATE 

EQUATION USING ETD 

Define the integrating factor  and multiply 17 
throughout: 

 

∙ ∙ ∙  (27) 

 
The LHS of (27) simplifies due to the product rule: 

 

∙

∙  (28) 

 
As in appendix A this equation will be solved over a single 

iteration of the FDTD algorithm and the assumption is made 
that  changes slowly over and can be approximated with 
the constant value	 . This assumption is valid since the same 
approximation is made concerning the E field in the original 
FDTD algorithm. This allows both sides of (28) to be 
integrated with respect to t as:  

 

∙

  (29) 

 
Rearranging to make  the subject: 
 

∙  (30) 
 

c may be found by finding applying the initial condition to 
(31) and rearranging the result: 
 

0 0 ∙  (31) 
 

0 0  (32) 
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Substituting (32) into (30) and rearranging gives the final 
solution: 
 

0 ∙ 1 0  (33) 

 
This equation is discretized by setting t=0 at iteration n and 

t=Δ at iteration n+1. The value of E is sampled at iteration n. 
This results in the Debye update equation for  (18): 

 

∙
∆

1
∆
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