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A model of multi-agent consensus for
vague and uncertain beliefs

Michael Crosscombe and Jonathan Lawry

Abstract
Consensus formation is investigated for multi-agent systems in which agents’ beliefs are both vague and uncertain.
Vagueness is represented by a third truth state meaning borderline. This is combined with a probabilistic model of uncer-
tainty. A belief combination operator is then proposed, which exploits borderline truth values to enable agents with con-
flicting beliefs to reach a compromise. A number of simulation experiments are carried out, in which agents apply this
operator in pairwise interactions, under the bounded confidence restriction that the two agents’ beliefs must be suffi-
ciently consistent with each other before agreement can be reached. As well as studying the consensus operator in isola-
tion, we also investigate scenarios in which agents are influenced either directly or indirectly by the state of the world.
For the former, we conduct simulations that combine consensus formation with belief updating based on evidence. For
the latter, we investigate the effect of assuming that the closer an agent’s beliefs are to the truth the more visible they
are in the consensus building process. In all cases, applying the consensus operators results in the population converging
to a single shared belief that is both crisp and certain. Furthermore, simulations that combine consensus formation with
evidential updating converge more quickly to a shared opinion, which is closer to the actual state of the world than
those in which beliefs are only changed as a result of directly receiving new evidence. Finally, if agent interactions are
guided by belief quality measured as similarity to the true state of the world, then applying the consensus operator alone
results in the population converging to a high-quality shared belief.

Keywords
Consensus, opinion pooling, multi-agent systems, vagueness, uncertainty

1 Introduction

Reaching an agreement by identifying a position or
viewpoint that can ultimately be accepted by a signifi-
cant proportion of the individuals in a population is a
fundamental part of many multi-agent decision making
and negotiation scenarios. In human interactions, opi-
nions can take the form of vague propositions with
explicitly borderline truth values, i.e. where the propo-
sition is neither absolutely true nor absolutely false
(Keefe & Smith, 2002). Indeed, a number of recent
studies (Balenzuela, Pinasco, & Semeshenko, 2015;
Crosscombe & Lawry, 2015; de la Lama, Szendro,
Iglesias, & Wio, 2012; Perron, Vasudevan, & Vojnovic,
2009; Vazquez & Redener, 2004) have suggested that
the presence of an intermediate truth state of this kind
can play a positive role in opinion dynamics by allow-
ing compromise and hence facilitating convergence to a
shared viewpoint.

In addition to vagueness, individuals often have
uncertain beliefs, owing to the limited and imperfect
evidence that they have available to them about the
true state of the world. In this paper, we propose a

model of belief combination by which two independent
agents can reach a consensus between distinct and, to
some extent, conflicting opinions that are both uncer-
tain and vague. We show that, in an agent-based sys-
tem, iteratively applying this operator under a variety
of conditions results in the agents converging on a sin-
gle opinion which is both crisp (i.e. non-vague) and
certain.

However, beliefs are not arrived at only as the result
of consensus building within a closed system, but are
also influenced by the actual state of the world. This
can arise both by agents updating their beliefs given
evidence, and by them receiving different levels of pay-
off for decisions and actions taken on the basis of their
beliefs. In this paper, we model both of these processes
when combined with consensus formation. We consider
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the case in which a population of agents interact conti-
nually at random, forming consensus where appropri-
ate, but occasionally receiving direct information about
the state of the world. Defining a measure of belief
quality, taking account of the similarity between an
agent’s belief and the true state of the world, we then
record this quality measure in simulations that combine
both consensus building and belief updating from evi-
dence and compare these with simulations in which
only evidence-based updating occurs. In these studies,
we observe that combining evidence-based updating
and consensus building results in faster convergence to
higher quality beliefs than when beliefs are only chan-
ged as a result of receiving new evidence. This would
seem to offer some support for the hypothesis put for-
ward by Douven and Kelp (2011), that scientists may
gain by taking account of each others’ opinions as well
as by considering direct evidence.

In addition to direct evidence, there are also indirect
mechanisms by which agents receive feedback on the
quality of beliefs. For example, when agents make deci-
sions and take actions based on their beliefs, they may
receive some form of reward or payoff. In such cases, it
is reasonable to assume that the higher the quality of
an agent’s beliefs, i.e. the closer the beliefs are to the
true state of the world, the higher the payoff that the
agent will receive on average. Here we investigate a sce-
nario in which the quality of an agent’s beliefs influ-
ences their visibility in the consensus building process.
This is studied in simulation experiments in which inter-
actions between agents are guided by the quality of
their beliefs, so that individuals holding higher quality
opinions are more likely to be selected to combine their
beliefs.

The remainder of the paper is structured as follows.
The next section gives an overview of related work in
this area. Then we introduce a propositional model of
belief, which incorporates both vagueness and uncer-
tainty, and proposes a combination operator for gener-
ating a compromise between two distinct beliefs. A set
of simulation experiments are then described, in which
agents interact at random and apply the combination
operator, provided that they hold sufficiently consistent
beliefs. Next, we combine random agent interactions
and consensus formation with belief updating, based
on direct evidence about the true state of the world.
After this, we describe simulation experiments in which
agent interactions are dependent on the quality of their
beliefs. Finally, we present some conclusions and dis-
cuss possible future directions.

2 Background and related work

A number of studies in the opinion dynamics literature
exploit a third truth state to aid convergence and also

to mitigate the effect of a minority of highly opinio-
nated individuals. For example, de la Lama et al. (2012)
and Vazquez and Redener (2004) study scenarios in
which interactions only take place between agents with
a clear viewpoint and undecided agents. Alternatively,
Balenzuela et al. (2015) define the three truth states by
applying a partitioning threshold to an underlying real
value. Updating is pairwise between agents and takes
place incrementally on the real values, except that the
magnitude and sign of the increments depends on the
current truth states of the agents involved. An alterna-
tive pairwise three-valued operator is proposed by
Perron et al. (2009), and is applied directly to truth
states. In particular, this operator assigns the third truth
state as a compromise between two opinions with
strictly opposing truth values. The logical properties of
this operator and its relationship to other similar aggre-
gation functions are investigated by Lawry and Dubois
(2012). For a language with a single proposition and
assuming unconstrained random interactions between
individuals, Perron et al. proves convergence to a single
shared Boolean opinion. This framework is extended
by Crosscombe and Lawry (2015) to languages with
multiple propositions and to include a form of bounded
confidence (see Hegselmann & Krause, 2002), in which
interactions only take place between individuals with
sufficiently consistent opinions. Furthermore,
Crosscombe and Lawry (2015) also investigate conver-
gence when the selection of agents is guided by a mea-
sure of the quality of their opinions and shows that the
average quality of opinions across the population is
higher at steady state than at initialization.

One common feature of most of these studies is that,
either explicitly or implicitly, they interpret the third
truth value as meaning ‘uncertain’ or ‘unknown’. In
contrast, as stated in our introduction, we intend the
middle truth value to refer to borderline cases resulting
from the underlying vagueness of the language. So, for
example, given the proposition ‘Ethel is short’, the
intermediate truth value means that Ethel’s height is on
the borderline between short and not short, rather than
meaning that Ethel’s height is unknown. This approach
allows us to distinguish between vagueness and uncer-
tainty, so that, for instance, based on their knowledge
of Ethel’s height, agents could be certain that she is
borderline short. A more detailed analysis of the differ-
ence between these two possible interpretations of the
third truth state is given by Ciucci, Dubois, and Lawry
(2014).

The idea of bounded confidence (Deffuant,
Amblard, Weisbuch, & Faure, 2002; Hegselmann &
Krause, 2002) has been proposed as a mechanism by
which agents limit their interactions with others, so that
they only combine their beliefs with individuals holding
opinions that are sufficiently similar to their current
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view. A version of bounded confidence is also used in
our proposed model, where agents each measure the
relative inconsistency of their beliefs with those of oth-
ers, and are then only willing to combine beliefs with
agents whose inconsistency measure is below a certain
threshold.

The aggregation of uncertain beliefs in the form of a
probability distribution over some underlying para-
meter has been widely studied with work on opinion
pooling dating back to Stone (2004) and DeGroot
(1974). Usually the aggregate of a set of opinions takes
the form of a weighted linear combination of the asso-
ciated probability distributions. However, the conver-
gence of alternative opinion pooling functions has been
studied by Hegselmann and Krause (2005) and axio-
matic characterizations of different operators are given
by Dietrich and List (2016). All of these approaches
assume Boolean truth states; indeed, there are very few
studies in this context that combine probability with a
three-valued truth model. One such is that of Cho and
Swami (2014), who adopt a model of beliefs in the form
of Dempster–Shafer functions. The combination opera-
tors proposed by Cho and Swami, however, are quite
different from those described in this paper and result
in quite different limiting behaviour. The operator
investigated in this paper was first proposed by Lawry
and Dubois (2012) as an extension of the approach of
Perron et al. (2009) to take account of probabilistic
uncertainty; to our knowledge, it has not, up to this
point, been studied in an agent-based setting. Hence, in
contrast with the work of Lawry and Dubois (2012),
the focus of this paper is on the system-level behaviour
of the proposed operator rather than on its theoretical
properties.

3 A consensus operator for vague and
uncertain beliefs

We consider a simple language consisting of n proposi-
tions L= fp1, . . . , png. Each can have one of three
truth values: 0, denoting false, 1

2
, denoting borderline

and 1, denoting true. A valuation of L corresponds to
an allocation of a truth value to each of the proposi-
tions. Consequently, a valuation is naturally repre-
sented as an n-dimensional vector v 2 f0, 1

2
, 1gn. We let

v(pi) denote the ith dimension of v as corresponding to
the truth value of the proposition pi in the valuation v.
In the absence of any uncertainty, we assume that an
agent’s opinion is represented by a single valuation.
For two agents with distinct and possibly conflicting
opinions v1, v2 2 f0, 1

2
, 1gn to reach a compromise posi-

tion or consensus, we propose an operator introduced
by Perron et al. (2009) and Lawry and Dubois (2012),
and based on the truth table given in Table 1, which is
applied to each proposition independently so that

v1 � v2 =(v1(p1)� v2(p1), . . . , v1(pn)� v2(pn))

The intuition behind the operator is as follows: in
the case that the two agents disagree, if one agent has
allocated a non-borderline truth value to pi, while the
other has given pi a borderline truth value, then the
non-borderline truth value is adopted in the agreed
compromise. In other words, if one agent has a strong
view about pi while the other is ambivalent, then they
will both agree to adopt the strong viewpoint. In con-
trast, if both agents have strong but opposing views,
i.e. with one valuation giving pi truth value 0 and the
other 1, then they will agree on a compromise truth
value of 1

2
.

Here we extend this model to allow agents to hold
opinions that are uncertain as well as vague. More spe-
cifically, an integrated approach to uncertainty and
vagueness is adopted, in which an agent’s belief is char-
acterized by a probability distribution w over f0, 1

2
, 1gn

so that w(v) quantifies the agent’s belief that v is the
correct valuation of L. This naturally generates lower
and upper belief measures on L, quantifying the agent’s
belief that a given proposition is true and that it is not
false respectively (Lawry & Tang, 2012). That is, for
pi 2 L

1

m(pi)=w(fv : v(pi)= 1g)

and

m(pi)=w(fv : v(pi) 6¼ 0g)

The probability of each of the possible truth values for
a proposition pi can be recaptured from the lower and
upper belief measures, such that the probabilities that
pi is true, borderline and false are given by m(pi),
m(pi)� m(pi) and 1� m(pi), respectively. Hence, we can
represent an agent’s belief by a vector of pairs of lower
and upper belief values for each proposition as

m=((m(p1),m(p1)), . . . , (m(pn),m(pn)))

Here we let m(pi) denote (m(pi),m(pi)), the pair of lower
and upper belief values for pi. In the case that a belief m
gives probability zero to the borderline truth value for
every proposition in L, so that m(pi)=m(pi)=m(pi) for
i= 1, . . . , n, then we call m a crisp belief.

Table 1. Truth table for the consensus operator.

� 1 1=2 0

1 1 1 1=2
1=2 1 1=2 0
0 1=2 0 0
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The following definition expands the consensus
operation � from three-valued valuations to this more
general representation framework.

Definition 1. Consensus operator for belief pairs.

m1 � m2 =((m
1
� m

2
(p1),m1 � m2(p1)), . . . ,

(m
1
� m

2
(pn),m1 � m2(pn)))

where

m
1
� m

2
(pi)=m

1
(pi)3 m2(pi)+m1(pi)3 m

2
(pi)

� m
1
(pi)3 m

2
(pi)

and

m1 � m2(pi)=m
1
(pi)+m

2
(pi)+m1(pi)3 m2(pi)

� m1(pi)3 m
2
(pi)� m

1
(pi)3 m2(pi)

If m1 and m2 are generated by the probability distri-
butions w1 and w2 on f0, 1

2
, 1gn, respectively, then

m1 � m2 corresponds to the lower and upper measures
generated by the following combined probability distri-
bution on f0, 1

2
, 1gn (Lawry & Dubois, 2012)

w1 � w2(v)=
X

v1, v2:v1�v2 = v

w1(v1)3 w2(v2)

In other words, assuming that the two agents are inde-
pendent, all pairs of valuations supported by the two
agents are combined using the consensus operator for
valuations and then aggregated. Interestingly, this oper-
ator can be reformulated as a special case of the union
combination operator in Dempster–Shafer theory (see
Shafer, 1976) proposed by Dubois and Prade (1988).
To see this, notice that, given a probability distribution
w on f0, 1

2
, 1g, we can generate a Dempster–Shafer

mass function m on the power set of f0, 1g for each
proposition pi such that

m(f1g)=w(fv : v(pi)= 1g)=m(pi)

m(f0g)=w(fv : v(pi)= 0g)= 1� m(pi)

m(f0, 1g)=w(fv : v(pi)=
1

2
g)=m(pi)� m(pi)

In this reformulation then, the lower and upper mea-
sures m(pi) and m(pi) correspond to the Dempster–
Shafer belief and plausibility of f1g, as generated by m,
respectively. Now, in this context, the union combina-
tion operator is defined as follows. Let m1 and m2 be
two mass functions generated as before by probability
distributions w1 and w2. Also let c be a set combination
function defined as

c(A,B)=
A \ B : A \ B 6¼ ;
A [ B : otherwise

�

Then the combination of m1 and m2 is defined by

m1 � m2(D)=
X

A,B�f0, 1g:c(A,B)=D

m1(A)3 m2(B)

The belief and plausibility of f1g generated by m1 � m2

then correspond to m
1
� m(pi) and m1 � m(pi), respec-

tively, as given in Definition 1.

Example 1. Suppose two agents have the following
beliefs about proposition pi: m1(pi)= (0:6, 0:8) and
m2(pi)= (0:4, 0:7). The associated probability distribu-
tions on valuations, w1 and w2, are then such that

w1(fv : v(pi)= 1g)= 0:6

w1 v : v(pi)=
1

2

� �� �
= 0:8� 0:6= 0:2

w1(fv : v(pi)= 0g)= 1� 0:8= 0:2

and

w2(fv : v(pi)= 1g)= 0:4,

w2 v : v(pi)=
1

2

� �� �
= 0:7� 0:4= 0:3,

w2(fv : v(pi)= 0g)= 1� 0:7= 0:3

From this, we can generate a probability table (Table 2).
Here, the corresponding truth values are generated as in
Table 1 and the probability values in each cell are the
product of the associated row and column probability val-
ues. From this table, we can then determine the consensus
belief in pi by taking the sum of the probabilities of the
cells with truth value 1 to give the lower measure and the
sum of the probabilities of the cells with truth values of
either 1 or 1

2
to give the upper measure. That is

m
1
� m

2
(pi)= 0:24+ 0:08+ 0:18= 0:5

m2 � m2(pi)= 0:24+ 0:08+ 0:18+ 0:18+ 0:06+ 0:08

= 0:82

We now introduce three measures that will subse-
quently be used to analyse the behaviour of multi-agent
systems applying the operator given in Definition 1.

Definition 2. A measure of vagueness.
The degree of vagueness of the belief m is given by

Table 2. Probability table for the consensus operator.

� 1 : 0:6 1

2
: 0:2 0 : 0:2

1 : 0:4 1 : 0:24 1 : 0:08 1

2
: 0:08

1

2
: 0:3

1 : 0:18 1

2
: 0:06

0 : 0:06

0 : 0:3 1

2
: 0:18

0 : 0:06 0 : 0:06
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1

n

Xn

i= 1

(m(pi)� m(pi))

Definition 2 is simply the probability of the truth
value 1

2
averaged across the n propositions in L. Since,

in this model, vagueness is associated with borderline
truth values, this provides an intuitive measure of the
degree of vagueness of an opinion. Accordingly, the
most vague belief has (m(pi),m(pi))= (0, 1) for
i= 1, . . . , n.

Definition 3. A measure of uncertainty.
The entropy of the belief m is given by

1

n

Xn

i= 1

H(pi)

where

H(pi)= � m(pi) log2 (m(pi))

� (m(pi)� m(pi)) log2 (m(pi)� m(pi))

� (1� m(pi)) log2 (1� m(pi))

Definition 3 corresponds to the entropy of the mar-
ginal distributions on f0, 1

2
, 1g, averaged across the n

propositions. Hence, according to this measure, the
most uncertain belief allocates probability 1

3
to each of

the truth values for each proposition so that

m=
1

3
,

2

3

� �
, . . . ,

1

3
,

2

3

� �� �

The most certain beliefs then correspond to those for
which for every proposition (m(pi),m(pi))= (0, 0), (0, 1)
or (1, 1).

Definition 4. A measure of inconsistency.
The degree of inconsistency of two beliefs m1 and m2

is given by

1

n

Xn

i= 1

m
1
(pi)3 (1� m2(pi))+ (1� m1(pi))3 m

2
(pi)

� �

Definition 4 is the probability of a direct conflict
between the two agents’ beliefs, i.e. with agent 1 allo-
cating the truth value 1 and agent 2 the truth value 0 or
vice versa, this being then averaged across all n
propositions.

4 Simulation experiments with random
selection of agents

We now describe simulation experiments in which pairs
of agents are selected to interact at random. A model
of bounded confidence is applied according to which,
for each selected pair of agents the consensus operation
(Definition 1) is applied if and only if the measure of
inconsistency between their beliefs, as given in

Definition 4, does not exceed a threshold parameter
g 2 ½0, 1�. Notice that with g = 0 we have a very con-
servative model in which only entirely consistent beliefs
can be combined, while for the case that g = 1 we have
a model that is equivalent to a totally connected inter-
action graph, whereby any pair of randomly selected
agents may combine their beliefs. In the following,
results are presented for a population of 1000 agents
and for the language sizes jLj 2 f1, 3, 5g. Agents’
beliefs are initialized by sampling at random from the
space of all possible beliefs f(x, y) 2 ½0, 1�2 : x < ygn.
Each run of the simulation is terminated after 50, 000

iterations and the results are averaged over 100 inde-
pendent runs. (We found 50, 000 iterations sufficient to
allow simulations to converge across a range of para-
meter settings.)

Figure 1 shows that the mean number of unique
beliefs after 50, 000 iterations decreases with g and that
for g � 0:5 there is, on average, a single belief shared
across the population. Furthermore, Figure 2 shows
that the vagueness of beliefs, as given in Definition 2,

Figure 1. Number of unique beliefs after 50, 000 iterations
for varying inconsistency thresholds g and various language
sizes jLj.

Figure 2. Average vagueness after 50, 000 iterations for varying
inconsistency thresholds g and various language sizes jLj.
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averaged both across the different agents and across
the independent simulation runs, also decreases with g,
so that for g � 0:5 the population has converged to
crisp beliefs, i.e. those with a vagueness measure value
of 0. Similarly, from Figure 3 we can see that the
entropy of beliefs, as given by Definition 3, decreases
with g, and that for g � 0:5 the population hold beliefs
with mean entropy 0 at the end of the simulation.
Hence, summarizing Figures 1 to 3, we have that, pro-
vided the consistency restrictions are sufficiently
relaxed, i.e. for g � 0:5, then a population with beliefs
initially allocated at random and with random interac-
tions will converge to a single belief that is both crisp
and certain. Unsurprisingly, given the random nature
of the agent interactions, the 2n beliefs of this form
occur with a uniform distribution across the 100 inde-
pendent runs of the simulation.

In addition to the overall consensus reached between
agents when g � 0:5, intermediate values of g between
0.15 and 0.35 tend to result in a population with highly
polarized opinions. To see this, consider Figure 4,
which shows the average pairwise inconsistency mea-
sure value between agents at the end of this simulation
and plotted against g. For example, consider the case
when jLj= 1, shown as the full black line in Figures 1
to 4. In this case, we see that the mean inconsistency
value is a maximum of 0.5 at around g = 0:28.
Furthermore, from Figures 1 to 3, we see that for this
value of g the average number of unique beliefs, vague-
ness and entropy are all relatively low. Consequently,
we are seeing a polarization of opinions, where individ-
uals hold a small number of highly inconsistent beliefs
that are also relatively crisp and certain. Such beha-
viour, while still present, is less pronounced for lan-
guage sizes jLj= 3 and 5. This may be because, since
Definition 4 is an average of inconsistency values
across the propositions in L, increasing the language
size reduces the variance of the inconsistency values in
the initial population. Furthermore, as jLj increases,

the distribution of inconsistency values is approxi-
mately normal with mean 2

9
. Hence, for g � 2

9
, the prob-

ability that a randomly selected pair of agents will have
an inconsistency value exceeding g decreases as jLj
increases. This will in turn increase the probability of
agreement in any interaction, reducing the likelihood of
opinion polarization for g � 2

9
.

5 Simulation experiments involving
consensus formation and belief
updating

Hegselmann and Krause (2005) investigated an opinion
model in which agents receive direct evidence about the
state of the world, perhaps from an ongoing measure-
ment process, as well as pooling the opinion of others
with similar beliefs. Their original model involved real
valued beliefs but has been adapted by Reigler and
Douven (2009) to the case in which beliefs and evidence
are theories in a propositional logic language. The fun-
damental question under consideration is whether or to
what extent dialogue between individuals, for example
scientists, helps them to find the truth, or whether they
are instead better off simply to wait until they receive
direct evidence. In this section, we investigate this ques-
tion in the context of vague and uncertain beliefs, where
consensus building is modelled using the combination
operator in Definition 1. Direct evidence is then pro-
vided to the population at random instances when indi-
viduals are told the truth value of a proposition. These
agents then update their beliefs by adopting a compro-
mise position between their previous opinions and the
evidence provided.

We assume that the true state of the world is a
Boolean valuation v� on L so that v�(pi) 2 f0, 1g for
i= 1, . . . , n. Now, given the discussion earlier in this
paper about interpreting the third truth value as mean-
ing ‘borderline’, this is clearly a simplification from that

Figure 4. Average pairwise inconsistency after 50, 000
iterations for varying inconsistency thresholds g and various
language sizes jLj.

Figure 3. Average entropy after 50, 000 iterations for varying
inconsistency thresholds g and various language sizes jLj.
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perspective. For example, consider the proposition
‘Ethel is short’; an experiment could involve measuring
Ethel’s height according to some mechanism, and then
comparing it with the experimenter’s definition of the
term ‘short’ to determine the truth value of the proposi-
tion. If that definition is three-valued, the outcome of
the experiment could well be to identify a borderline
truth value for the proposition. However, the conven-
tion in science is to establish an agreed crisp definition
of all the terms used to express a hypothesis so that the
resulting proposition is falsifiable. This would then be
consistent with our identification of the true state of
the world with a Boolean valuation. In the following
definition we propose a measure of belief quality that
quantifies the similarity of an agent’s beliefs to the true
state of the world. This will subsequently be used to
assess the extent to which the population has converged
to the truth. Furthermore, it will also be employed as a
mechanism for providing indirect information about
the state of the world.

Definition 5. A quality measure.
Let f : L! f�1, 1g be such that f (pi)= 2v�(pi)� 1

is the payoff for believing that pi has truth value 1 and
�f (pi) is the payoff for believing that the truth value of
pi is 0. Furthermore, it is always assumed that believing
that pi has truth value 1

2
has payoff 0. Then we define the

quality or payoff for the belief m by

Xn

i= 1

f (pi)(m(pi)+m(pi)� 1)
� �

Notice that

f (pi)(m(pi)+m(pi)� 1)=

f (pi)m(pi)+ (� f (pi))(1� m(pi))

corresponding to agents’ expected payoff from their
beliefs about proposition pi. Definition 5 then takes the
sum of this expected payoff across the propositions
in L.

The simulations consist of 1000 agents with beliefs
initially picked at random from f(x, y) 2 ½0, 1�2 :
x < ygn, as before. Furthermore, the true state of the
world v� is picked at random from f0, 1gn prior to the
simulation and the payoff f is calculated as in
Definition 5. Each run of the simulation is terminated
after 50, 000 iterations and the results are averaged over
100 runs. At each iteration, two agents are selected at
random and apply the consensus operator (Definition
1) provided that the inconsistency level of their current
beliefs does not exceed g. Furthermore, at each itera-
tion there is a fixed a% chance of direct evidence being
presented to the population. In the case that it is, an
agent is selected at random and told the value of v�(pi)
for some proposition also selected at random from

those in L. The agent’s beliefs are then updated from m
to m0, where

m0=m� (0, 1), . . . , (v�(pi), v
�(pi)), . . . , (0, 1)ð Þ

In other words, the agent adopts a new set of beliefs
formed as a compromise between previously held
beliefs and the evidence, the latter being interpreted as
a set of beliefs where m(pi)= (v�(pi), v

�(pi)) and
m(pj)= (0, 1) for j 6¼ i. That is, they form a consensus
with an alternative opinion that is certain about the
truth value of pi and is neutral about the other proposi-
tions. Notice that in this case it follows from Definition
1 that m0(pi)= (m(p1), 1) if v�(pi)= 1, m0(pi)= (0,m(pi))
if v�(pi)= 0 and m0(pj)=m(pj) for j 6¼ i. The combined
consensus and evidential belief updating approach can
then be compared with simulations in which only this
belief updating model is applied and in which there is
no consensus building.

In this section, we focus on evidence rates of
a= 5, 15 and 30% and we assume that the language
size is jLj= 5. For these parameter settings, Figure 5
shows that for g � 0:4, all three cases in which eviden-
tial updating is combined with consensus formation
converge on a shared belief across the population.
Furthermore, the higher the evidence rate a, the greater
the convergence for any given threshold value g. It is
also clear from Figure 5 that combining consensus
building with evidential updating leads to much better
convergence than evidence-based updating alone. For
instance, we see that for evidential updating alone it is
only with an evidence rate of 30% that there is a large
reduction in the number of distinct beliefs in the popu-
lation after 50, 000 iterations, with the population still
containing over 900 different opinions for both the 5%
and 15% rates. Furthermore, Figure 6 shows a typical
trajectory for the average number of unique beliefs

Figure 5. Number of unique beliefs after 50, 000 iterations for
varying inconsistency thresholds g, jLj= 5 and evidence rates
a= 5, 15 and 30%. Solid lines refer to evidential updating
combined with consensus building while dotted lines refer to
evidential updating only.
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against iterations when g = 0:8. Notice that after
25, 000 iterations all three of the combined models have
converged to a single shared belief. By contrast, the
evidence-only approaches have still not converged after
50, 000 iterations, where even with a 30% evidence rate
there are still over 600 distinct opinions remaining in
the population.

Taken together with Figure 5, Figures 7 and 8 show
that, assuming a sufficiently high threshold value
g � 0:4, the combined consensus building and updating
approach results in convergence to a shared belief that
is both crisp and certain. Again, increasing the evidence
rate leads to a reduction in both average vagueness and
average entropy for any given threshold value and
evidence-based updating alone results in much higher
values for the same evidence rate. The overall conver-
gence of the population is also shown by the average
pairwise inconsistency values in Figure 9. The

convergence of the combined approach to a shared
opinion for all evidence rates and thresholds g � 0:4 is
reflected in a zero average inconsistency level for this
range of parameters. Notice, however, that, for all evi-
dence rates, the average inconsistency for the combined
approach has a peak value in the range 0\g\0:4, sug-
gesting that there is some polarization of opinion for
thresholds in this range. For evidence updating, only
the level of inconsistency is relatively higher than for
the combined approach, for all evidence rates, suggest-
ing that there is a much higher level of disagreement
remaining between agents after 50, 000 iterations.
Finally, Figure 10 shows the average payoff values cal-
culated as in Definition 5 and given as a percentage of
the maximum possible value, in this case, 5. These val-
ues reflect the extent to which the population have con-
verged to a set of beliefs close to the true state of the
world. For each of the three evidence rates, given a

Figure 8. Average entropy after 50, 000 iterations for varying
inconsistency thresholds g, jLj= 5 and evidence rates
a= 5, 15 and 30%. Solid lines refer to evidential updating
combined with consensus building while dotted lines refer to
evidential updating only.

Figure 7. Average vagueness after 50, 000 iterations for
varying inconsistency thresholds g, jLj= 5 and evidence rates
a= 5, 15 and 30%. Solid lines refer to evidential updating
combined with consensus building while dotted lines refer to
evidential updating only.

Figure 9. Average pairwise inconsistency after 50, 000
iterations for varying inconsistency thresholds g, jLj= 5 and
evidence rates a= 5, 15 and 30%. Solid lines refer to evidential
updating combined with consensus building while dotted lines
refer to evidential updating only.

Figure 6. Number of unique beliefs over 50, 000 iterations for
g = 0:8, jLj= 5 and evidence rates a= 5, 15 and 30%. Solid
lines refer to evidential updating combined with consensus
building while dotted lines refer to evidential updating only.

256 Adaptive Behavior 24(4)

 at University of Bristol on September 14, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


sufficiently high threshold value, the combined
approach results in an average payoff that is signifi-
cantly higher than for evidential updating alone.
Indeed for a 30% evidence rate and g � 0:3, the combi-
nation of consensus building and belief updating results
in close to the maximum payoff value on average, i.e.
the population has learnt the state of the world with an
average accuracy of close to 100%.

6 Simulation experiments with agent
selection influenced by belief quality

In this section, we consider a scenario in which agents
receive indirect feedback about the accuracy of their
beliefs in the form of payoff or reward obtained as a
result of actions that they have taken on the basis of
these beliefs. Furthermore, we assume that the closer
that an agent’s beliefs are to the actual state of the
world then the higher their rewards will be, on average.
Hence, we use the payoff measure given in Definition 5
as a proxy for this process so that agent selection in the
consensus building process is guided by the payoff or
quality measure of the agent’s beliefs. More specifi-
cally, we now investigate an agent-based system in
which pairs of agents are selected for interaction with a
probability that is proportional to the product of the
quality of their respective beliefs. For modelling socie-
tal opinion dynamics, this captures an assumption that
better performing agents, i.e. those with higher payoff,
are more likely to interact in a context in which both
parties will benefit from reaching an agreement. In bio-
logical systems, there are examples of a similar quality
effect on distributed decision making. For instance,
honeybee swarms collectively choose between alterna-
tive nesting sites by means of a dance in which individ-
ual bees indicate the direction of the site that they have

just visited (List, Elsholtz, & Seeley, 2009). The dura-
tion of the dance is dependant on the quality of the site
and this in turn affects the likelihood that the dancer
will influence other bees. Artificial systems can, of
course, be designed so that interactions are guided by
quality, provided that a suitable measure of the latter
can be defined, as is typically the case in evolutionary
computing.

We now describe the results from running agent-
based simulations mainly following the same template
as before but with an important difference. Instead of
being selected at random, agents were instead selected
for interaction with probability proportional to the
quality value of their beliefs, as given in Definition 5.
The true state of the world v� was chosen at random
from f0, 1gn prior to running the simulation and the
payoff function f was then determined as in
Definition 5. As in the previous sections, the popula-
tion consisted of 1000 agents with initial beliefs selected
at random from f(x, y) 2 ½0, 1� : x < ygn. All results in
this section relate to the language size jLj= 5.

Figure 11 shows the mean number of unique beliefs
for the consensus operator after 50, 000 iterations
plotted against the inconsistency threshold g. For
g � 0:5, applying the consensus operator results in the
population of agents converging on a single shared
belief. Figures 12 and 13 show the average vagueness
and entropy of the beliefs held across the population of
agents at the end of the simulation. In Figure 12, we see
that, for g � 0:5, the beliefs resulting from applying the
consensus operator are crisp. Figure 13 shows that the
mean entropy values decreases as g increases, resulting
in an average entropy of 0 for g � 0:5. Overall then, as
before, for g � 0:5, the population of agents converge
on a single shared belief, which is both crisp and cer-
tain. Figure 14 shows the average pairwise inconsis-
tency of the population increases at lower threshold
values prior to exceeding the mean inconsistency value
of 2

9
. For inconsistency thresholds g � 0:3, the average

Figure 10. Average payoff after 50, 000 iterations for varying
inconsistency thresholds g, jLj= 5 and evidence rates
a= 5, 15 and 30%. Solid lines refer to evidential updating
combined with consensus building while dotted lines refer to
evidential updating only.

Figure 11. Number of unique beliefs after 50, 000 iterations
for varying inconsistency thresholds g and jLj= 5.
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pairwise inconsistency decreases in line with the number
of unique beliefs (seen in Figure 11) as the population
converges towards a single shared belief.

Figure 15 shows the average quality of beliefs
(Definition 5) at the end of the simulation, plotted
against g and given as a percentage of the maximum
possible quality value. For g � 0:5, the consensus oper-
ator converges on a single shared crisp and certain
belief with a quality value that is, on average, over
80% of the maximum. Hence, unlike the previous
experiments, in which convergence can be to any of the
2n crisp and certain beliefs at random, agent interac-
tions guided by relative quality converge with higher
probability to those beliefs amongst the 2n that are the
closest to the actual state of the world. In comparison
with the direct-evidence scenario described earlier in
this paper, we see that the payoff shown in Figure 15 is
similar to that obtained when combining a 15% direct
evidence rate with consensus building based on random
interactions (see Figure 10).

7 Conclusions

We have investigated consensus formation for a
multi-agent system in which agents’ beliefs are both
vague and uncertain. For this, we have adopted a
formalism that combines three truth states according
to probability, resulting in opinions that are quanti-
fied by lower and upper belief measures. A combina-
tion operator has been introduced, according to
which agents are assumed to be independent and in
which strictly opposing truth states are replaced with
an intermediate borderline truth value. In simulation
experiments, we have applied this operator to random
agent interactions constrained by the requirement
that agreement can only be reached between agents
holding beliefs that are sufficiently consistent with
each other. Provided that this consistency require-
ment is not too restrictive, the population of agents is
shown to converge on a single shared belief that is
both crisp and certain. Furthermore, if combined
with evidence about the state of the world, either in a

Figure 15. Average payoff after 50, 000 iterations for varying
inconsistency thresholds g and jLj= 5.

Figure 13. Average entropy after 50, 000 iterations for varying
inconsistency thresholds g and jLj= 5.

Figure 14. Average pairwise inconsistency after 50, 000
iterations for varying inconsistency thresholds g and jLj= 5.

Figure 12. Average vagueness after 50, 000 iterations for
varying inconsistency thresholds g and jLj= 5.
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direct or indirect way, consensus building of this kind
results in better convergence to the truth than eviden-
tial belief updating alone.

Overall, these results provide some evidence for the
beneficial effects of allowing agents to hold beliefs that
are both vague and uncertain, in the context of consen-
sus building. However, we have only studied pairwise
interactions between agents, while in the literature it is
normally intended that pooling operators should be
used to aggregate beliefs across a group of agents
(DeGroot, 1974; Dietrich & List, 2016). Hence, future
work should extend the operator in Definition 1 so as
to allow more than two agents to reach agreement at
any step of the simulation. Probabilistic pooling opera-
tors can also take account of different weights associ-
ated with the beliefs of different agents; it will be
interesting to investigate whether this can be incorpo-
rated in our approach. Another avenue for future
research is to consider noisy evidence. Evidential
updating is rarely perfect and, for example, experiments
can be prone to measurement errors. It would be inter-
esting, therefore, to ask how the combined consensus
building and updating approach described in this paper
copes with such noise. In the longer term, the aim is to
apply our approach to distributed decision making sce-
narios such as, for example, in swarm robotics.
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Note

1. In this paper, we slightly abuse notation and also use w to
denote the probability measure generated by the probabil-
ity distribution w.
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