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ABSTRACT
Objectives: There have been conflicting data
suggesting that prenatal mercury exposure is
associated with adverse cardiovascular measures in
children. We therefore analysed a large prospective
population study to investigate whether prenatal
mercury exposure might influence offspring blood
pressure (BP) and heart rate adversely.
Design: Prospective birth cohort.
Setting: The Avon Longitudinal Study of Parents and
Children (ALSPAC).
Participants: Maternal whole blood collected in the
first half of pregnancy was assayed for mercury and
selenium. The offspring were followed throughout
childhood and adolescence.
Outcome measures: Offspring resting BP and heart
rates measured under standard conditions on six
occasions between ages 7 and 17 years (numbers
analysed: 1754 at 7 years to 1102 at 17).
Results: Statistical analyses took account of various
factors present in pregnancy, including family adversity,
maternal age, parity, smoking and alcohol intake.
Unadjusted and adjusted regression analyses assessed the
relationship between maternal prenatal mercury levels and
offspring resting systolic and diastolic BP, and heart rates.
A final set of analyses took account of selenium. Each
analysis was carried out for all offspring, those whose
mothers had, and those that had not, consumed fish
during pregnancy. Further analysis for all offspring
ascertained whether there were significant interaction
effects between the sexes. There was little evidence to
suggest that prenatal mercury exposure resulted in a
clinically important increase in offspring BP in the whole
group, since no effect size for an increase of 1 SD of blood
mercury level was >0.3 mm Hg. Only 1 association was
significant at p<0.05 and therefore likely due to chance.
Conclusions: This study reveals no evidence to support
the hypothesis that prenatal mercury exposure has adverse
long-term effects on offspring BP or heart rates during
childhood or adolescence.

INTRODUCTION
Although there is agreement that consump-
tion of fish is beneficial for the heart,1 this is

thought to be due to the benefits of the
omega-3 fatty acids in fish, especially oily fish.
However, there is still concern over the
mercury content of fish, as there is some evi-
dence of increased levels of mercury expos-
ure being associated with increases in blood
pressure (BP).2 Problems with many of the
published studies concern the small
numbers involved, cross-sectional analyses
and a failure to assess the inter-relationship
with omega-3 intake. Consequently, it is not
possible from these studies to interpret
whether there is a consistent causal
sequence.
Two major longitudinal studies have

addressed the question as to whether there is
a link between mercury measured in toenails
and subsequent coronary heart disease
(CHD); the authors collected toenails from
tens of thousands of individuals and com-
pared the mercury levels of those who devel-
oped CHD with the levels in controls—
neither study showed an association between

Strengths and limitations of this study

▪ The benefits included the large numbers relative
to other studies, its prospective nature and the
standardised conditions under which the blood
pressures were taken.

▪ The study was able to compare the effects on
the children whose mothers ate fish with those
who did not.

▪ Like all cohort studies, there was a loss to
follow-up, which differentially concerned the
more socioeconomically disadvantaged. It is
possible that this may have biased the results.

▪ The study was concerned with levels of blood
mercury that were similar to those of Western
Europe and the USA, but cannot be extrapolated
to areas where sea mammals are eaten such as
the Faroe Islands, where the levels of mercury
are much higher.
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mercury level and either CHD or stroke.3 4 However,
these studies did not take account of the beneficial influ-
ence of fish intake on the heart. That this has an advan-
tage is illustrated by the findings of Vupputuri et al5 who
analysed cross-sectional information from the American
NHANES observational study. Initially, there was no asso-
ciation between mercury and BP when the data were
analysed together. However, when stratified by consump-
tion of fish, there was a significant positive association
between mercury and BP, but only in the non-fish-eaters.
These studies were all of adults. Animal studies have

indicated that deficiency in omega-3 fatty acids in the
pregnant rat is associated with higher BP in the off-
spring.6 In humans, a randomised controlled trial has
shown that maternal prenatal diet can influence off-
spring BP,7 but, to the best of our knowledge, only three
studies have assessed effects of prenatal mercury expos-
ure on offspring BP.8–10 Given that, according to the
Developmental Origins of Health and Disease hypoth-
esis,11 fetal life is important for programming the devel-
opment of cardiovascular disease, in this paper, our aim
is to assess whether maternal prenatal blood mercury is
associated with childhood and/or adolescent BP, and
whether any relationship differs between offspring
whose mothers ate fish in pregnancy and those who did
not. We use the prospectively studied Avon Longitudinal
Study of Parents and Children (ALSPAC), which has the
advantage of larger numbers than previously studied,
and measures of BP throughout childhood and
adolescence.

METHODS AND MATERIALS
The ALSPAC cohort
The ALSPAC study aimed to enrol all pregnant women
residing in Avon (a geographically defined area that
includes the city of Bristol, surrounding smaller urban
towns, and rural areas about 120 miles west of London,
UK) with an expected delivery date between 1 April
1991 and 31 December 1992. The study enrolled 14 541
pregnant women, estimated as about 80% of those eli-
gible. Its stated aims were to evaluate genetic and envir-
onmental influences on health and development,
including environmental factors measured prospectively
during pregnancy.12 13

Prenatal trace metal exposures
Blood samples deliberately collected in acid-washed con-
tainers for determination of trace metals were obtained
from 4484 women residing in two of the three Health
Authority areas of the recruitment region. Samples were
collected by midwives as early as possible in pregnancy.
The sociodemographic characteristics of the women
who donated samples were comparable to those of the
rest of the ALSPAC study population apart from includ-
ing a slight excess of older and more educated
mothers.14

Gestational age at sample collection (known for 4472
mothers (99.7%)) had a median value of 11 weeks and
mode of 10 weeks. The IQR was 9–13 weeks; 93% of the
samples were collected at <18 weeks gestation. Samples
were stored for 0–4 days at 4°C at the collection site
before being sent to the central Bristol laboratory.
Samples were transported at room temperature for up
to 3 hours, and stored at 4°C as whole blood in the ori-
ginal collection tubes for 18–19.5 years before analysis.15

Analyses of the blood samples for whole blood
mercury and selenium were carried out by the labora-
tory of Dr Robert Jones at the Centers for Disease
Control and Prevention (CDC) (CDC method 3009.1;
unpublished information). Clotted whole blood was
digested to remove all clots, before being analysed using
inductively coupled plasma dynamic reaction cell mass
spectrometry (ICP-DRC-MS).16–19

The entire amount of clotted whole blood was trans-
ferred to a digestion tube using concentrated nitric acid
with the volume estimated from the weight.20 The blood
sample was heated in a microwave oven at a controlled
temperature and time during which the organic matrix
of the blood was digested removing the clots.
ICP-DRC-MS internal standards (iridium and tellurium)
were added at a constant concentration to all blanks,
calibrators and samples (at the time of 1:9 dilution of
digestate) to facilitate correction for instrument noise
and drift. The standard additions method of calibration
was used to optimise the analytical sensitivity of the
method for the whole blood samples. A recovery spike
was included in each analytical run for calibration verifi-
cation and as a blind quality control (QC) sample. The
ICP-DRC-MS was operated in the DRC mode using
oxygen when analysing for mercury and selenium. QC
materials as well as inhouse QC samples with control
limits unknown to the analysts were used for daily QC.
There were no samples with selenium levels below the

limit of detection (LOD) for selenium. The blood selen-
ium levels ranged from 17.0 to 324.1 µg/L, with 5th,
10th, 50th, 90th and 95th centiles of 81.4, 86.7, 108.0,
139.0 and 152.5 µg/L. The LOD for mercury was
0.24 µg/L; three samples were below this level and were
ascribed a value of 0.7 times the LOD (since the fre-
quency distribution of mercury had evidence of a lower
tail, a factor >0.5 was deemed appropriate to reflect the
likelihood that more of these three results would be
closer to the LOD than zero). The maternal blood
mercury levels ranged from 0.17 to 12.76 µg/L, with 5th,
10th, 50th, 90th and 95th centiles of 0.81, 0.99, 1.86,
3.33 and 4.02 µg/L, respectively.

Maternal dietary information
A questionnaire sent to the mother at 32 weeks gestation
included a food frequency questionnaire comprising 103
food and drink items, including 3 items related to
seafood: white fish, oily fish and shellfish. The partici-
pants were given guidelines to classify the three types
using seafood categories that are most prevalent in the
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UK. Thus, oily fish was described as including ‘salmon,
mackerel, sardines, trout, herring, pilchards, tuna, etc’;
white fish as including ‘cod, haddock, plaice, fish fingers
etc’ and shellfish as including ‘prawns, mussels, cockles,
crab etc’. The woman was asked how frequently she was
currently eating each of these groups, with options: ‘not
at all; about once in 2 weeks; 1–3 times a week; 4–7
times a week; more than once a day’.21 In the analyses
used here, we defined fish-eaters as those women report-
ing eating any white or oily fish.

Outcome measures
Resting BP and heart rates were measured at 7, 9, 11, 13,
15 and 17 years using a Dinamap 9301 Vital Signs
Monitor at a specially designed clinic. The 1994 OPCS
Dinamap Calibration Study22 indicated that this device
was highly reliable with repeat measures yielding correl-
ation coefficients of 0.88 for systolic BP and 0.83 for dia-
stolic BP. For ages up to 13, these measurements were
taken in a relaxed atmosphere, and were followed by a
discussion concerning whether to have blood taken and,
if so, having an anaesthetic cream applied (venepunc-
ture occurred some 80 min later by which time the
anaesthetic cream had enabled the procedure to be
painless). At age 15, in contrast, BP was taken while the
individual was fasting and immediately before a (fasting)
blood sample was taken. At age 17, the measurements
were taken during the anthropometry assessments.
At each age, two readings of systolic and diastolic
BP and pulse rates were recorded and the mean of each
calculated (for further details on methodology, see
Brion et al).23

Potential confounders
In this study, we allowed for a variety of social factors:
(1) a family adversity score derived from 38 factors
present in pregnancy (including maternal depression
and anxiety) used as a continuous scale; (2) housing
tenure (public housing vs rest); (3) household crowding
(no. of persons in household/no. of rooms available);
(4) stressful life events in the first half of pregnancy
(sum of 44 possible events—treated as continuous
scale); (5) smoking at 18 weeks gestation (yes vs no); (6)
alcohol consumption at 18 weeks (yes vs no); (7)

maternal age at birth; (8) parity (no. of previous deliver-
ies); (9) maternal education level achieved; and (10)
whether the child was breast fed. Since BPs varied with
the sex of the child, this factor was also taken into
account. We did not allow for birth weight or gestation
as we considered these to be possibly on a common
pathway from the exposure to the outcome.

Statistical analyses
The statistical analyses first assessed the unadjusted asso-
ciations between prenatal mercury and each of the BP
and heart rate measures on continuous scales using mul-
tiple regression. Second, the analyses were adjusted for:
sex, as well as the maternal and social factors as
described above (model A). Finally, we incorporated sel-
enium into the analyses by adding it as a covariate
(model B). The models were then repeated for children
whose mothers ate fish during pregnancy, and those
who did not. We also examined the regression analyses
to assess whether there were any interactions with sex.
Since these analyses were undertaken to assess possible

adverse effects of mercury exposure, we designed the
study to avoid type II statistical errors; consequently, we
made no allowance for multiple testing, and considered
all relationships with p<0.10.

RESULTS
Comparison of the outcome measures for the children
for whom there were measures of maternal mercury
were very similar to those of the whole tested population
of ALSPAC (see online supplementary table S1), with
the mean BPs of this study sample marginally lower (by
about 0.5 mm Hg) and mean heart rates almost identi-
cal. The data used in these analyses (table 1) demon-
strate that with increasing age, the mean systolic BP
increased fairly steadily but with a sudden increase at
age 15 and fall at 17. The mean diastolic pressure
showed a similar pattern, but it was less dramatic. The
resting heart rate, in contrast, fell steadily from age 7,
but with an unexpected increase at age 15, and then a
fall at age 17. It should be noted that at the 15-year
assessment, the child’s BP was measured when he/she
was about to have a fasting blood sample taken—thus,
the measurement is likely to have been influenced by

Table 1 Mean blood pressure and pulse levels (95% CIs) for the offspring for whom there was a prenatal blood mercury

measure

Age at measurement (years) N Systolic BP* Diastolic BP* Pulse rate†

7 2207–9 98.43 (98.05 to 98.82) 56.09 (55.82 to 56.37) 83.19 (82.74 to 83.63)

9 2125 102.08 (101.69 to 102.46) 57.10 (56.84 to 57.37) 78.98 (78.54 to 79.42)

11 1950 104.98 (104.54 to 105.42) 58.50 (58.21 to 58.79) 75.54 (75.04 to 76.04)

13 1540 107.56 (107.05 to 108.07) 58.11 (57.79 to 58.43) 70.53 (69.97 to 71.08)

15 1494–5 122.97 (122.32 to 123.62) 66.47 (65.99 to 66.95) 74.23 (73.47 to 74.99)

17 1268 118.05 (117.44 to 118.66) 63.85 (63.49 to 64.21) 64.99 (64.46 to 65.53)

*mm Hg.
†BPM.
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his/her fasting state and by the fact that preparations
for immediate venepuncture were being taken at the
same time.

Relationships between prenatal fish eating and mercury
levels
The way in which the total blood mercury varies with
the amount of fish eaten is shown in table 2. The means
and medians are shown. Since the variation of mercury
levels tends to be skewed,15 comparison of the medians
is likely to be more meaningful. This shows that for
white and oily fish, the biggest contrasts are between the
women who do not eat fish and those who eat at least
once in 2 weeks; in comparison, the levels of mercury
show little variation with the frequency of fish consump-
tion, particularly for white fish. For the subsequent ana-
lyses, we therefore define fish eaters as those who eat
any type of white or oily fish at least once in 2 weeks.

Relationships between prenatal fish eating and offspring
outcomes
The unadjusted mean BPs and heart rates of the off-
spring are compared between the children of women
who ate fish in pregnancy and those who did not in
table 3. Those children born to women who ate fish in
pregnancy differed from those who did not in showing a
significant reduction in systolic pressure at age 9, but a
significant increase at age 11. There were no such differ-
ences in the mean diastolic BPs between the two groups,
but the heart rates in the younger age groups were lower
among the offspring of the fish eaters.

Relationships between prenatal mercury and offspring
outcomes
Since the women who ate fish in pregnancy had higher
blood mercury levels, but no evidence that their chil-
dren’s BPs differed from those whose mothers ate no
fish, we anticipated that there would be little in the way
of a consistent relationship between maternal blood
mercury and offspring BP, but since the mean heart
rates of the offspring of the fish eaters were lower, we
predicted a possible negative association with heart rate.
The unadjusted and adjusted associations between

mercury and systolic BPs are shown in table 4 for (1) all
children, (2) those whose mothers ate fish and (3) those
whose mothers ate no fish. Results of the analyses

adjusted using model A show that for the whole sample,
the associations between systolic BP and maternal
mercury were positive for five of the six ages, but none
approached statistical significance. Separate analysis of
the children born to the mothers who ate fish showed
similar positive regression coefficients at all ages, but not
approaching statistical significance. However, for the
children born to women who ate no fish, even though
the CIs were wide, there was a significant association at
age 11: β=+2.71(95% CI +0.77 to +4.66) mm Hg increase
for each SD in maternal prenatal blood mercury
(p=0.006). Comparison of the regression coefficients
between the fish and non-fish-eaters revealed significant
interactions at ages 11 and 15—the regression coeffi-
cient at 11 being significantly greater for the
non-fish-eaters, but at 15, the coefficient for the fish
eaters was greater than that for the non-fish-eaters.
Similar analyses for the adjusted diastolic BPs are

shown in online supplementary table S2 and sum-
marised in table 5. Of the six measures for all children
combined, there were four positively associated, three at
the p<0.10 level. Considering the children of fish eaters
separately, all the associations were positive, one being
significant at the 0.05 level at age 9. For the children of
the non-fish eaters, four were positive and two negative
(one at the 0.10 level at age 15). The differences
between the regression coefficients between the mater-
nal fish and non-fish-consumers at age 15 were signifi-
cant (p<0.05), the coefficient for the fish eaters being
higher.
Since we had shown differences in resting heart rates

between children of fish and non-fish eaters, we had
anticipated that there would be associations with mater-
nal blood mercury levels. In fact, of the 18 adjusted asso-
ciations we considered, none were significant at the 0.05
level and only 1 at the 0.10 level shown in online
supplementary table S3 and summarised in table 6.
There were no significant differences between the chil-
dren of the fish and non-fish eaters.

Adjustment for selenium
In this study, blood levels of selenium are closely corre-
lated with the blood levels of mercury in the study
mothers (r=0.338; n=4134; p<0.001), and given that
there is some evidence that blood selenium is positively
associated with BP,24 we repeated the analyses allowing

Table 2 Mean (SD) and median levels of prenatal total blood mercury according to fish intake

Frequency

Oily fish White fish

N Mean (SD) Median N Mean (SD) Median

Never/rarely 1479 1.75 (0.94) 1.55 644 1.63 (1.02) 1.39

Once in 2 weeks 1139 2.28 (1.08) 2.08 1396 2.09 (0.99) 1.92

1–3 times/week 803 2.52 (1.16) 2.27 1374 2.35 (1.14) 2.10

4+ times/week 42 2.38 (1.02) 2.36 49 2.34 (1.15) 2.08

R2 8.13% 5.15%
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for selenium (model B in see online supplementary
tables S1–S3). The results showed that the effect sizes
for the relationships with mercury fell slightly in 78% of
the systolic BP analyses, in 56% of those relating to dia-
stolic BP, but only 11% of the analyses for heart rate. In
comparison, the effect sizes increased between models A
and B in 17%, 33% and 83%, respectively. In no
instance did the change in effect size change the conclu-
sions of the overall analyses.

Gender interactions
We investigated the possibility that there might be differ-
ences in response to mercury between the genders. We
therefore repeated all the adjusted analyses for all
mother–offspring pairs allowing for a gender inter-
action. Of the 18 outcomes tested, there was only 1 with
an interaction significant at the 0.05 level—systolic BP at
17 years of age (p<0.001). Further adjusted analysis
showed that the relationship with prenatal mercury was
positive for boys and negative for girls: boys β=+0.98
(95% CI +0.02 to +1.94); girls: β=−0.34 (95% CI −1.02
to +0.34). No other contrasts between the sexes showed
similar variations (data not shown).

DISCUSSION
This set of analyses was devised to address the question
as to whether exposure to mercury in pregnancy has a
detectable effect on the resting BPs or heart rates of the
offspring. In spite of deliberately not taking account of
multiple testing so as not to fall into type II errors, we
found few indications that in a normal population of
fish consumers, there is an increase in BP in childhood
and adolescence related to prenatal mercury level. Of
the adjusted associations that were statistically significant
at p<0.05, one showed a negative association with systolic
BPs of the children aged 11 years of non-fish eaters
(p=0.006) which remained significant after allowance
for selenium (p=0.008), one showed a negative associ-
ation with diastolic BP at age 15 (p=0.049) which was
not formally significant after adjustment (p=0.055). In
contrast, one set of analyses showed a positive association
with diastolic BP of the 9-year-olds born to fish-eating
women (p=0.021) but which was only marginally signifi-
cant after adjustment for selenium (p=0.052). Thus,
there was little evidence for any consistent relationships
with prenatal mercury exposure.
The possible effects of prenatal mercury exposure and

offspring BP were first assessed in a study in the Faroe
Islands where the population mainly eat sea mammals
rather than fish. The authors found that BP levels at age
7 showed an increase of 13.9 mm Hg diastolic and
14.6 mm Hg systolic as cord blood levels of mercury
increased from 1 to 10 µg/L; increased mercury levels
thereafter showed no further increase in BP.8 A later
study examined the BPs at ages 12 and 15 in the
Seychelles, a population eating a large amount of fish
but not sea mammals. Prenatal mercury exposure was
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Table 4 Relationship between prenatal mercury exposure and offspring systolic blood pressure (mm Hg)

All children Mother ate fish Mother ate no fish

Age at measurement N β (95% CI) N β (95% CI) N β (95% CI)

7 years

Unadjusted 2209 −0.13 (−0.48 to +0.22) 1825 −0.04 (−0.41 to +0.34) 270 −0.07 (−1.60 to +1.45)

(p=0.465) (p=0.854) (p=0.926)

Model A 1874 +0.13 (−0.26 to +0.53) 1634 +0.16 (−0.26 to +0.57) 235 +0.16 (−1.53 to +1.85)

(p=0.506) (p=0.462) (p=0.852)

Model B 1874 +0.10 (−0.31 to +0.51) 1634 +0.15 (−0.29 to +0.58) 235 +0.12 (−1.58 to +1.81)

(p=0.625) (p=0.511) (p=0.894)

9 years

Unadjusted 2125 −0.02 (−0.37 to +0.33) 1753 +0.23 (−0.16 to +0.62) 258 −0.60 (−2.05 to +0.86)

(p=0.898) (p=0.243) (p=0.420)

Model A 1800 +0.18 (−0.22 to +0.58) 1581 +0.26 (−0.17 to +0.68) 213 −0.17 (−1.76 to +1.43)

(p=0.377) (p=0.240) (p=0.837)

Model B 1800 +0.07 (−0.34 to +0.49) 1581 +0.19 (−0.26 to +0.63) 213 −0.27 (−1.85 to +1.32)

0.734 (p=0.412) (p=0.741)

11 years

Unadjusted 1950 +0.11 (−0.30 to +0.51) 1621 −0.07 (−0.51 to +0.37) 223 +2.14 (+0.39 to +3.89)

(p=0.606) (p=0.756) (p=0.017)

Model A 1658 +0.29 (−0.17 to +0.75) 1470 +0.02 (−0.47 to +0.50) 182 +2.71 (+0.77 to +4.66)

(p=0.220) (p=0.944) (p=0.006)

Model B 1658 +0.21 (−0.26 to +0.69) 1470 −0.05 (−0.56 to +0.45) 182 +2.64 (+0.70 to +4.58)

(p=0.377) (p=0.842) (p=0.008)

13 years

Unadjusted 1540 −0.09 (−0.55 to +0.36) 1288 +0.01 (−0.49 to +0.51) 177 +0.42 (−1.77 to +2.60)

(p=0.685) (p=0.976) (p=0.706)

Model A 1326 −0.03 (−0.55 to +0.49) 1171 +0.00 (−0.54 to +0.54) 151 +0.07 (−2.44 to +2.57)

(p=0.916) (p=0.994) (p=0.958)

Model B 1326 −0.03 (−0.56 to +0.51) 1171 +0.02 (−0.54 to +0.58) 151 −0.00 (−2.54 to +2.53)

(p=0.925) (p=0.944) (p=0.997)

15 years

Unadjusted 1495 +0.17 (−0.41 to +0.74) 1242 +0.45 (−0.21 to +1.10) 177 −1.79 (−3.99 to +0.41)

(p=0.573) (p=0.181) (p=0.110)

Model A 1283 +0.28 (−0.37 to +0.92) 1128 +0.41 (−0.28 to +1.10) 150 −2.20 (−4.61 to +0.20)

(p=0.402) (p=0.248) (p=0.072)

Model B 1283 +0.19 (−0.48 to +0.85) 1128 +0.32 (−0.40 to +1.03) 150 −2.21 (−4.64 to +0.21)

(p=0.586) (p=0.384) (p=0.073)

17 years

Unadjusted 1268 −0.04 (−0.58 to +0.50) 1054 +0.03 (−0.57 to +0.63) 153 +2.45 (+0.02 to +4.88)

(p=0.891) (p=0.922) (p=0.049)

Model A 1102 +0.12 (−0.44 to +0.69) 964 +0.16 (−0.43 to +0.75) 134 +1.74 (−0.82 to +4.30)

(p=0.675) (p=0.596) (p=0.181)

Model B 1102 +0.15 (−0.44 to +0.73) 964 +0.19 (−0.42 to +0.80) 134 +1.73 (−0.86 to +4.31)

(p=0.626) (p=0.542) (p=0.189)

Results are shown in bold typeface where p<0.10.
β gives change in BP for each SD of maternal blood.
Model A, adjustment for family adversity, housing tenure, household crowding, stress life events in first half of pregnancy, smoking midpregnancy, alcohol midpregnancy, maternal age, parity,
maternal education, offspring breast fed.
Model B, model A+selenium level.
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estimated from the mercury content of maternal hair
collected postnatally. There was no association between
prenatal mercury and offspring BP at age 12, but among
boys at age 15, there was a positive association with dia-
stolic BP after adjustment.9 The third study was from
America (Project Viva in Massachusetts) where the
authors found no association between prenatal mercury
level and BPs at ages 3 or 7 years.10

Like the American study,10 we found no consistent rela-
tionship between prenatal mercury and offspring BP. It
should be noted that the maternal blood mercury level in
ALSPAC is low compared with that in the Faroes—
ALSPAC median 1.86 µg/L and IQR 1.35 to 2.52 µg/L15

with only 0.4% >10 µg/L. Nevertheless, this distribution
is somewhat greater than found among pregnant women
in much of the developed world, including the USA.25

One other factor concerning the differences between the
Faroes and Seychelles studies and our own concerns the
statistical analyses. We controlled for a variety of socio-
economic variables as well as biological features such as
maternal age, parity, smoking and alcohol intake as well
as the sex of the child. We decided prior to the analyses
not to allow for factors that may be on the biological
pathway such as maternal hypertension and growth of the
offspring with the intention to assess whether they were
the mechanism by which any effect might have occurred.
Since no consistent associations were shown, we did not
investigate this pathway. In contrast, the adjustments in
the Faroes study allowed for maternal hypertension, the
child’s weight and sex of the child; the Seychelles study

adjusted for offspring birth weight, height and body mass
index. Neither of these studies took account of any of the
prenatal socioeconomic or biological factors included in
our study.8 9

Strengths and weaknesses
This study benefits in: (1) having more participants
studied than in the previous cohorts, and observations at
six time points; (2) using data collected prospectively on
potential confounders, with extensive information on
prenatal lifestyle (cigarette smoking and alcohol inges-
tion), socioeconomic variation as well as biological fea-
tures such as maternal age and parity, none of which
appear to have been taken into account in two of the
previous studies; (3) measures of BP and heart rate
taken in similar standardised conditions at five of the six
ages (the exception being at 15 years—see
Methodology); (4) we were able to mirror the design of
Vupputuri et al5 and compare the effects in offspring of
fish eaters (who are likely to be associated with more
methyl-mercury) compared with non-fish eaters (in
whom the blood mercury is thought to be more likely to
be predominately inorganic mercury). It should be
noted that such analyses could not be performed in
either of the other studies because almost the whole
population ate some seafood. (5) We were able to assess
whether blood selenium, levels of which are closely cor-
related with mercury, was blinding a relationships
between mercury and the cardiovascular outcomes mea-
sured here.

Table 5 Summary of adjusted associations (regression coefficients) between prenatal blood mercury and offspring diastolic

blood pressures (for full details, see online supplementary table S2)

Age of offspring (years) All cases Mothers ate fish Mothers ate no fish

7 +0.24 (−0.04 to +0.52)* +0.26 (−0.04 to +0.55)* +0.77 (−0.44 to +1.99)

9 +0.27 (−0.00 to +0.55)* +0.35 (+0.05 to +0.64)** −0.23 (−1.34 to +0.89)

11 +0.09 (−0.21 to +0.39) +0.02 (−0.29 to +0.34) +0.60 (−0.63 to +1.82)

13 +0.27 (−0.05 to +0.59)* +0.28 (−0.06 to +0.61) +0.51 (−0.93 to +1.96)

15† −0.10 (−0.59 to +0.38) +0.01 (−0.51 to +0.52) −1.98 (−3.94 to −0.01)*
17 −0.01 (−0.38 to +0.36) +0.06 (−0.32 to +0.43) +0.18 (−1.78 to +2.14)

Regression coefficients give the increase (+) or decrease (−) in diastolic BP for each SD of mercury after controlling for model A.
*p<0.10, **p<0.05.
†Significant difference between regression coefficients offspring of fish and non-fish eaters at p<0.05.

Table 6 Summary of adjusted associations (regression coefficients) between prenatal blood mercury and offspring heart rate

(for full details, see online supplementary table S3)

Age of offspring (years) All cases Mothers ate fish Mothers ate no fish

7 −0.17 (−0.62 to +0.29) −0.04 (−0.52 to +0.44) −0.68 (−2.74 to +1.37)

9 +0.12 (−0.33 to +0.57) +0.26 (−0.21 to +0.73) +0.25 (−1.80 to +2.29)

11 −0.44 (−0.95 to +0.07)* −0.27 (−0.81 to +0.28) −0.32 (−2.35 to +1.70)

13 +0.04 (−0.52 to +0.59) +0.15 (−0.44 to +0.73) −0.19 (−2.84 to +2.46)

15 −0.15 (−0.90 to +0.70) −0.04 (−0.86 to +0.78) −0.56 (−3.46 to +2.48)

17 −0.08 (−0.62 to +0.46) −0.10 (−0.68 to +0.49) +0.72 (−1.34 to +2.79)

Regression coefficients give the increase (+) or decrease (−) in heart rate for each SD of mercury.
*p<0.10.

Gregory S, et al. BMJ Open 2016;6:e012425. doi:10.1136/bmjopen-2016-012425 7

Open Access

group.bmj.com on October 27, 2016 - Published by http://bmjopen.bmj.com/Downloaded from 

http://dx.doi.org/10.1136/bmjopen-2016-012425
http://dx.doi.org/10.1136/bmjopen-2016-012425
http://bmjopen.bmj.com/
http://group.bmj.com


The disadvantage of this study concerns the generally
low levels of maternal prenatal blood mercury compared
with that of the Faroes. Nevertheless, the positive trend
of increasing systolic BP with prenatal mercury shown in
the Faroes study applied only to the lower levels of
blood mercury, and effects with offspring BP plateaued
after cord blood levels of 10 µg/L.8 Consequently, our
study should have had sufficient variation in blood
mercury levels to be able to mirror the gradient at lower
levels of mercury, should it exist.

CONCLUSIONS
We have addressed the question as to whether maternal
prenatal levels of blood mercury have any influence on
the resting BPs or heart rates of the offspring from age 7
to 17. We were unable to detect any consistent robust
associations. We conclude that for levels of mercury in a
population of pregnant women who have a range of
blood mercury levels of <10 µg/L, there is little to
suggest an effect on the BP of the offspring during
childhood and adolescence.
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