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Route Networks within the Air Transport System 
A comparative study of two European low-cost airlines using network metrics 
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Abstract— This paper presents a comparative analysis of the 
route networks of two European low-cost airlines in 2015. A case 
study is presented which highlights the key differences and 
similarities of their route network characteristics that they 
operate, aimed toward improving understanding of the current 
Air Transport System (ATS) for modeling and simulation 
purposes.  

Keywords— networks; air transport system; airlines;  

I. INTRODUCTION

A. Why is the air transport system important? 
Air transport networks are one of the key infrastructures of 

today’s global economy [1]. Worldwide Airlines carry around 
3.3 billion passengers per year. In order to do this they 
collectively operate more than 50,000 routes with 
approximately 25,000 aircraft, employing around 4 million 
staff and improving the mobility of world citizens [2]. It is 
evident that transport systems are fundamental elements of 
both our economies and societies [3].

An airline’s route network is a complete set of direct 
flights provided by the company to cover its targeted 
destinations [4]. Route networks within the ATS have evolved 
organically over the last few decades with air transportation 
becoming the most popular mode of transport for distances 
over 750 miles [5]. These networks are part of the complex 
transport system, composed of routes in certain regions 
connected according to given laws, including airports, aircraft,
etc [6]. The nature of the route systems has important 
implications for the performance of the ATS [7], which 
presents the need to understand this further.  

B. How can understanding route networks improve the ATS? 
With the advent of the ‘network era’ [8], the advances in 

the areas of statistical topology and kinetics of complex 
networks has made it possible to study air transport route 
networks [8]. Analysis of route networks and business models 
will enable more accurate simulations of various future 
scenarios to assess the value of new and disruptive 
technologies within the ATS.  

Scenario modeling using techniques such as agent-based 
modeling offer a means of discrete event simulation of the 
ATS network in both time and space, and is gaining popularity 
in the modeling of transport systems [9] [10]. As a first step 
toward this, we need to understand current operations from 
which we can derive insights and accurate assumptions to 
inform any mathematical ATS models for simulation [9].

These insights and assumptions can be deduced from 
operational flight data. An inductive theory building approach
can then be used from the quantitative analysis to improve the
understanding of airline route networks.

This paper is organised as follows. Section II outlines the 
related work in this domain; Section III describes the method 
used for the case study to analyse the two European low-cost 
airlines; Section IV presents the results of the study; Section V
discusses the findings in the content of the ATS; Finally, 
Section VI presents the concluding remarks and proposes 
future work. 

II. RELATED WORK

A. What approaches have been taken before? 
The advancement of complex network theory has 

generated an increasing body of literature on applications 
within transport systems [11]. A review was conducted in 
2013 on the application of complex network theory to the 
ATS, showing that it can be used to characterise the structure 
of air transport and its dynamics [3]. This highlighted that 
most of the published works can be classified into three main 
families, namely (i) characterisation of the topology without 
considering evolution through time (ii) studies aimed at 
identifying and characterising the transition between point-to-
point to a hub-and-spoke architecture (iii) the dynamics of 
networks [3]. The work presented within this paper is based on
the topological and metric properties of flight networks, where 
nodes represent airports, and links correspond to route 
journeys.

There are several aspects of network analysis that could 
be conducted on airline route networks. They could be 
typically classified as Topology Criteria, Concentration 
Criteria, and Connectivity Criteria. The various measurements 
used for each criteria are discussed in Reggiani et al. [12]. In 
this study, only network topology criteria is considered. 
Topology [13] looks at the network purely from a non-
geographical perspective. Common topology criteria metrics 
include: degree, diameter, density, modularity, connectedness 
centrality, clustering coefficients. A similar study conducted 
by Bounova et al. [14] considers topology of several Chinese 
airlines, and rewires the networks by optimisation methods 
based on reducing number of aircraft changes, and maximising 
passenger throughput. This study addresses more network 
topology optimisation parameters than studied by Bounova et
al., which could be used to populate ATS models.
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B. What is the contribution of this study? 
Studies have been previously undertaken related to using a 

complex network approach. However, this prior work falls 
into one or more of the following categories: 

 They are not recent, e.g. [12], especially given that 
the airline industry is in constant evolution and this 
changes its structure and characteristics [1], so an 
updated understanding is necessary. 

 They are related to the spatial or dynamic elements 
of the route networks, not the topological aspect. 

 They are based on non-European regions, e.g. China 
[11] [14] and the US [15], so a scoped study on 
representative airlines within Europe is required.  

The unique contribution of this paper is in presenting the 
results of a case study of two European low-cost airlines to 
analytically compare their current route network 
characteristics. This is aimed at improving the understanding 
of airline operations based on recent empirical flight data, 
whilst also informing future ATS assumptions and models. 

III. METHOD 
A seven-day sample of flight data for two European low-

cost airlines was used to analyse their typical route networks 
over that period. This data consisted of all of the flights for 
every aircraft within the fleet of Airline A and B, which was 
used as a basis for comparison. The flight data was typical of 
that provided by Flightradar24 [18] and contained the date, 
airport origin, airport destination, flight number and times for 
each flight for each aircraft in the two fleets: 

This flight data was firstly prepared to transform it into a 
usable format for network analysis. This pre-processing was 
undertaken within Microsoft Excel which involved data 
cleaning, re-formatting and aggregating. The data was 
exported as a .csv file for each respective airline. These files 
contained the aggregation of all flights for the airline over a 
seven-day period in September 2015. 

The analysis was then undertaken based on their overall 
fleet, key airports and key routes. The data was then analysed 
to derive network statistical measures to identify each airline’s 
route network characteristics. The network software Gephi 
[18] was used for the statistical analysis and visualisation.  

It is important to note the following limitations of this 
study. The data is a representative sample. The comparison is 
of two low-cost European airlines and is only a representative 
sample of this type of airline. The seven-day timeframe shows 
the airline’s typical operations, but this is a relatively small 
time period. The route networks are also likely to differ with 
seasonal variation [6], so the data only provides a comparative 
snapshot of the airline’s operations. There may be 
inaccuracies within the original datasets. Whilst steps were 
taken to check for errors within the raw data, it is possible that 
inaccuracies exist which were beyond these checks, which 
would influence the results somewhat.  

IV. RESULTS 
The results of the analysis are shown below in terms of 

fleet overview, key airports, key routes and network statistics.  

A. Fleet Overview 
Table 1 shows the breakdown of the total flight data for 

each airline. The no. of airports shows the total number of 
unique airports that the airline flew from/to, either as origin or 
destination. The unique journey legs shows the total number 
of routes that were flown in one direction, i.e. an airline route 
is considered as two (return) journey legs. Total flights is the 
sum of all flights during the week for the airline.  

 
Table 1: Overview of flights over 7 day period 

 Airline A Airline B 

No. of Aircraft Utilised 216 321 

No. of Airports Used 130 185 

Unique Journey Legs 1,168 2,535 

Total Flights 8,989 12,510 

B. Key Airports 
Table 2 and Table 3 shows the top five ranked airports for 

both airlines based on their importance within the network and 
the total flights associated with each airport. The PageRank 
statistic is used as the measure of importance, or how central 
an airport (node) is within the network. The underlying 
assumption is that more important airports (nodes) are likely 
to have more flights (edges) from other airports (nodes). 
PageRank is a link analysis algorithm and it assigns a 
numerical weighting to each element, with the purpose of 
measuring its relative importance within the set. The 
probability is expressed as a numerical value between 0 and 1. 
The measure of the percentage of total flights, show the 
proportion of overall flights that are from/to the airport.  
 

Table 2: Airline A – Top 5 Airports 

 

 Importance 
in Network  

(PageRank) 

Total 
Flights  

(from/ 
to 

airport) 

Percentage 
of total 
flights 

from/to 
airports 

Percent
age of 
total 

flights 
to/from 
airports 

1 London (LGW) 0.1444 2,516 28.0%  
 
 
 

61.5% 

2 Milan (MXP) 0.0510 1,025 11.4% 

3 London (LTN) 0.0382 772 8.5% 

4 Paris (CDG) 0.0301 636 7.1% 

5 Berlin (SXF) 0.0283 577 6.4% 

 
  



Table 3: Airline B – Top 5 Airports 

 

 Importance 
in Network 

(PageRank) 

Total 
Flights 

(from/ 
to 

airport) 

Percentage 
of total 
flights 

from/to 
airports 

Percent
age of 
total 

flights 
to/from 
airports 

1 London (STN) 0.0924 2,280 18.2%  
 
 
 
 

48.5% 

2 Dublin (DUB) 0.0450 1,286 10.3% 

3 Milan (BGY) 0.0359 1,061 8.5% 

4 Barcelona 
(BCN) 0.0248 722 5.8% 

5 Brussels 
(CRL) 0.0283 721 5.8% 

 
Figure 1 and Figure 2 visually shows the distribution of 

the top 25 ranking airports for each airline, based on frequency 
of flights and importance within the network. 

 

 
Figure 1: Airline A – Top 25 Key Airports (total flights) 
 

 
Figure 2: Airline B – Top 25 Key Airports (total flights) 

C. Key Routes 
Figure 3 and Figure 4 show the most frequent 25 routes of the 
airlines based on frequency within the seven-day period.  

 
Figure 3: Airline A – Top 25 Key Routes 
 

 
Figure 4: Airline B – Top 25 Key Routes 
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D. Network Statistics 
Table 4 presents the statistical measures for the network 

characteristics of each airline. These measures are explained 
and interpreted in relation to the ATS in Section IV. 
 

Table 4: Network Characteristics 
Statistical Measure Airline A Airline B 

Average Degree 8.985 13.703 

Avg. Weighted Degree 69.131 67.622 

Network Diameter 4 4 

Graph Density 0.070 0.074 

Modularity 0.216 0.259 

Connected Components 1 1 

Avg. Clustering Coefficient 0.393 0.373 

Avg. Path Length 2.140 2.185 

 
Figure 5 graphically shows the two airline route networks. 

The network shows the airports as nodes and the edges as 
unique journeys (flights). The upper visualisations show the 
routes without any weighting applied to represent the volume 
of flights for each journey or route. The lower visualisations 
highlight the key hub airports toward the centre, whereby the 
node size represents the number of flights and the colour as 
the PageRank measure of importance. The less operated routes 
are positioned toward the outside, which demonstrates a hub-
and-spoke architecture for routes for both airlines at the fleet 
level.  

 

 
Figure 5: Network visualisation of routes 

Airline A (left), Airline B (right). 

V. DISCUSSION 

A. Fleet Overview 
 In a straightforward comparison, we can see from Table 1 
that Airline B has approximately 3,550 (40%) more flights 
than Airline A during the seven-day period. We can also see 

that Airline B flew over twice as many unique journey legs 
(one direction of a route) as Airline A. Of all flights, Airline B 
used 105 more aircraft (approximately 50% more) than Airline 
A to service their routes. In addition, Airline B flew from/to 
55 more airports than Airline A during the period. This 
comparison shows the relative sizes of the two airlines, 
highlighting that Airline B is larger than Airline A in terms of 
their route network coverage, number of flights and aircraft 
used. However, the average number of flights per week per 
airport is comparable for both Airlines (average weighted 
degree). 

The ratio of number of edges per node (degree) is an 
indication of the amount of flexibility in the network. Typical 
ratios are around two, but both Airlines seem to have a higher 
than average degree suggesting that they are both mature 
organisations, who have organically grown over time. Airline 
B has a higher degree on average compared to Airline A, 
indicating flexibility in the service it offers. However, Airline 
A will have a better redundancy in operations. 

B. Key Airports 
On observing the top ranking airports with most flights 

from/to them, we can see that both airlines have one main hub 
airport that is used significantly more than the others. This 
same ranking is also reflected in the PageRank measures of 
airport importance within their route network. This shows that 
the most important airports situated within the networks are 
also the ones with most flights. In the case of both airlines, it 
is evident that each single top airport are in the region of twice 
as important and frequently used as the second on the lists. 
Figure 1 and Figure 2 visually demonstrates this step 
difference, which is larger for Airline A than it is for Airline 
B. If we take the total flights for each airline, we can see that 
the top ranking airport alone represents approximately 28% 
and 18% of the total flights for the airlines respectively, 
highlighting the reliance on these top key airport hubs.  

It can be seen that the total number of flights for each 
airport gradually tail-off after the top 15, showing that these 
two airlines rely heavily on their top 15 airports within their 
route networks. Given that each airline has flights associated 
with 130 and 185 different airports, these 15 key airports 
represent a relatively small proportion of the overall visited 
airports at approximately 12% and 8% respectively for Airline 
A and B. We can see that the top five airports for each airline 
represent approximately 62% and 49% of their total flights. 
This again highlights that a large proportion of all flights are 
from/to a relatively small number of airports. For Airline A, 
approximately two thirds of the total flights are from/to only 
five airports (4% of all airports visited). For Airline B, 
approximately half of the total flights are from/to only five 
airports (3% of all airports visited). These insights can be used 
when modeling the ATS to reflect these weightings.  

On inspecting the list of most frequent 25 airports of both 
airlines, it reveals that there are only six airports that are 
common to both, suggesting that they tend to not occupy the 
same airports for their top airports. The differences in the type 
of airports they service also indicates that they have different 
business models, in that Airline A in general appears to favour 



larger airports in major European cities, whereas Airline B 
tends to occupy more secondary airports for the cities. This 
understanding can be used when deciding upon reasonable 
assumptions within the ATS modeling.  

C. Key Routes 
Airline B flew more routes overall than Airline A, but less 

frequently (for the whole network).  These less frequent routes 
for Airline B are shown as a stepped distribution in Figure 4. 
Airline A has a more distributed frequency of top 25 routes 
than Airline B. Airline B appear to operate regularly between 
hubs and secondary (reliever) airports, not reliant on 
conventional traffic flows, i.e. implementing new routes. 

When comparing the most frequent 25 routes for each 
airline, we can see that there is not one single route that is 
common to both. However, whilst they are not in direct 
competition, it is clear that two routes (i.e. four journey legs) 
are comparable. The first is London-Milan, whereby there is a 
common connection between cities, but both are from 
different airports in UK and Italy. The second is London-
Barcelona, whereby both airlines fly from BCN airport to 
London (and vice versa), but to two different London airports, 
i.e. LGW and STN. The analysis shows that the two airlines 
are not in direct competition on their most frequent routes in 
terms of their route networks. 

D. Network Statistics 
The data suggests that both European low-cost airlines 

have similar route network characteristics which are discussed 
below.  

Average degree – this shows the average number of 
journey legs associated with an airport (node) for each airline. 
We can see that the comparative values for each airline differ 
by a value of approximately 4.7. This shows that Airline B has 
more journey routes, on average, associated with each airport. 

Average weighted degree – this is a similar measure to the 
average degree, but factors in the weighting based on the 
number of flights for a given journey leg. So this measure 
shows the average number of flights associated with an airport 
(node) for each airline. These values are comparatively similar 
for both airlines at 69.131 and 67.622 respectively, suggesting 
that although the airlines fly different routes, they have similar 
network characteristics.  

Network diameter – this shows the longest path between 
the airports (nodes) within the network. Both airlines have the 
same value of four hops, showing that they are comparable in 
terms of their network connectivity. 

Graph density – this is a ratio of the number of journey 
legs (edges) that exist to the total number of journey legs 
(edges) possible. The density of an empty graph would be 
zero, conversely the density of a complete graph would be 
one, i.e. the graph density increases by the increasing the 
number of journey routes (edges). The values of 0.070 and 
0.074 show that the two airlines have a similar density.  Low 
values also mean that the airports they service are not well 
connected with other airports.  

Modularity – this is a measure of the structure of the 
network and shows how well the network decomposes into 

modular communities. This structure, describes how the 
network is compartmentalised into sub-networks, whereby the 
higher the value, the more defined the communities are within 
the network. Networks with high modularity have dense 
connections between the nodes within modules, but sparse 
connections between nodes in different modules. In the case of 
each airline, they have values of 0.216 and 0.259 respectively. 
This shows that airline A has somewhat less well-defined 
communities within it’s route network, but this is not 
significant.  

Connected components – this shows the number of 
unconnected sub-networks within the overall network. As one 
would expect, the value for both airlines is one, showing that 
there are no routes operating in isoltaion to the rest of the 
network. However, the analysis did reveal a test flight that 
took-off and landed at the same airport in a remote location 
separated from the rest of the network. This flight was not 
taken into account for this measure, but if it were to be 
considered then it would raise the connected component value 
from one to two for Airline B.  

Average clustering coefficient – this shows how well the 
airports (nodes) are embedded within their neighbourhood. 
The two airlines have similar network characteristics in terms 
of the clustering coefficent at 0.393 and 0.373 respectively, 
showing that the airports (nodes) used are both similarly 
clustered within their overall route network. 

Average path length – this shows the number of flights on 
average one can reach any airport (node) from any other 
airport in the network. The analysis implies that on avearge it 
is possible to get from one airport to another in the network 
within around two hops. These values are comparable to the 
study undertaken on four European airlines in 2009 [6]. The 
airlines A and B have similar values of 2.140 and 2.185 
respectively, which show that both airlines have comparable 
connectivity of their airports within their respective networks.  

VI. CONCLUSION 
We have described the method and results by which a case 

study was undertaken to analyse two European low-cost 
airlines in terms of their route networks. Flight data was used 
to derive insights from the airline’s operations aimed toward 
improving current operational understanding. 

The two airlines are different in terms of total number of 
flights, number of routes and number of airports visited. We 
observe that: 

 The two airlines are not in direct competition on their 
most frequent routes. 

 Airline B has approximately 40% more flights than 
Airline A during the seven day period. 

 Airline B flew more routes overall than Airline A, but 
less frequently (for the whole network) 

 Airline B flew over twice as many unique journey legs 
(one direction of a route) as Airline A. 

 Airline B flew from/to 55 more airports than Airline A 
during the same period 



However, we can identify many similarities between the 
two airlines in terms of their route networks. The analysis 
revealed that both airlines: 

 use a similar approach of relying on one main hub 
airport that is used significantly more than others.  

 have a large proportion of flights from/to a relatively 
small number of their total airports. 

 have a similar average number of flights associated 
with an airport. 

 have a comparable network connectivity in terms of 
topological structure. 

 have a similar network density, in terms of the ratio 
of the number of journey legs (edges) that exist to the 
total number of journey legs (edges) possible. 

 have comparable network structures in terms of how 
well the network decomposes into modular 
communities. 

Analysis of network topology statistics of the two Airlines 
operating in the same regional market has revealed similarities 
in spite of operating out of different geographical locations, 
and potentially having different business models. This 
indicates that network topology characteristics could be a 
major driver for assumptions modeling for agent based 
modeling of the ATS.  

In order to simulate airline operations within the ATS it is 
possible to utilise the empirical flight data from source. 
However, an alternative approach is to artificially generate 
representative route networks for the purposes of simulation. 
The benefit of this latter approach is to be able to scale the 
network for a simplified or more complex use-case scenario. 
Such synthetic networks can be generated based on the 
characteristics and measures identified within this study [20].  

In conclusion, the analysis shows that there are clearly 
some differences between the two low-cost airlines operating 
within Europe. However, the analysis also highlights that both 
airlines have similar route network characteristics. Further 
work could involve a comparative analysis, following the 
same approach, incorporating several types of representative 
airlines operating across different regions. Furthermore, a 
temporal analysis would show how airline route networks 
have evolved, which would be beneficial to understand how 
the ATS has developed over time. This comparison would be 
aimed at classifying airline types based on their route 
networks, which could be used to improve understanding and 
inform future ATS models.  
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