
 Alheid, A., Doufexi, A., & Kaleshi, D. (2016). Packet Reordering Response
for MPTCP under Wireless Heterogeneous Environment. In 2016 23rd
International Conference on Telecommunications (ICT 2016): Proceedings
of a meeting held 16-18 May 2016, Thessaloniki, Greece. [7500468] Institute
of Electrical and Electronics Engineers (IEEE). DOI:
10.1109/ICT.2016.7500468

Peer reviewed version

Link to published version (if available):
10.1109/ICT.2016.7500468

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/7500468/. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

http://dx.doi.org/10.1109/ICT.2016.7500468
http://research-information.bristol.ac.uk/en/publications/packet-reordering-response-for-mptcp-under-wireless-heterogeneous-environment(a33cce72-7987-4fe4-af6f-901721b91b6f).html
http://research-information.bristol.ac.uk/en/publications/packet-reordering-response-for-mptcp-under-wireless-heterogeneous-environment(a33cce72-7987-4fe4-af6f-901721b91b6f).html

Packet Reordering Response for MPTCP under Wireless

Heterogeneous Environment

Amani Alheid, Angela Doufexi

Smart Internet Lab
University of Bristol,

Bristol, United Kingdom
{Amani.alheid, a.doufexi} @bristol.ac.uk

Dritan Kaleshi
5G Fellow at

Digital Catapult
London, United Kingdom

Dritan.kaleshi@cde.catapult.org.uk

Abstract—Multipath Transmission Control Protocol

(MPTCP) promises higher bandwidth and higher resilience

against network path failures as an evolving technology for the

future Internet. MPTCP allows multiple paths between two

devices to be pooled and appear to the application as a single

end-to-end transport connection. In this paper, we propose a

solution for the packet reordering problem, to improve path

utilization and aggregate throughput. The proposed method

maintains the congestion window size when three duplicate

acknowledgements occur to avoid unnecessary reductions in

transmission rate. We evaluate the performance of the proposed

solution using an NS-3 in different wireless scenarios and

compare it against the performance of other existing reordering

methods. The results show that the proposed method improves

the aggregate throughput and path utilization when the packet

drop rate is high.

Keywords— MPTCP; Packet Reorder (PR); PR-R; D-SACK;

TCP-DOOR; Wi-Fi; Duplicate Acknowledgement

I. INTRODUCTION

Multipath transmission protocols and data offloading
techniques can overcome the limitations of the current Internet
by better bandwidth aggregation and resource utilization [1-
5]. The Multipath transmission control protocol (MPTCP) is a
new standard supported by IETF for multipath transmission at
the transport layer for the future Internet [1]. The key
motivation behind the MPTCP is to provide reliable and
resilient connectivity in the current and future Internet. The
research in this context is focusing on faster downloads, lower
data transfer costs, and seamless switching between different
interfaces, particularly wireless ones, such as Wi-Fi and
cellular networks. Besides the improvements that MPTCP can
provide compared with a single-path transmission control
protocol (TCP), particularly in aggregate throughput
(gThroughput), the packet reordering problem limits its
performance. In conventional single-path TCP, the reordering
problem arises from packet-level multipath routing or link
layer retransmission [6]. However, in a multipath transport
context, the reordering comes from the heterogeneity of
multiple paths or sub-flows (SF).

Several researches proposed solutions for the reordering
problem in multipath transmission. These solutions vary in
their techniques from simple calculations or modifications to
the conventional MPTCP [7-9] to sophisticated scheduling
methods [10, 11]. Some studies have proposed solutions to
mitigate receiver’s buffer blocking particularly for the case of

constrained buffer size [12]. However, the reordered packets
that frequently trigger the fast retransmission and
unnecessarily reduce the size of the congestion window
(CWND) result in lower throughput. Therefore, the need for a
reordering solution is essential even with large receiver buffer
size. In MPTCP Linux implementation [13], the duplicate
selective acknowledgements (D-SACK) is implemented as a
solution for the reordering problem regardless of the
scheduling method.

In this paper, we examine the influence of packet
reordering on the behaviour of CWNDs of MPTCP,
particularly when at least one of the paths ends in a wireless
link. The paper compares the performance of the end-to-end
connection for different types of reordering solutions
integrated with MPTCP at the connection level (and not at SF
level). An interesting observation is that MPTCP, without any
reordering solution, is unable to aggregate the available
bandwidth and fully utilize the capacity of the links even with
symmetrical links and large receiver buffer size.
Consequently, we propose a solution for the packet reordering
problems in which the amount of sending data is not
immediately reduced by receiving a third duplicate
acknowledgement (DUPACK) for a packet as the single-path
TCP does. This paper has two main contributions.

• To analyse the impact of reordering recovery methods
on the throughput gain and path utilization of the
conventional MPTCP.

• To propose the packet reordering response (PR-R) as a
solution to the reordering problem for MPTCP when
the DUPACKs are triggered by out-of-order (OOO)
packets whilst the retransmission timeout (RTO)
technique of the conventional TCP is unchanged.

The study assumes MPTCP is operating over
heterogeneous communication links that include two Wi-Fi
links with different links characteristics. The performance of
the proposed method (PR-R) is compared with the
performance of different packet reorder (PR) recovery
methods (D-SACK and TCP out of order detection and
response (TCP-DOOR)) where their improvement to the
aggregate throughput (gThroughput) of MPTCP is found to be
substantial, according to our previous studies [14, 15]. The
results show that the proposed method mitigates the influence
of OOO packets and improves the gThroughput of MPTCP.

The Public Authority for Applied Educational and Training (PAAET),
Kuwait.

This paper is organized as follows. Section II presents the
fundamental details of MPTCP, reordering problems and the
recovery mechanisms. Section III explains in detail the
proposed method (PR-R). Section IV describes the system
model setup and parameters, simulated scenarios, and
performance evaluation metrics. Section V presents the
analysis of the results and compares the performance of the
PR-R with other PR recovery algorithms for MPTCP under
different simulated scenarios. Section VI concludes the paper.

II. MULTIPATH TCP

The MPTCP is an extension to the regular single-path TCP
that allows single end-to-end connection data traffic to be split
across multiple TCP paths. One of the main design goals
behind MPTCP was to be completely transparent to both the
application and the network. The application opens a regular
TCP socket, which initially starts one regular TCP SF. More
SFs can be added later by any MPTCP end-point using the
same application socket. Outgoing data packets are then
scheduled between opened SFs and incoming data packets
from all SFs are reordered to maintain the in-order byte-stream
abstraction of TCP, as seen by the application. It has been
shown that MPTCP delivers improved network resilience,
increased throughput, and load balancing efficiency at the data
centre [16].

A. Sequence Space in MPTCP

 The MPTCP uses two levels of sequence spacing: a
connection-level sequence number that is used by the TCP
socket and is seen by the application and another sequence
number called SF-level sequence number, which is used
independently for each SF or each physical path; MPTCP uses
data sequencing mapping (DSM) to convert between the two
sequence spacing [1]. Since the sender is able to send data
through more than one interface, it is very likely that the
received packets reach the destination in a different order than
the sending order, particularly when the links have different
characteristics (i.e., path delay). In this case, the receiver has
to store OOO packets into an OOO buffer before sending them
to a received buffer, which stores all in-order packets that are
ready to be sent to the application. The arrival packet is said to
be in sequence if and only if both sequence numbers
(connection-level and SF-level) are in sequence. The
flowchart in Fig. 1 explains how the MPTCP receiver node
examines the newly arrived packet to decide whether to save
it in the received buffer (in-order packet) or in the OOO buffer
(OOO packet).

Fig. 1. Packet classification at MPTCP receiver node.

The receiver first checks the SF sequence and then the
connection sequence. If the SF sequence number of the
received packet (SF_RecSeq) is equal to the expected SF
sequence number, (SF_Exp_Seq), and the connection (or data)

sequence number (Data_Seq) is equal to the expected data
sequence number (Exp_Data_Seq), then the packet is
considered in sequence. If either of the sequence numbers is
greater than expected, then the received packet is considered
to be OOO.

B. Packet Reordering in MPTCP

A sender generates a traffic stream with an in-order
sequence of data packets. For many reasons, the ordering of
the packets received at the destination may be different from
the sender generated order. The receiver responds to an OOO
packet with a DUPACK, inducing the sender to infer a packet
loss erroneously and unnecessarily enter the congestion
control (CC) stage, resulting in lower overall end-to-end
performance.

In a multipath context, packets may arrive OOO because
different SFs routinely have different characteristics,
particularly the end-to-end delay. The OOO arrival of the data
packets will create a fundamental problem for MPTCP, while
reassembling them at the connection level. When the receiver
node receives OOO packets, it will store them in the OOO
buffer and wait for the sequentially preceding ones in order to
deliver the in-order byte-stream to the application. As a
response, the receiver node sends DUPACK back to the
sender. The third DUPACK received by the sender triggers
one of the proposed CC method selected for the corresponding
SF. In this context, the MPTCP encounters a bottleneck in the
data-reordering process at a receiver side, and the receiver
needs a significant receiving buffer to save OOO packets
coming from different SFs [17, 18], especially when the
receiver allows to store all OOO packets without reducing the
transmission rate of the corresponding SF.

The reordering of the arrived packets is a significant
problem, even for single-path TCP connections, and several
mechanisms have been proposed for single-path TCP as a
solution for PR problem. In this study, D-SACK and TCP-
DOOR, where their improvement to the gThroughput of
MPTCP are found to be substantial [14, 15], are used and
compared with our proposed solution. Note that NoPR or
MPTCP-NoPR refer to the traditional MPTCP without any PR
solution.

III. PROPOSED METHOD

The proposed method is a sender-based response occurring
when the third DUPACK of the lost packet is received. In
legacy single-path TCP, TCP triggers the fast retransmission
and recover algorithm resulting in a small size for the CWND.
In addition, since the MPTCP is an extension to the single path
TCP, the standard did not change this part of the congestion
response. However, based on the previous studies [14, 15], the
reduction in CWND due to OOO packets leads to sub-
optimality of the performance of the MPTCP. For example, a
client is downloading data from a server through two
symmetrical links (i.e., equal data rate and round trip time
(RTT)) using the MPTCP. The sender is sending a number of
packets when the CWND for both SFs are equal to 32. During
this RTT, the receiver starts reading packets from both SFs.
Based on the time of arrival of the packets, the reading
sequence, which represents the data-level sequence, for the
first eight packets is [69, 73, 70, 74, 71, 75, 72, 76] as
illustrated in Fig. 2. Assuming that, the SF-level sequence for
both SFs are in sequence. Packet 73, which is received from
SF1, is considered to be OOO. After reading two more packets

from SF1, the receiver sends the third DUPACK for the lost
packet (Packet 72).

It is clear from Fig. 2 that the receiver receives Packet 72
immediately after issuing the third DUPACK. However, the
sender will reduce the CWND of SF1 by receiving the third
DUPACK before receiving the new accumulative
acknowledgement (ACK) to packet 72. This will eventually
reduce the sending rate of SF1, unnecessarily resulting in a
sub-optimal performance of the protocol.

Fig. 2. DUPACK for MPTCP-NoPR

In our proposed method, when the sender receives the third
DUPACK of the lost packet, it will trigger the fast
retransmission and recovery algorithm without reducing the
size of CWND but rather maintaining it. Then, when the
sender receives the ACK of the lost packet, the CWND will
increase based on the CC calculation. Otherwise, (i.e., for real
loss or congestion), the RTO response will take action as
legacy TCP. The coupled CC algorithm [19] is implemented
with the proposed method to ensure the SF fairness.

Algorithm 1 shows the pseudo code of the proposed
method called PR-R. The DUPACK function is triggered
when the MPTCP discovers that the received ACK from SFk
is a duplicated ACK for a packet (Packet X) and not an
accumulative ACK. The algorithm by default (i.e., NoPR)
calls the CWND reduction function when the DUPACK
counter for packet X (packet-X.DUPACK.Count) is equal to
three as in Line 6. However, if PR-R is selected, then the
algorithm does not trigger this call. In both cases, the RTT is
measured and the retransmission is performed.

Algorithm 1 Proposed method for DUPACK Function

 1: if (packet-X.DUPACK.Count == 3)
 2: switch (Reordering Algorithm)
 3: case PR-R:
 4: break;
 5: default:
 6: Call CWND reduction function for SFk;
 7: break;
 8: end switch
 9: Notify the RTT of SFk;
10: Set RTO for packet-X through SFk;
11: Retransmit packet-X;
12: end if

IV. SYSTEM SETUP AND PERFORMANCE METRICS

A. System Setup

The performance of MPTCP is evaluated for the network
topology shown in Fig. 3, where each path is ended with a
wireless link using the network simulator NS-3 [20, 21] with
the coupled CC [19]. The wireless links are set up to use
IEEE802.11g (11g) standard with 54 Mbps as the physical
data rate. The size of the OOO received buffer is set to be large
(10 MB) to avoid its effect on the performance of the system.
The backbone network is set to 100 Mbps data rate and 10 ms
delay. The simulation consists of transferring a single large file
from an FTP server, where all packets are of equal length
(1400 B). Each simulation is conducted for 50 s and it is
repeated 30 times, and each time it adapts different seeds.

Fig. 3. Network topology for the simulated scenarios

In order to validate the behavior of the MPTCP in the
deployed NS-3 package with related Linux Implementation
[18], we performed several simulations for the MPTCP using
NS-3 and compared the results against Linux related studies in
terms of throughput gain, with respect to a single-path TCP. In
[18], the results show that the gThroughput of MPTCP using
two disjoint SFs with equal bandwidths is 94% higher than the
throughput of the single TCP would be on the best SF with no
delay difference between SFs, and 23% higher when the delay
difference is 500 ms. The NS-3 results are close to the Linux
study as shown in Table I, which validate our conducted
simulation based study. Note that reordering solution used in
both studies is D-SACK.

TABLE I. THE THROUGHPUT GAIN WITH RESPECT TO SINGLE PATH

TCP USING LINUX AND NS3 IMPLEMENTATION OF MPTCP WITH DIFFERENT

DELAY DIFFERENCE BETWEEN TWO SFS.

Delay Difference

(ms)

Linux Throughput

Gain (%)

NS-3 Throughput

Gain (%)

0 94 90

100 89 80

500 23 20

The study in this paper considers two main scenarios, as
shown in Table II. The first scenario studies the impact of the
distance between the mobile node and the access point (AP)
on the performance of the protocol using different reordering
solutions. The second scenario is looking at the performance
of the system as a function of the packet drop rate (PDR)
variation. The proposed solution is implemented and its
performance is compared with other existing reorder
solutions, D-SACK and TCP-DOOR

TABLE II. SIMULATED SCENARIOS.

 First SF Second SF

Distance

(m)

PDR (%) Distance

(m)

PDR (%)

Scenario-1 10 - 100 0.0 10 -100 0.0

Scenario-2 10 0.0 10 0.0 - 0.9

B. Performance Metrics

The following performance metrics are used here for the
result comparisons and analysis:

• Out-of-Order Ratio: The OOO Ratio (OOO-R) is
calculated at the receiver side, and it is the ratio of the
total number of received packets being stored in the
OOO buffer to the total number of non-duplicate
received packets.

• Out-of-Order Buffer Occupancy: If an OOO packet
arrives at the destination, then the packet will be stored
in a buffer awaiting the late packets to arrive. The OOO
buffer occupancy (OOO-BO) is used to measure the
maximum amount of memory required by different PR
recovery methods, and it is defined as the maximum
number of packets stored in the OOO buffer during
simulation time.

• Link Utilization: The link utilization (LU) is obtained
by observing the SF CWND. If the MPTCP is able to
increase the value of CWND, then more data can be
sent through this SF. The lack of competition in the link
from other flows in our scenario makes all bandwidth
available to the MPTCP connection. Link utilization is
defined by the throughput of the SF over its physical
data rate.

• Aggregate Throughput: The gThroughput is defined as
the sum of the throughputs of all SFs used for the
MPTCP connections.

V. PERFORMANCE EVALUATION

This section presents the performance analysis of the two
main scenarios. The first studies the impact of wireless link
reliability as a function of the distance between the mobile and
AP on the performance of reordering solutions of the MPTCP.
The second scenario analyses the performance of the same
reordering solutions when the PDR variation increases
between SFs. For completeness of discussion, it is worth
mentioning that the performance of single TCP over Wi-Fi
was also evaluated and found to be maximum 5 Mbps; the
results have not been presented but will be referred to for
comparison purposes. Note that our proposed method is
denoted by PR-R.

A. Impact of Distance from AP

In Scenario 1, we are looking at the performance of
different reordering solutions of the MPTCP as the distance
between the client and both APs increases. As the distance
increases, the performance will decrease due to the
deterioration of link (lower signal-to-interference-plus-noise
ratio (SINR)) in addition to the reordering problem. The study
investigates which reordering solution will perform better with
a low SINR. The results show that both the TCP-DOOR and
PR-R methods outperform others up to 50 m by providing a
64% improvement in gThroughput. Beyond 50 m, PR−R is the
best in terms of gThroughput by providing a 50%
improvement on average, compared to the NoPR, while

D-SACK comes second with a 22.7% improvement on
average. Figure 4 shows the performance of the MPTCP with
different PR solutions as a function of distance.

The PR-R utilizes both links more than the others along all
distances, as illustrated in Table III, which gives results for
50 m and 70 m distances between mobile and both APs as a
typical set of results. Table III also shows the OOO-R and the
OOO-BO for all simulated PR solutions. It is clear that PR-R
requires more buffer size than TCP-DOOR, which provides a
comparable throughput improvement for high SINR cases.

Fig. 4. Scenario 1 gThroughput against distance using different PR
solutions.

TABLE III. SCENARIO 1 OOO BUFFER AND LU

Distance (m) PR Solution
OOO-BO

(Kbyte)
OOO-R

(%)
LU

(%)

50

NoPR 196 5.8 12.26

D-SACK 84 12.5 14.06

TCP-DOOR 145 39.8 19.43

PR-R 442 42.8 19.88

70

NoPR 77 16.8 9.76

D-SACK 106 17.5 9.67

TCP-DOOR 126 24.8 8.62

PR-R 252 61.4 13.69

B. Impact of Packet Drop Rate

This section presents the analysis of the impact of the PDR
variation between different paths on the performance of
MPTCP through Scenario 2. The aim of this performance
analysis is to find the most sustainable recovery algorithm
against losses. It is essential to test the proposed method (PR
R) against losses since it maintains the value of CWND rather
than reduces it when the third DUPACK is received. In
Scenario 2, TCP-DOOR provides a 62% improvement in
gThroughput with lossless case (PDR = 0). However, when
the PDR increases, the gThroughput decreases dramatically,
as shown in Fig. 5. The PR-R improves the gThroughput of
MPTCP by 60% on average and provides a stable performance
against the increasing rate of packet drops. The gThroughput
measurements of the legacy MPTCP or NoPR do not exceed
15 Mbps, which is the maximum throughput of a single TCP
throughput over one link, while D-SACK is the second best
after PR-R with 21.5 Mbps at maximum.

Therefore, by suspending the immediate reduction in
CWND (unlike NoPR) and retransmitting loss packets directly
after receiving the third DUPACK (unlike TCP DOOR), PR-

R fully utilizes both links, as illustrated in Table IV, and
outperforms other PR solutions in terms of gThroughput.
Table IV represents the low and high PDR cases only as a
typical set of results.

In terms of OOO packets and memory requirements, PR R
provides the highest OOO-R compared to others. Higher
OOO-R with higher gThroughput is desirable in MPTCP
because OOO is more likely to happen when receiving packets
from different paths that need to be reassembled. When the
protocol depends on one path only during the transmission
(i.e., NoPR in our scenario), then the OOO-R will be lower.
Hence, a preferred reordering solution is one that can deal with
OOO packets efficiently without degrading the overall
performance of the protocol. It is clearly shown in Table IV,
which represents a typical set of results that are also applicable
to other cases, that PR-R has the highest OOO-R and requires
more buffer space compared to D-SACK, which is the second
best in terms of gThroughput.

Fig. 5. Scenario 2 gThroughput against PDR of SF 2 using different PR
solutions.

TABLE IV. SCENARIO 2 OOO BUFFER AND LU.

PDR

(%)
PR Solution

OOO-BO

(Kbyte)
OOO-R

(%)
LU

(%)

0.1

NoPR 128 8.9 14.82

D-SACK 106 12.6 19.38

TCP-DOOR 131 22.1 19.71

PR-R 513 45.2 23.67

0.9

NoPR 68 11.7 8.09

D-SACK 145 9.0 20.58

TCP-DOOR 152 10.7 14.89

PR-R 259 57.9 21.31

By looking at the CWND evolution of both SFs for four
PR solutions when PDR is equal to 0.5%, as a typical set of
results, it is clearly shown in Fig. 6 that the size of both
CWNDs is small when using the MPTCP-NoPR. This is due
to the frequent reduction in CWND when three DUPACKs are
received with the same data-level sequence number during the
same RTT period. Consequently, MPTCP-NoPR is unable to
utilize the available bandwidth, even with lossless networks.
Similarly, TCP-DOOR suffers from the small size of both
CWNDs under high PDR networks because it does not take
any action when receiving the third DUPACK and depends on
the RTO response only. The results show that PR-R is more
robust to the PDR because it triggers a retransmission when
receiving the third DUPACK and maintains the value of

CWND to avoid an unnecessary reduction of the CWND,
which consequently results in a lower transmission rate.

On the other hand, D-SACK uses SACK rather than the
accumulative ACK, which is used by NoPR, to acknowledge
a discontinuous block of data. In the MPTCP, D-SACK
increases the CWND twice when an OOO packet is received.
The receiver sends ACK with the DSACK option back to the
sender when an OOO packet is received and stored in the OOO
buffer. It then sends another ACK later when the OOO packet
stored in the OOO buffer becomes in order. Both cases allow
the sender to increase the size of CWND. The double increase
in the CWND makes the related SF to increase its transmission
rate faster than the other SF, which makes the utilization of
one SF better than the other.

Fig. 6. Scenario 2 CWND evolution for different PR solutions when PDR

equal to 0.5%.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a PR-R algorithm to
improve the performance of the MPTCP over wireless
network interfaces. The proposed method requires simple
modifications at the sender side only, which makes its
implementation easier than other schemes. The performance
of PR-R has been compared to the performance of different
PR recovery methods. This study shows that the proposed
method adds a substantial improvement to the MPTCP and
outperforms others in terms of gThroughput as well as path
utilization. The proposed algorithm results in more robustness
against packet losses. However, the PR-R requires more
memory space, which can be addressed in future work.

REFERENCES

[1] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, "TCP extensions
for multipath operation with multiple addresses," IEFT RFC 6824,
2013.

[2] H. Hsieh and R. Sivakumar, "pTCP: An end-to-end transport layer
protocol for striped connections," in Proc. IEEE ICNP, 2002, pp. 24-
33.

[3] A. Abd, T. Saadawi, and M. Lee, "LS-SCTP: A bandwidth aggregation
technique for stream control ttransmission protocol," in Computer
Communications, vol. 27, pp. 1012-1024, 2004.

[4] D. Sarkar, "A concurrent multipath TCP and its markov model," in.
IEEE ICC, 2006, pp. 615-620.

[5] Y. Dong, D. Wang, N. Pissinou, and J. Wang, "Multi-path load
balancing in transport layer," in EuroNGI, 2007, pp. 135-142.

[6] L. Ka-Cheong, V. O. K. Li, and Y. Daiqin, "An overview of packet
reordering in transmission control protocol (TCP): problems, solutions,
and challenges," in IEEE Trans. Parallel and Distributed Systems, vol.
18, pp. 522-535, 2007.

[7] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, "Experimental
evaluation of multipath TCP schedulers," in Proc. ACM SIGCOMM
Workshop on Capacity Sharing Workshop, 2014, pp. 27-32.

[8] T.-A. Le and L. X. Bui, "Forward delay-based packet scheduling
algorithm for multipath TCP," in arXiv preprint arXiv:1501.03196,
2015.

[9] T. Kurosaka and M. Bandai, "Multipath TCP with multiple ACKs for
heterogeneous communication links.," in IEEE CCNC, Las Vegas, NV,
USA, 2015, pp. 613-614.

[10] C. Yu and X. Mingwei, "Dual-NAT: Dynamic multipath flow
scheduling for data center networks," in IEEE ICNP. 2013, pp. 1-2.

[11] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
"DAPS: Intelligent delay-aware packet scheduling for multipath
transport," in IEEE ICC, Sydney, Australia, 2014, pp. 1228-1233.

[12] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith,
"Mitigating receiver's buffer blocking by delay aware packet
scheduling in multipath data transfer," in WAINA, 2013, pp. 1119-1124.

[13] Multipath TCP - Linux kerel implementation. Available:
http://mptcp.info.ucl.ac.be/

[14] A. Alheid, D. Kaleshi, and A. Doufexi, "An analysis of the impact of
out-of-order recovery algorithms on MPTCP throughput," in AINA,
2014, pp. 156-163.

[15] A. Alheid, D. Kaleshi, and A. Doufexi, "Performance evaluation of
MPTCP in indoor heterogeneous networks," in Proc. SIMS, 2014.

[16] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, "Design,
implementation and evaluation of congestion control for multipath
TCP," in NSDI, vol. 11, pp. 8-8, 2011.

[17] R. Costin, P. Christoph, B. Sebastien, F. Alan, H. Michio, D. Fabien, et
al., "How hard can it be? designing and implementing a deployable
multipath TCP," in NSDI'12, 2012, pp. 29-29.

[18] S. Barré, "Implementation and assessment of modern host-based
multipath solutions," PhD Thesis, Université catholique de Louvain,
2011.

[19] [19] C. Raiciu, M. Handley, and D. Wischik, "Coupled congestion
control for multipath transport protocols," IETF RFC 6356, 2011.

[20] B. Chihani and D. Collange, "A multipath TCP model for NS-3
simulator," in Workshop on NS-3 held in conjunction with SIMUTools
2011, 2011.

[21] (2012) NS-3 website. [Online]. Available: http://www.nsnam.org/

