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Abstract

In this paper, we propose a practical and scalable solution to mitigating interference on the uplink through static
clustering and adaptive fractional frequency reuse (CFFR). The focus is on a three-cell clustered network due to its low
complexity. Moreover, we have previously shown that a performance comparable to that of global coordination is
achievable using a cluster size of three. In this paper, for a clustered planar Wyner network, we derive analytical capacity
equations for zero forcing (ZF) and linear minimummean squared error (LMMSE)-based receivers. The theoretical
results show that inter-cluster interference is the major performance bottleneck and that the smallest interference
from the neighbouring clusters is sufficient to significantly lower the system performance. We then switch our study to
a more realistic network setting and augment our CFFR technique by adopting an entirely distributed architecture and
by implementing a location classification algorithm based on logistic regression. We then show through simulations
that CFFR performs significantly better than the widely studied dynamic clustering (DC) technique. Since the
inter-cluster interference intensity of CFFR is much lower than DC, the per-cell sum rate performance is 1.5× better,
especially at high loads. We also show that the CFFR algorithm is a lot less complex than DC in terms of running time.

Keywords: Network MIMO, Clustered network MIMO, Multi-cell processing, MCP, Joint processing, JP, Base station
cooperation, BSC, Fractional frequency reuse, FFR, LTE-A, ZF, LMMSE, Clustering, Cooperation

1 Introduction
In modern cellular networks (4G: LTE-A and WiMAX),
cell sizes are reducing and reuse factors are approach-
ing 1. A major performance bottleneck in such systems
is the interference between cell sites [1]. The problem of
interference can be overcome by allowing cells in the net-
work to cooperate. In [2], various multi-cell cooperation
techniques are highlighted, grouping them into four broad
categories. Two of them that are relevant to this paper are
interference coordination and MIMO cooperation.
In interference coordination, the base stations (BSs)

share the channel state information (CSI) of the home
cell as well as the neighbouring interfering cells. The data
transmitted to the mobile stations (MSs) is however not
shared. A promising interference coordination strategy is
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Full list of author information is available at the end of the article

fractional frequency reuse (FFR). FFR finds its roots in
[3], and it has grown in popularity in 4G systems based
on OFDMA [4–8]. In FFR, a reuse factor of 1 is used for
MSs in the cell-centre and a greater reuse factor is used
for MSs near the cell-edge. This is because cell-edge users
are more prone to inter-cell interference than cell-centre
users.
In MIMO cooperation, on the other hand, BSs share

not just the CSI but also the data that is transmitted to
the users in all the cooperating cells. This is made possi-
ble by connecting all the BSs with high-capacity backhaul
links. Since both the CSI and data are shared between
cell sites, interference can be mitigated by either pre-
coding the signals on the downlink so that they can be
successfully decoded at the receivers or by jointly decod-
ing the received signals across cell sites on the uplink. In
this strategy, interference is not treated as noise and it
is instead exploited as useful information. In the litera-
ture, MIMO cooperation is sometimes also referred to as
network MIMO [9], base station cooperation (BSC) ([10],

© 2016 Thampi et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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chapter 1), joint processing (JP) ([10], chapter 15) under
the coordinated multi-point transmission and reception
(CoMP) umbrella [11] or multi-cell processing (MCP)
[2, 12, 13]. Henceforth, the term used in this paper will
be MCP.
The ideal solution to combat interference is to allow all

the BSs to coordinate and to perform MCP on a global
scale. This is however highly complex as a large amount of
data and CSI exchange is required. In this paper, we focus
on finding a scalable solution to overcoming interference
on the uplink.

1.1 Related work
A practical and scalable solution to global MCP is to
group a limited number of BSs into clusters and per-
form MCP locally in each cluster. In [14] and [15], a basic
static clustering approach with linear beamforming is pro-
posed and the spectral efficiency is shown to improve
linearly with the number of cooperating BSs. Inter-cluster
interference is however not explicitly mitigated. A solu-
tion using helper clusters is proposed in [16]. In such
a system, interference within the cluster is mitigated by
using the block diagonalisation [17] linear precoding tech-
nique. The neighbouring clusters are then allowed to act
as helpers to cancel some of the interference between
clusters. Not all neighbouring clusters will help out, and
hence, inter-cluster interference is not entirely cancelled.
It is shown in [16] that with a sufficiently large cluster size
(≥ 7 BSs), the sum rate performance approaches that of
global coordination. The approach in [16] is also shown to
perform better than static clustering.
Another approach that is widely studied in the litera-

ture is dynamic clustering (DC), where clusters of BSs are
formed in a dynamic manner depending on the nature of
the channel conditions. Due to the distributed nature of
MCP, it is shown to exploit macrodiversity and provide
performance gains by taking into account changing chan-
nel conditions [18, 19]. The intuitive reason for the per-
formance gains is that since BSs within a cluster change
dynamically, no regions within the cell are always prone
to interference. Efficient, iterative algorithms are pro-
posed in [18, 20–25], and significant performance gains
are observed for a small cluster size (≤ 4 BSs). DC requires
a hybrid architecture where the clustering algorithm runs
on a central server, and then MCP is performed in each
cluster in a distributed manner. We will discuss each of
these DC techniques in greater detail in Section 4.1 and
pick the best one to compare with our proposed approach.
In [26], we proposed a static clustering and adaptive FFR

approach to combat interference. We call such a system
clustered FFR or CFFR. In CFFR, like in [14–16], clusters
are statically formed and inter-cluster interference is mit-
igated by allocating different sub-bands for cluster-centre
and cluster-edge users. We apply FFR on a cluster scale

and use a reuse factor of 1 for cluster-centre users and a
greater reuse factor for cluster-edge users. In addition, the
bandwidth partitions are determined in an adaptive man-
ner based on the load in each cluster. For instance, if all
the users are in the cluster-centre, then they are allowed
to use the entire bandwidth so as to maximise system per-
formance. If, on the other hand, there are more users in
the cluster-edge, then the focus of the algorithm will be
to cancel inter-cluster interference by allocating different
sub-bands for edge users in each cluster. Thus, in such
a system, we need to be able to classify users as either
cluster-centre or cluster-edge. We show that with just a
cluster size of 3, CFFR performs significantly better than
[16] and in turn [14] and [15]. It is also shown to perform
better than applying FFR in each cell [27]. In addition, the
sum rate performance is shown to be close to that of global
MCP.
There are however some gaps in our study in [26].

Firstly, we limit our study to the downlink using the block
diagonalisation precoding technique and assume ideal
location classification where users are accurately classi-
fied as either cluster-centre or cluster-edge. Secondly, we
have not compared the performance of CFFR with the
widely studied DC technique. Thirdly, we assume a hybrid
architecture in [26] where the bandwidth partitions are
determined by a central server after which, precoding is
done independently in each cluster. The performance of
[26] using an entirely distributed architecture is unknown.
These gaps are addressed in this paper.

1.2 Contributions
In this paper, we focus on the uplink of a three-cell clus-
tered cooperative network. We limit our study to a cluster
size of three because it significantly lowers the overheads
of data and CSI exchange and decoding. Moreover, we
have shown in [26] that we can achieve a performance
comparable to that of global MCP. We consider two linear
decoding techniques namely, zero forcing (ZF) and lin-
ear minimum mean squared error (LMMSE) to overcome
intra-cluster interference.
We first study theoretically the impact of inter-cluster

interference on the per-cell sum rate. To make the
problem mathematically tractable, we modify the pla-
nar Wyner network [28] to model a clustered system.
We derive capacity equations for clustered MCP using
ZF and LMMSE decoders in terms of intra-cluster and
inter-cluster interference intensities. To the best of our
knowledge, this has not been studied in the literature.
We show that inter-cluster interference is the major per-
formance bottleneck and that a very small interference
intensity is sufficient to significantly lower the overall
system performance.
We then consider a more realistic CFFR system that

adopts an entirely distributed architecture, i.e. bandwidth
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partitioning andMCP are performed in each cluster inde-
pendently. We also implement a simple location classifi-
cation algorithm based on logistic regression on a cluster
scale. We call such a system CFFR-LR and compare its
performance with that of the ideal system that we pro-
posed in [26], which we will call CFFR-ideal. In addition,
we will also compare the performance of CFFR-LR and
CFFR-ideal with the widely studied DC technique. The
performance comparison is done by simulating a more
realistic network environment. We show that CFFR-LR
and CFFR-ideal lower the inter-cluster interference inten-
sity significantly when compared to DC. This in turn
translates into much higher per-cell sum rates, and we use
the theoretical study to better understand the differences.
We also show that the performance of CFFR-LR is close
to that of CFFR-ideal. Finally, we recommend using the
simpler ZF decoding technique for CFFR since the SINR
performance is significantly better than DC.
The remainder of the paper is structured as follows.

In Section 2, we describe the general system model and
restrict the scope of our study to a three-cell clustered
network. Section 3 then introduces the modified pla-
nar Wyner model and we derive analytical equations for
the capacities using ZF and LMMSE decoders. Once we
have a theoretical handle of the impact of inter-cluster
interference on the performance, we study the two inter-
ference mitigation techniques namely, DC and CFFR, in
great detail in Section 4. Section 5 then compares the per-
formance of the two strategies, in terms of inter-cluster
interference intensity, per-cell sum rate, and execution
time, in a more realistic network setting. Section 6 then
concludes the paper.

2 Systemmodel
The system consists of C clusters with B BSs in each
cluster. Each cell in the network is serviced by one BS.
Therefore, the total number of BSs or cells in the system
would be N = BC. In each cluster, K users are served
during each transmission time interval (TTI). Since we
are focusing on the uplink (UL), each MS has NT trans-
mitter antennas and each BS has NR receive antennas.
Figure 1 shows a network consisting of N = 21 cells
statically divided into clusters of B = 3 cells. There are
C = 7 clusters, and they are numbered from 0 to 6
where the home cell is represented by numeral 0 and
the surrounding interfering clusters as numerals 1–6. The
cell radius is denoted as R. The boundary between the
cluster-interior and cluster-edge, which we refer to as the
coordination distance, is denoted asDc. It was determined
in [16] that the optimum Dc = 0.35R for the setup con-
sidered. A similar setup is also considered in this paper,
which is discussed in Section 5.1. Let lk be the length
of the data symbol transmitted by user k. In this paper,
we assume that the length of the transmitted vector by

Fig. 1 Static clustering in a multi-cell network

each user is equal to the number of transmit antennas, i.e.
lk = NT.
Let x(c)

k be the NT × 1 transmitted vector by user k
in cluster c and H(c)

k be the BNR × NT complex channel
matrix between user k and all the pooled BSs in cluster c.
Then, the received BNR × 1 vector at cluster c from user k
is given by,

y(c)
k = H(c)

k x(c)
k︸ ︷︷ ︸

desired signal

+
K∑
i=1
i �=k

H(c)
i x(c)

i

︸ ︷︷ ︸
intra-cluster interference

+
C−1∑
ĉ=0
ĉ �=c

K∑
j=1

H(ĉ)
j x(ĉ)

j

︸ ︷︷ ︸
inter-cluster interference

+n(c)

(1)

where n(c) ∼ CN (0, σ 2
n IBNR) is the BNR×1 complex addi-

tive white Gaussian noise (AWGN) vector at the BSs in
cluster c.
By combining the transmitted vectors of all users in the

network, (1) can be simplified as follows,

y(c) = H(c)x(c) + H(ĉ)x(ĉ) + n(c) (2)

where y(c) is the BNR×1 received vector at the pooled BSs
from allK users in cluster c, x(c) is theKNT×1 transmitted
vector of all K users in cluster c andH(c) is the BNR×KNT
channel matrix between the users and the BSs in cluster c.
In addition, x(ĉ) is the (C − 1)KNT × 1 transmitted vector
of all users in the neighbouring C − 1 clusters and H(ĉ) is
the BNR × (C − 1)KNT channel between the users in the
neighbouring C − 1 clusters and the BSs in cluster c.
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Since we assume that lk = NT, the maximum number
of users that can be scheduled in each cluster during each
TTI is,

Kmax ≤
⌊
BNR
NT

⌋
(3)

3 Theoretical performance analysis
In this section, we take a theoretical approach to under-
standing the impact of inter-cluster interference on the
cell-rate performance. where the ZF and LMMSE intra-
cluster interference coordination strategies are adopted
on the uplink.
Assuming the BSs have perfect knowledge of the CSI

within the cluster, an estimate of the transmitted vector of
all K users in cluster c can be obtained for ZF-based MCP
as follows,

x̂(c)
ZF =

(
H(c)HH(c)

)−1
H(c)y(c) (4)

where y(c) is given by (2).
For LMMSE-basedMCP, the estimate of the transmitted

vector is given by,

x̂(c)
LMMSE = H(c)H

(
H(c)H(c)H + σ 2

0 IBNR

)−1
y(c) (5)

where σ 2
0 is the inverse of the received SNR at the BSs

in cluster c and IBNR is the identity matrix of dimension
BNR. In the following sub-sections, we derive closed-form
capacity equations for ZF and LMMSE for a modified
planar Wyner network.

3.1 Modified planar Wyner model
We modify the widely studied planar Wyner network
[2, 28–32] to a three-cell clustered cooperative network.
In [28], a two-dimensional hexagonal array of cells is
considered, as shown in Fig. 1. This hexagonal array is rep-
resented as a checkerboard lattice, and to make it more
tractable, it is converted to a rectangular array. In the pla-
nar Wyner model, the signal transmitted by a user in the
home cell does not experience any attenuation. The sig-
nals from neighbouring cells interfere with the home user
and the signals are attenuated by a factor of α, where
α ∈[ 0, 1]. We modify this rectangular array lattice rep-
resentation to factor in inter-cluster interference as well.
Figure 2 shows the lattice representation for a network
with a cluster size of three, and it is obtained by rotat-
ing the hexagonal lattice by 45° and scaling by a factor of
1√
2 [28]. Interference from only the first-tier neighbour-

ing clusters is considered. This intra-cluster interference
intensity is denoted as α, as in [28]. We introduce a new
parameter for inter-cluster interference and denote it as
β , where β ∈[ 0, 1]. Since the interference intensities are

scalar and deterministic parameters, the scaling of the
lattice does not affect the interference pattern.
Without a loss of generality, the following simplifying

assumptions aremade in this section. An intra-cell TDMA
transmission strategy is considered where only a single
user per cell is transmitting at a given time instance.
Thus, the number of active users in a three-cell clustered
network is K = 3. The additive white Gaussian noise
(AWGN) channel model is assumed with 0mean and vari-
ance σ 2

n . All the BSs have perfect knowledge of the CSI as
well as each other’s codebooks. The BSs within a cluster
are connected using an ideal backhaul with infinite capac-
ity. The BSs are perfectly synchronised to ensure that all
signals are received at the same time. BPSK modulation
is assumed and the power with which the users transmit
the antipodal signals are the same, i.e. no power control
is performed across cell sites. Assuming that the received
amplitude of each user’s signal is A, then the received
power of each user is A2. Since a cluster size of B = 3 is
assumed, there are nine interfering cells from the first-tier
neighbouring clusters as can be seen in Fig. 2. Finally, the
MSs and BSs are equipped with single, omnidirectional
antennas, i.e. NT = NR = 1.
For the three-cell clustered network, the channel matrix

between the users and the BSs in cluster c is given by,

H(c) =
⎡
⎣ 1 α α

α 1 α

α α 1

⎤
⎦ (6)

The channel matrix between the users in the neigh-
bouring clusters and the BSs in cluster c is given by,

H(ĉ) =
⎡
⎣ β β β β 0 0 0 0 0
0 0 β β β β 0 0 0
β 0 0 0 0 0 β β β

⎤
⎦ (7)

Now, (2) can be rewritten as,

y(c) = H(c)x(c) + y(ĉ) + n(c)

= H(c)x(c) + ñ(c) (8)

where y(ĉ) = H(ĉ)x(ĉ) and ñ(c) combines the interfer-
ence from the neighbouring clusters and the noise at the
receivers of the home cluster. The covariance matrix of
ñ(c) is then given by,

E

[
ñ(c)ñ(c)T

]
= E

[(
y(ĉ) + n(c)

) (
y(ĉ) + n(c)

)T]

= E

[
y(ĉ)y(ĉ)T

]
+ E

[
y(ĉ)n(c)T

]
+ E

[
n(c)y(ĉ)T

]
+ E

[
n(c)n(c)T

]
(9)

= (
4β2A2 + σ 2

n
)
I3 (10)
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Fig. 2 Three-cell clustered planar Wyner network

In (9), the first term equates to the received power of the
users in the neighbouring clusters at each cell in cluster c,
which is 4β2A2I3. The second and third terms equate to
0 since the signals transmitted by the users and the noise
are uncorrelated. Since the AWGN channel model with 0
mean and variance σ 2

n is considered, the final term in (9)
equates to σ 2

n I3. Combining all these terms gives us (10).

3.2 Capacity of ZF
The estimate of the transmitted vector using ZF receivers
is given by,

x̂(c) =
(
H(c)TH(c)

)−1
H(c)y(c) (11)

= H(c)−2
H(c)y(c) (12)

= H(c)−1
y(c) (13)

= x(c) + H(c)−1
ñ(c) (14)

Since the channel matrix is real in the modified Wyner
network, we take the transpose of H(c) in (11) rather than
the Hermitian given by (4). Step (12) is obtained since
H(c), given by (6) is symmetric. Finally, (14) is obtained by
substituting (8) in (13).

Theorem 1. The per-cell capacity of a three-cell clus-
tered network using ZF is given by,

CZF = 1
2
log2

[
1 + A2(1 − α)2(1 + 2α)2(

4β2A2 + σ 2
n
) (
2α2 + (1 + α)2

)
]

(15)

Proof. From (14), the received power of all users in clus-
ter c is given by A2I3, and the noise power is given by the

covariance matrix of the background noise
(
H(c))−1 ñ(c),

given by

E

[(
H(c)−1

ñ(c)
) (

H(c)−1
ñ(c)

)T]
= E

[
H(c)−1

ñ(c)ñ(c)TH(c)−T
] (16)

= H(c)−1
E

[
ñ(c)ñ(c)T

]
H(c)−T

(17)

= H(c)−1 (
4β2A2 + σ 2

n
)
I3H(c)−1

(18)

= (
4β2A2 + σ 2

n
)
H(c)−2

(19)

SinceH(c) is deterministic in theWyner network, we get
(17) from (16). Step (18) is then obtained by substituting
(10) in (17). The achievable capacity at cell i is then,

C(i)
ZF = 1

2
log2

⎡
⎢⎣1 + A2(

4β2A2 + σ 2
n
)∑3

j=1

((
H(c))−1

ij

)2
⎤
⎥⎦

(20)

Using the Gauss-Jordan method, we can obtain

H(c)−1 = 1
(1 − α)(1 + 2α)

⎡
⎣ 1 + α −α −α

−α 1 + α −α

−α −α 1 + α

⎤
⎦
(21)

Thus,
3∑

j=1

((
H(c)

)−1

ij

)2
= (1 + α)2 + 2α2

(1 − α)2(1 + 2α)2
; ∀i (22)

The theorem is proved by substituting (22) in (20).

It can be observed from (15) that there is a singularity at
α = 1 which can be overcome by considering fading and
multi-user scheduling as shown in [31].
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3.3 Capacity of LMMSE
For the modified Wyner network, the estimate of the
transmitted vector using LMMSE receivers is given by,

x̂(c)
LMMSE = H(c)T

(
H(c)H(c)T + σ 2

0 I3
)−1

y(c) (23)

In (23), σ 2
0 is the inverse of the received SNR at cluster

c, given by

σ 2
0 = 4β2A2 + σ 2

n
A2 (24)

where 4β2A2 is the interference power from the users in
the neighbouring clusters.
In [30], the capacity of an MCP system using LMMSE

receivers is derived for a Wyner model where the cells are
arranged in a one-dimensional linear array. In this linear
model, a finite number of cells N cooperate and only two
neighbouring cells interfere with the home cell. TheN×N
channel matrix for such a system is given by,

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 α 0 0 0 · · · 0
α 1 α 0 0 · · · 0
0 α 1 α 0 · · · 0
...
. . . . . . . . . . . . . . .

...
0 · · · · · · 0 α 1 α

0 · · · · · · · · · 0 α 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(25)

The achievable capacity of cell i is then shown in [30] to
be,

C(i)
LMMSE = −1

2
log2

[
1 − 1

N + 1

N∑
k=1

μ2
k

μ2
k + σ 2

0

×
(
1 − cos

(
2ikπ
N + 1

))] (26)

where μks are the eigenvalues of H and σ 2
0 = σ 2

n
A2 . This

equation is however not applicable in a clustered MCP
system since the channel matrix is different and also since
the effects of inter-cluster interference are not considered.
We have to therefore re-derive the capacity for a three-cell
clustered network.
Following the derivation as in [30] and [33], the LMMSE

estimator for user i in cluster c can be shown to be,

x̂(c)
i = h(c)T

i

(
H(c)H(c)T + σ 2

0 I3
)−1

y(c) (27)

= h(c)T
i

(
H(c)2 + σ 2

0 I3
)−1

y(c) (28)

Since H(c) is symmetric, we get (28) from (27). Let the
error of estimation for user i be Wi = x(c)

i − x̂(c)
i . The

mean-squared error (MSE) of estimation is then given by,

W̄ 2
i = A2

(
1 − h(c)T

i

(
H(c)2 + σ 2

0 I3
)−1

h(c)
i

)
(29)

The eigendecomposition of the square matrix, H(c)2 +
σ 2
0 I3, can be expressed as

H(c)2 + σ 2
0 I3 = Q(c)�(c)

(
Q(c)

)T
(30)

whereQ(c) =
[
q(c)
1 q(c)

2 q(c)
3

]
is the 3× 3 orthogonal matrix

consisting of the orthonormal eigenvectors ofH(c)2 +σ 2
0 I3

and �(c) = diag
{
λ

(c)
1 , λ(c)

2 , λ(c)
3

}
is the diagonal matrix

containing the eigenvalues ofH(c)2 + σ 2
0 I3.

The eigenvalues λ
(c)
k are related to the eigenvalues of

H(c), denoted as μ
(c)
k , as follows

λ
(c)
k = μ

(c)2
k + σ 2

0 ; k = 1, 2, 3 (31)

On the other hand, the eigenvectors of H(c)2 + σ 2
0 I3,

denoted as q(c)
k , are also the eigenvectors ofH(c).

The eigenvalues and eigenvectors of H(c), given by (6),
exhibit the following properties:

1. The eigenvalues, μ(c)
k are:

μ
(c)
k = 1 + 2α cos

(
2(k − 1)π

3

)
; k = 1, 2, 3 (32)

i.e. μ(c)
1 = (1 + 2α) and μ

(c)
2 = μ

(c)
3 = (1 − α).

2. The eigenvectors, q(c)
k are independent and

orthonormal. i.e.

3∑
j=1

q(c)
kj = 0 ; k = 1, 2, 3 (33)

3∑
k=1

q(c)2
kj = 1 ; j = 1, 2, 3 (34)

3. It can be shown that

q(c)
1j =

(
1
3

) 1
2
; j = 1, 2, 3. (35)

Theorem 2. The per-cell capacity of a three-cell clus-
tered network using LMMSE is given by,

CLMMSE = −1
2
log2

[
1 − 1

3

(
(1 + 2α)2

(1 + 2α)2 + σ 2
0

+ 2 (1 − α)2

(1 − α)2 + σ 2
0

)] (36)

where σ 2
0 = 4β2A2+σ 2

n
A2 .
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Proof. Using the eigendecomposition in (30), we can
obtain the following,

h(c)T
i

(
H(c)2 + σ 2

0 I3
)−1

h(c)
i (37)

=
3∑

k=1

1
λ

(c)
k

(
αq(c)

k1 + q(c)
k2 + αq(c)

k3

)2

= (1 + 2α)2

3λ(c)
1

+ 1
λ

(c)
2

[(
αq(c)

21 + q(c)
22 + αq(c)

23

)2

+
(
αq(c)

31 + q(c)
32 + αq(c)

33

)2]
(38)

= (1 + 2α)2

3λ(c)
1

+ (1 − α)2

λ
(c)
2

[
q(c)2
22 + q(c)2

32

]
(39)

= (1 + 2α)2

3λ(c)
1

+ (1 − α)2

λ
(c)
2

[
1 − q(c)2

12

]
(40)

= (1 + 2α)2

3λ(c)
1

+ 2(1 − α)2

3λ(c)
2

(41)

= 1
3

[
(1 + 2α)2

(1 + 2α)2 + σ 2
0

+ 2 (1 − α)2

(1 − α)2 + σ 2
0

]
(42)

Step (38) can be obtained by substituting (32) and (35)
in (37). Steps (39), (40), (41) and (42) can be obtained from
(33), (34), (35) and (32), respectively. By substituting (42)
in (29), we get

W̄ 2
i = A2

[
1 − 1

3

(
(1 + 2α)2

(1 + 2α)2 + σ 2
0

+ 2 (1 − α)2

(1 − α)2 + σ 2
0

)]

(43)

The per-cell capacity can then be obtained by comput-
ing the mutual information of x(c)

i and x̂(c)
i , denoted as

I
(
x(c)
i ; x̂(c)

i

)
. The MSE of the estimation is given by (43).

It is shown in [28] that I
(
x(c)
i ; x̂(c)

i

)
= H

(
x(c)
i

)
− H(Wi).

Since all the users are transmitting at the highest power,
A2, the per-cell capacity is given by,

C(i)
LMMSE = 1

2
log2

A2

W̄ 2
i

(44)

= −1
2
log2

[
1 − 1

3

(
(1 + 2α)2

(1 + 2α)2 + σ 2
0

+ 2 (1 − α)2

(1 − α)2 + σ 2
0

)]
; ∀i (45)

Equation (45) can be obtained by substituting (43) in
(44), thus proving the theorem.

3.4 Performance analysis
Weplot the capacities of ZF and LMMSE for various inter-
ference intensities in Fig. 3 using the equations derived
earlier. Two intra-cluster and four different inter-cluster
interference intensities are considered, i.e. α ∈ {0.5, 0.8}
and β ∈ {0, 0.005, 0.1, 0.2}. It must also be noted that
these results have been validated using Monte Carlo
simulations.
It can be observed that for all inter-cluster interfer-

ence intensities, the performances of ZF and LMMSE are
better for a lower intra-cluster interference intensity. For
instance, for β = 0 and a very high SNR of 60 dB, the
performance of ZF and LMMSE for α = 0.5 is 12.5 %
higher than that of α = 0.8. The same is true even for low
to medium SNRs. Also, the gap between ZF and LMMSE
for a given α is negligible for β = 0 and β = 0.005.
It can be observed that for a small increase in the inten-
sity of inter-cluster interference, the performance of ZF
and LMMSE deteriorate significantly only at very high
SNRs. For instance, when β increases from 0 to 0.005,
the performance of ZF and LMMSE deteriorate by 50 %
at SNR = 60 dB. When β increases further from 0.005 to
0.1, the performance degradation can be observed even
at medium SNRs. For instance, when the SNR is 20 dB
the performance degrades by about 72 %. It can also
be observed that at lower SNRs and higher inter-cluster
interference intensities, LMMSE decoders perform better
than ZF. We can conclude through this theoretical study
that even the slightest inter-cluster interference can seri-
ously deteriorate the performance of a three-cell clustered
network.

4 Inter-cluster interference coordination
strategies

In this section, we discuss two inter-cluster interference
coordination strategies: the widely studied dynamic clus-
tering strategy and our proposed strategy of static cluster-
ing with adaptive FFR.

4.1 Dynamic clustering
As discussed in Section 1.1, dynamic clustering (DC)
involves forming clusters of BSs in a dynamic manner
based on changing channel conditions. Given a system
where C clusters need to be formed with B BSs within a
cluster, there are N !

(B!)CC! different cluster realisations [25]
where N = BC is the total number of BSs in the network.
An exhaustive search through all these cluster realisa-
tions for an optimum solution is therefore highly complex.
Various efficient algorithms have been proposed in the
literature for DC. We will now discuss each of them and
will pick the best algorithm to be considered in this paper.
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a b

c d

Fig. 3 Capacity performance analysis of ZF and LMMSE. a β = 0, b β = 0.005, c β = 0.1 and d β = 0.2

In [18], each BS in the network collects the instanta-
neous CSI from all its users and performs scheduling in a
decentralised manner. The CSI from all the BSs are then
collected by a central server where a greedy clustering
algorithm is run. The algorithm picks a random cell and
chooses BSs that maximise the joint capacity to form a
cluster. This is done in an iterative manner until all the
clusters are formed. It must be noted that the cluster size
is fixed and remains constant throughout the algorithm.
The system in [18] assumes MSs equipped with a sin-
gle antenna. The algorithm is extended to multi-antenna
MSs in [20]. It has also been shown in [21] that CSI
from a limited number of BSs is sufficient to guarantee
performance.
In [22] and [23], the network is modelled as a graph

where the vertices represent the BSs and any two ver-
tices are connected by an edge if the interference between

the corresponding BSs is above a certain threshold. Each
edge is then assigned a utility value which could be either
the average increase in achievable rate or the increase in
interference if the two vertices form a cluster. Once the
utility values are assigned to all edges, the algorithm iter-
atively forms clusters so as to maximise the overall utility.
The basic idea is however similar to that of [18] in the
sense that the algorithm is iterative and maximises the
overall sum rate. In addition, the architecture considered
is centralised, the size of the cluster remains constant and
instantaneous CSI is used to determine the utility values.
The DC algorithm proposed in [18] is improved on

in [24] by allowing the cluster size to change dynami-
cally in each iteration. The algorithm runs on a central
server and cells that cause the highest amount of inter-
ference to each other form a cluster so as to benefit
from MCP. The maximum cluster size considered in [24]
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was four, and the algorithm was shown to perform only
slightly better than [18] at medium and high SNRs. If the
cluster size was larger, then much higher performance
gains would have been observed. This would however
come at the cost of complexity for clustering as well
as MCP.
Finally, [25] proposes a distributed architecture for DC

where clustering is performed by each BS in a decen-
tralised manner. Each BS maintains a candidate list of
clusters that it would like to join based on a preference
function. In [25], the preference function is the average
increase in system capacity if the BSs were to form a
cluster. As in [18], the size of the cluster remains con-
stant throughout the clustering process. Invitations are
then sent to the candidate BSs and each BS maintains
an invitation list. Two BSs form a cluster if the pair of
them maximise the preference function. A list of BSs that
have not yet formed a cluster is also maintained and is
expressed as ε in [25]. The iterative clustering algorithm
is shown to terminate after at most C iterations, where C
is the total number of clusters. The complexity of the
decentralised approach is also shown to scale linearly with
the network size N = BC. Although [25] claims to pro-
pose a decentralised framework, it is not entirely so as a
central unit is required to maintain the list ε. In addition,
the overall system performance in terms of sum rate is not
better than [18].
Thus, in this paper, the DC algorithm in [18] is used to

compare with our proposed algorithm. A hybrid architec-
ture as shown in Fig. 4 is used where clustering is done
by a central server, called the CPU. Each BS sends the
instantaneous CSI from all its users to the CPU. The iter-
ative greedy algorithm is run on the CPU and the decision
is then fed-back to each BS. The BSs that form a cluster
then work in a distributed manner to combat intra-cluster
interference. This process is repeated on a per-frame or
per-slot time scale.

4.2 Static clustering with adaptive FFR
The proposed static clustering with adaptive FFR scheme,
referred to as CFFR, is shown in Fig. 5. For simplic-
ity, only the home cluster and two neighbouring clus-
ters are considered but the figure can very easily be
extended to all 6 neighbouring clusters. Let W be the
total available bandwidth. In DC, all users scheduled
in the cluster are allowed to use the entire bandwidth.
In our CFFR strategy, the bandwidth is divided into
cluster-centre (Wc) and cluster-edge bands (We). No two
neighbouring clusters will share the band for cluster-edge
users.
The FFR scheme is adaptive where the bandwidth parti-

tions are made dependent on the load in each cluster. Let
M(i)

c and M(i) be the number of cluster-centre MSs and
the total number of MSs respectively in cluster i. Then,

the bandwidth allocation for the centre users in cluster i is
given by,

W (i)
c =

⌈(
M(i)

c
M(i)

)
W
⌉

(46)

Since the focus is on a cluster size of three, the band-
width allocated for the edge users in cluster i is given by,

W (i)
e =

⌊(
W − W (i)

c
3

)⌋
(47)

We first proposed this CFFR scheme in [26]. In [26],
a hybrid architecture is considered where the bandwidth
partitioning is done by a central server after which MCP
is done in a decentralised manner. This is to ensure that
all the clusters share the same FFR scheme. The clusters
share its computed bandwidth partitions with the central
server and the final partitions;We andWc are determined
such that the largest partition is chosen for the cluster-
edge users and the corresponding partition for those in
the cluster-centre. This is to ensure that the performance
for the cluster-edge users is improved. In this paper, we
adopt an entirely distributed architecture where the band-
width partitions and MCP are performed by each cluster
in a decentralised manner. This architecture is shown in
Fig. 6. Each cluster also performs intra-cluster interfer-
ence mitigation independently through ZF and LMMSE
decoding.
In addition, the location of the users must be classi-

fied as either cluster-centre or edge so as to determine
the bandwidth partitions and also for scheduling. In [26],
we assume an ideal location classifier with 100 % accu-
racy. We refer to such a system as CFFR-Ideal. In this
paper, however, we consider a machine-learning approach
of logistic regression for location classification.We extend
an algorithm that we proposed in [34] for a single cell to
a cluster scale. We call such a system CFFR-LR. In [34],
we have shown that using two features, namely, received
power and SINR from the MS, the classification accuracy
is much better than using a single feature such as SINR [6,
35–37]. We have also shown that the optimum hypothe-
sis is a logistic/sigmoid function, given by (48), based on
an affine model. In (48), z(k) is given by (49), where w(k)

1 is
the received power andw(k)

2 is the SINR reported by user k
and θ0, θ1 and θ2 are the optimum parameters determined
through the training process. More details on this can be
found in [34].

f
(
z(k)

)
= 1

1 + exp
(−z(k)

) (48)

z(k) = θ0 + θ1w(k)
1 + θ2w(k)

2 (49)
In this paper, we consider the user locations on a cluster

scale and this would in-turn impact the training phase in
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Fig. 4 DC hybrid architecture

the algorithm. The performance of LR on a cluster scale
as well as the performance of CFFR with sub-optimum
location classification are unknown, and these gaps are
addressed in this paper.

5 Realistic network performance analysis
In this section, we perform a simulation-based study of
the performance of DC, CFFR-LR and CFFR-Ideal in a
realistic network setup. In Section 3, we derived capac-
ity equations for ZF and LMMSE for a three-cell clus-
tered network in terms of intra-cluster and inter-cluster

interference intensities, α and β , respectively. The model
that we considered was however simple and determin-
istic, but it helped us understand that even a small β

can reduce the cell-rate performance significantly. We will
now switch our study to a more realistic network in order
to determine which is the best inter-cluster interference
coordination strategy in terms of lowering β .

5.1 Simulation setup
We consider a network of 21 cells divided up into clusters
of size 3. Each MS is equipped with NT = 2 antennas and

Fig. 5 Clustered multi-cell network with FFR [26]
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Fig. 6 CFFR distributed architecture

each BS is equipped withNR = 4 antennas. The cell radius
is 1 km, and the coordination distance Dc, which is the
boundary between the cluster-centre and cluster-edge, is
350 metres (i.e. 0.35R [16]). We consider shadowing and
fading and the whole setup is summarised in Table 1.
Since we assume that lk = NT in this paper, the maxi-

mum number of users that can be scheduled in a cluster
during each TTI for DC is 6, using (3). For CFFR, on the
other hand, since cluster-centre and cluster-edge users do
not interfere with each other, these two types of users can

Table 1 The setup

Cell parameters

Number of cells, N 21

Cluster size, B 3

Cell radius, R 1 km

Coordination distance, Dc 350 m

User distribution Uniform

Load distribution Symmetric

MIMO parameters

Number of transmit antennas, NT 2

Number of receive antennas, NR 4

Channel model

Carrier frequency 800 MHz

Reference distance 100 m

Path loss exponent 3.7

Shadowing model Log-normal

Shadowing variance 10 dB

Fading Narrowband, Rayleigh

Power Allocation

Transmitted power of each MS 23 dBm

Scheduling

Algorithm Proportional fair (PF)

Fairness time window 10 TTIs

be scheduled independently. Thus, for CFFR, the maxi-
mum number of users that can be scheduled in a cluster
per TTI is 12 (i.e. six cluster-centre and six cluster-edge
users). We employ the proportional fair (PF) scheduling
algorithm where the time window over which fairness is
imposed is set to 10 TTIs. Monte Carlo simulations are
run over 100 different network realisations, and for each
realisation, 1000 TTIs are considered.

5.2 The results
We will first study the classification accuracy of the logis-
tic regression (LR) algorithm. This step is crucial for CFFR
since the bandwidth partitions are determined accord-
ingly. The scheduling of the users also follows this step.
The classification accuracy for various loads in the cell is
summarised in Table 2.
The LR algorithm performs well, and we obtain a clas-

sification accuracy between 88 and 90 %. The percentage
of misclassified cluster-centre and cluster-edge MSs are
also quantified in Table 2. If cluster-centre MSs are mis-
classified as cluster-edge, then this will impact the overall
cell sum-rate since a lower bandwidth is allocated for
them. On the other hand, if cluster-edge MSs are misclas-
sified as cluster-edge, then this will result in raising the
inter-cluster interference intensity.
In Fig. 7, we plot the cumulative distribution function

(CDF) of the inter-cluster interference intensity, β . As
mentioned in the setup, the users are distributed uni-
formly and we consider 100 such network realisations. For

Table 2 Location classification accuracy of CFFR-LR

Load (MSs/cell) 5 10 15 20 25 30

Classification
accuracy (%)

88.72 90.3 87.98 90.62 90.62 88.94

Misclassified
cluster-centre
MSs (%)

8.6 3.76 9.18 6.5 3.21 5.44

Misclassified
cluster-edge
MSs (%)

2.68 5.94 2.84 2.88 6.17 5.62
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Fig. 7 CDF of the inter-cluster interference intensity

each realisation, we record β for 1000 TTIs where users
are scheduled using the PF algorithm.We can observe that
DC suffers from higher inter-cluster interference than our
proposed CFFR technique. For instance, the probability
that β is 0 (i.e. no interference), denoted as P(β = 0)
is 0 for DC whereas it is 0.17 for CFFR-LR and 0.37 for
CFFR-Ideal. It is therefore more likely that there is no
inter-cluster interference for CFFR. Note that CFFR-LR
suffers from more interference than its ideal counterpart
due to sub-optimal location classification and the dis-
tributed architecture. The gap however is not that large.
Similarly, it can be observed that P(β ≤ 0.005) is 0 for
DC, 0.53 for CFFR-LR and 0.72 for CFFR-Ideal. This CDF
study therefore shows that CFFR is more superior than
DC in mitigating inter-cluster interference. This is further
validated by the per-cell sum rate performance shown in
Fig. 8.
We can observe in Fig. 8 that the performance of DC

is limited by inter-cluster interference. We have seen in
the CDF of β that P(β > 0.005) is 1, and from our theo-
retical study, we saw that the slightest β is detrimental to
the overall cell-rate performance (see Fig. 3). CFFR, on the
other hand, does a better job of lowering β and therefore
shows much better sum rate performance. Since cluster-
centre and cluster-edge users are allocated independent
sub-bands, more users can be scheduled per TTI thereby
improving the overall sum rate. It can also be observed

that since the SINR is lower for DC; LMMSE performs
better than ZF. Since the SINR is much better for CFFR,
the simpler ZF technique can be used for decoding. In
addition, the gap between CFFR-ideal and CFFR-LR is not
significant. This is because the load distribution consid-
ered in this paper is symmetric. If the load distribution
was asymmetric, i.e. there are different number of users
in each cell, then the distributed architecture in CFFR-LR
would partition the bandwidth differently for each cluster.
For instance, if one cluster had all the users in the cluster-
centre then it would allocate the entire bandwidth for its
users. This would then increase the interference intensity
to a neighbouring cluster that has users in the cluster-
edge. A study of the impact of asymmetric load on the
performance will be done in the future.
Finally, we compare the running times of the DC and

CFFR-LR algorithms in Fig. 9. For DC, we are only inter-
ested in the running time of determining the clusters
and user scheduling. For CFFR-LR, on the other hand,
we are only interested in the running time of perform-
ing the location classification, scheduling and bandwidth
partitioning. For DC, the greedy algorithm requires com-
putation of the joint capacity of the cluster for each
iteration. If there are K users in the cluster and B base sta-
tions forming a cluster, the complexity of computing the
joint capacity can be approximated as O(KNTB2N2

R). For
CFFR, on the other hand, the complexity of determining
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Fig. 8 Per-cell sum rate performance comparison

the user location given only two features (received power
and SINR) can be approximated as O(K). The complexity
of user scheduling should be negligible compared to this
and, moreover, should be the same for both DC and CFFR.
We assume that the capacity of the backhaul is infinite

and ignore the latency of CSI exchange between the BSs
and the central unit. We can observe from the figure that
CFFR-LR runs significantly faster than DC. In addition,
we can see that the running time of DC is much more
dependent on the load in the cell. We see the running time
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flattening after a load of 6 users per cell. This is because for
DC and the setup considered, we cannot schedule more
than 6 users per cell per TTI.

6 Conclusions
In this paper, we have proposed a practical and scal-
able solution to overcoming interference through static
clustering and adaptive FFR. We focus on a three-cell
clustered network because of its low complexity and also
because we can achieve near-global-MCP performance
using this cluster size. We modify the planar Wyner net-
work and derive analytical capacity equations for a clus-
tered network on the uplink for ZF and LMMSE decoders.
We show that inter-cluster interference is the major bot-
tleneck, and even the slightest interference intensity can
have detrimental effects on the system performance. We
then compare our proposed approach with the widely
studied dynamic clustering technique on a more real-
istic network setting. For this study, we address some
of the gaps in one of our earlier papers by adopting
an entirely distributed architecture and by implement-
ing a location classification algorithm based on logistic
regression. We show that our proposed technique low-
ers the inter-cluster interference significantly when com-
pared to dynamic clustering. As a result, the per-cell
sum rate of clustered FFR is ∼ 1.5× faster especially
at high loads (10 users per cell). In addition, the pro-
posed approach is significantly less complicated to imple-
ment, requiring less computation as indicated by the run
time results. The fully distributed architecture also low-
ers the traffic overhead on the backhaul and simplifies the
implementation when compared to the hybrid and cen-
tralised architectures. In the future, we plan to extend
this study to asymmetric loads and to heterogeneous
networks.
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