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The safe design of primary load-bearing structures
requires accurate prediction of stresses, especially
in the vicinity of geometric discontinuities where
deleterious three-dimensional stress fields can
be induced. Even for thin-walled structures
significant through-thickness stresses arise at
edges and boundaries, and this is especially
precarious for laminates of advanced fibre-reinforced
composites because through-thickness stresses are
the predominant drivers in delamination failure.
Here, we use a higher-order equivalent single-
layer model derived from the Hellinger–Reissner
mixed variational principle to examine boundary
layer effects in laminated plates comprising constant-
stiffness and variable-stiffness laminae and deforming
statically in cylindrical bending. The results show that
zigzag deformations, which arise due to layerwise
differences in the transverse shear moduli, drive
boundary layers towards clamped edges and are
therefore critically important in quantifying localized
stress gradients. The relative significance of the
boundary layer scales with the degree of layerwise
anisotropy and the thickness to characteristic length
ratio. Finally, we demonstrate that the phenomenon of
alternating positive and negative transverse shearing
deformation through the thickness of composite
laminates, previously only observed at clamped
boundaries, can also occur at other locations as a
result of smoothly varying the material properties
over the in-plane dimensions of the laminate.

2016 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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1. Introduction
In practical applications, composite laminates are typically modelled as thin plates and shells
because the thickness dimension t is at least an order of magnitude smaller than representative
in-plane dimensions Lx and Ly. This feature allows the problem to be reduced from a three-
dimensional (3D) to a two-dimensional (2D) one coincident with a chosen reference surface of
the plate or shell, here defined in the xy-plane. The major advantage of this approximation is a
significant reduction in the total number of variables and the associated computational effort.
Such a theory is aptly called an equivalent single-layer theory (ESLT) because the through-
thickness properties are condensed onto a reference layer by integrating properties of interest
through the thickness, here denoted by the z-axis.

Many ESLTs are based on the axiomatic approach, whereby intuitive postulations of
the displacement and/or stress fields in the thickness z-direction are made. Appropriate
displacement-based, stress-based or mixed-variational formulations are then used to derive
variationally consistent governing field equations and boundary conditions. Historically, the
most popular axiomatic postulations use a pure displacement-based approach. These include
the classical theory of plates developed by Kirchhoff [1] and then revisited by Love [2], and its
extension to laminated structures, namely classical laminate analysis [3]. These theories assume
that the effects of through-thickness deformations are negligible, in-plane displacement fields ux

and uy vary linearly through the thickness, and the transverse displacement uz is constant.
These classical theories are accurate for relatively thin structures (thickness to characteristic

length ratios t/L ≈ 1 : 100) but disregard higher-order distortions of the cross-section that occur
for thicker structures and around local geometric features. Compared with isotropic structures,
the analysis of layered composites is more cumbersome due to a plethora of additional factors.
Transverse shear deformations are more pronounced in fibre-reinforced plastics because the
ratio of longitudinal to shear modulus is approximately one order of magnitude greater
(Eiso/Giso = 2.6, E11/G13 ≈ 140

5 = 28, where 1 is in the fibre direction, 2 in the perpendicular resin
direction and 3 in the through-thickness direction). The non-dimensional ratio λ= E/G(t/L)2

drives, what Everstine & Pipkin [4] called, the ‘stress channelling’ effect on in-plane stresses.
As the non-dimensional ratio λ increases, the cross-section shears exceedingly and transitions
from a constant rotation to a higher-order distortion field. Owing to the greater orthotropy
ratios of E11/G13 and E22/G23 in composites, the ‘stress channelling’ effect is more pronounced
in composite laminates than in isotropic plates. Finally, assuming perfect bonding of layers,
interlaminar continuity of the displacements requires ux, uy and uz to be C0-continuous at
interfaces but the interlaminar continuity of the transverse stresses forces the displacement fields
to be C1-discontinuous [5]. This is known as the zigzag (ZZ) phenomenon due to the ‘zigzag’
shape of the displacements through the thickness.

Since the first half of the twentieth century, a number of models have been published that
partially or completely revoke at least one of Kirchhoff’s original assumptions. Examples include
the first-order shear deformation theories of Mindlin [6], Yang et al. [7] and Shimpi [8], the third-
order shear deformation theories of Levinson [9] and Reddy [10], and the shear and normal
deformable theories of Hildebrand et al. [11] and Lo et al. [12]. However, these theories cannot
explicitly capture ZZ effects as the in-plane variables ux and uy are defined to be at least
C1-continuous in the z-direction.

In this regard, ESLTs that incorporate ZZ kinematics present a good compromise between
local, layerwise accuracy and computational cost. Early ZZ theories were proposed in the Russian
literature by Lekhnitskii [13] and Ambartsumyan [14]. Murakami [15] enhanced the first-order
shear deformable theory by including a ZZ function that alternatively takes the values of +1
or −1 at layer interfaces. Motivated by the physical observation that layerwise differences in
transverse shear moduli drive the ZZ effect, Tessler et al. [16] developed the refined ZZ theory
(RZT). Here, the differences in transverse shear rigidities G(k)

xz and G(k)
yz of each layer k, and the

average transverse shear rigidities Gx and Gy of the entire layup, define the layerwise ZZ slopes
of the in-plane displacement fields ux and uy, respectively. Accounting for ZZ deformations is
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critical for soft-core sandwich constructions but can also be significant for thick cross-ply [0◦/90◦]
laminates [17].

A disadvantage of all previously mentioned displacement-based theories is that accurate
recovery of transverse stresses from kinematic relations and constitutive equations is not
guaranteed. For example, the derived transverse shear stresses typically violate the requirements
of interfacial traction continuity. More accurate transverse stresses can be recovered a posteriori
by integrating the in-plane stresses in Cauchy’s 3D indefinite equilibrium equations [18]. The
disadvantage of this technique is that the post-processed transverse stresses no longer satisfy the
underlying governing field equations and are therefore variationally inconsistent.

This post-processing operation can be precluded by making some form of stress assumption. A
particular class of model that we would like to highlight in this paper is based on the Hellinger–
Reissner (HR) mixed variational principle. Here, the complementary form of the strain energy
in terms of in-plane and transverse stresses is used, and Cauchy’s 3D equilibrium equations
are introduced as constraints via Lagrange multipliers. Reissner [19,20] was the first to use the
HR principle to derive a new first-order theory for isotropic plates. As pointed out by Batra
& Vidoli [21] and Batra et al. [22], one of the major advantages of using the HR principle
is that independent assumptions of stress and displacement fields allow prescribed traction
conditions to be satisfied exactly. In particular, this means that boundary layer effects and
localized stress gradients towards boundaries can be captured accurately. In finite-dimensional
displacement-based models, these conditions are approached asymptotically as the order of the
model is refined.

By virtue of St. Venant’s principle, classical analysis of laminates assumes purely planar
stresses remote from geometric discontinuities. However, 3D stress concentrations that violate
this principle do occur close to geometric features such as holes, notches, corners and free or
constrained edges. For example, the presence of 3D stress fields in the vicinity of free edges is
a well-established phenomenon. Early research into composite materials [23–25] showed that
the elastic property mismatch between two adjacent laminae leads to a 3D stress concentration
towards the free edge. The occurrence of this stress concentration occurs over a length
approximately equal to the thickness of the laminate and is therefore a boundary layer effect.
The comprehensive literature survey by Mittelstedt & Becker [26] collates a broad spectrum of
approximate closed-form solutions based on elasticity theory as well as numerical methods, but
also acknowledges that there is no universal method of dealing with the problem a priori.

Many studies [26] argue that a mathematical singularity in the interlaminar stresses occurs
at the free edge. But because a singular stress state cannot actually exist in the real structure,
the mathematical singularity must purely be an artefact of linear elasticity and the underlying
assumptions of continuum mechanics, i.e. modelling the interlaminar interface via discrete
changes in elastic properties. In reality, smooth transitions from layer to layer via a resin-
dominated transition region must exist and plastic deformations within this region guarantee
finite interlaminar stresses.

On the contrary, it has also been argued that the mathematical singularity occurs as a result
of inappropriately modelling the traction-free boundary condition in a weak-form weighted-
integral sense. Spilker [27] derived a special-purpose multilayered finite-element based on
higher-order through-thickness expansions of stresses and displacements in each layer. In
Spilker’s element, equilibrium of stresses is guaranteed within each layer, and the equilibrium
of tractions at layer interfaces and external surfaces (top and bottom surfaces and free edges)
is satisfied exactly. Using this element the transverse shear and normal stresses exhibit steep
gradients towards the free edge of a [0◦/90◦] laminate in tension but ultimately converge to
a finite stress state, directly in conflict with the idea of a stress singularity at the free edge.
Spilker [27] and Spilker & Chou [28] attributed this result to the exact point-by-point enforcement
of stress equilibrium and free-edge traction conditions through the entire laminate thickness.
When the free-edge condition was satisfied in a weighted-integral sense, i.e. the residual was
forced to vanish on average over the free-edge cross-section, the singular stress field reappeared.
Furthermore, the point-by-point stresses in the vicinity of the edge were inaccurate. Hence,
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Spilker & Chou [28] highlight the criticality of enforcing equilibrium and traction conditions
exactly in order to accurately model boundary layers in the stress fields.

Compared with the free edge, the presence of boundary layers in the vicinity of supported
edges has received less attention. Recently, Shah & Batra [29] investigated the stress distributions
near edges of composite laminates using a displacement-based shear- and normal-deformable
theory. A stress-recovery scheme for transverse stresses was used to compute accurate stress
near the laminate edges, and the use of a weak-form finite-element solution implied singular
stress fields at the laminate edges. The stress recovery scheme successfully predicted boundary
layer effects in the transverse stress fields for moderately thick plates (t/L ≥ 10) at 5% of the
characteristic length from the edge compared with a 3D elasticity model. Most of the discrepancies
occurred for ‘strong’ boundary conditions, such as clamped edges, and the authors did not
investigate the influence of ZZ effects on the boundary solution.

Given the superior qualities of mixed formulations in predicting 3D stress fields, a higher-
order theory derived from the HR principle is used herein to study boundary layers in laminated
composites. The model is based on displacements and moments defined on an arbitrary reference
plane and these variables facilitate an intuitive understanding of the underlying mechanics.
The stress assumptions are inherently equilibrated and satisfy interlaminar and surface traction
conditions, thereby following Spilker & Chou’s [28] recommendation discussed above. The model
is used to study boundary layer effects in the cylindrical bending of plates comprising constant
stiffness laminae, e.g. traditional straight-fibre reinforced plastics, foam or honeycomb materials
used in lightweight design, and also advanced variable-stiffness laminae which are manufactured
by steering pre-impregnated fibre tows in curvilinear paths [30–33]. The relatively simple case
of cylindrical bending is chosen here to clearly elucidate the governing drivers of the observed
physical phenomena.

A second feature particular to the present work is that the governing field equations are
solved in the strong form using the pseudo-spectral differential quadrature method. Differential
quadrature is a numerical discretization technique proposed by Bellman et al. [34] that
approximates the partial derivative of a field using a linear weighted sum of all the functional
values in the domain, i.e. a differential analogue to integral quadrature. In this manner, any
set of linear differential equations can be expressed as a linear system of algebraic equations
by replacing the differential operators with the differential weighting matrix. The advantage
of this strong-form method is that the underlying governing equations are satisfied exactly at
all collocation points, including the boundary points, and not in a weighted-integral sense over
the domain. Second, the use of a spectral Chebychev–Gauss–Lobatto grid biases the collocation
points towards the boundaries and eliminates oscillations in the numerical solution that occur for
equally spaced grids (the Runge effect). These particular features of the spectral mesh, coupled
with strong-form solutions of the governing equations at each collocation point, allow accurate
representations of the steep stress gradients towards clamped edges. For an in-depth survey of the
differential quadrature method, we direct the reader to the recent review by Tornabene et al. [35].

The rest of the paper is structured as follows. Section 2 provides an overview of an HR
formulation for the cylindrical bending of plates, which is a particular case of the generalized
theory recently published by the present authors [36]. Section 3a investigates boundary layers
in straight-fibre laminates towards clamped edges and characterizes the behaviour in terms
of intuitive bending moment quantities. Section 3b considers stress fields in variable-stiffness
laminates, and shows for the first time that non-intuitive localized stress fields that occur in
the corners of constant-stiffness laminates can also occur in tow-steered laminates remote from
any boundaries. Section 4 summarizes the present work and poses pertinent questions for
future work.

2. Theory
Consider a multilayered continuum, as represented in figure 1, undergoing static deformations
under a specific set of externally applied loads and boundary conditions. The continuum has
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Figure 1. A wide composite plate loaded by distributed loads on the top and bottom surfaces and subjected to pertinent
boundary conditions at ends A and B.

total thickness t and comprises Nl perfectly bonded laminae with layer thicknesses t(k). The
initial configuration of the plate is referenced in orthogonal Cartesian coordinates (x, y, z), with
(x, y) defining the two in-plane dimensions and z ∈ [−t/2, t/2] defining the thickness coordinate.
From hereon, we assume that the structural behaviour of this continuum is independent of the
y-direction, as is the case in the cylindrical bending of an infinitely wide plate, such that a one-
dimensional formulation can be used and the length of the plate corresponds to the dimension
along the x-axis.

Within an equivalent single-layer framework, this multilayered structure is compressed onto
a reference surface Ω coincident with the xy-plane by integrating the structural properties and
3D governing equations in the direction of the smallest dimension z. The plate undergoes static
deformations under a specific set of externally applied shear and normal tractions (T̂b, P̂b) and
(T̂t, P̂t) on the bottom and top surfaces of the 3D body, respectively, that are functions of the
x-coordinate only.

(a) Displacement field assumption
The equivalent single layer deforms according to the following generalized in-plane and
transverse displacement field assumption,

u(k)
x (x, z) = u0 + zθ + z2ζ + z3ξ + · · · + φ(k)(z)ψ

and u(k)
z (x, z) = w0

⎫⎬
⎭ , (2.1)

where u0 is the reference surface axial displacement, θ is the rotation of the plate cross-section,
ζ , ξ , . . . are higher-order rotations, ψ is the ZZ rotation, and φ(k) is a pertinent ZZ function of layer
k which in this work is exclusively the RZT function defined by Tessler et al. [16]. In condensed
matrix form, u(k)

x in equation (2.1) reads

u(k)
x (x, z) = [f g φ(k)]

{
Ug

ψ

}
= f (k)

u U , (2.2)

where Ug is a vector of global displacement fields and row vector f g describes the global through-
thickness displacement variation. Hence,

f g(z) = [1 z z2 z3 . . .], Ug = [u0 θ ζ ξ . . .]�, (2.3)

where the superscript � denotes the matrix transpose. The in-plane strain is given by the first
derivative of equation (2.2) in the x-direction. Thus, the linear axial strain component is

ε
(k)
x = [f g f l]

{
εg

εl

}
= f (k)

ε E , (2.4)
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where the global strain field εg, local ZZ strain field εl and local ZZ row vector f l are given by

εg = Ug
,x, εl = [ψ ψ,x]�, f l(z) = [φ(k)

,x φ(k)] (2.5)

and the comma notation denotes differentiation. Hence, the axial strain field in equation (2.4)
is expressed as a combination of a global higher-order strain field (independent of local ply
properties) and a local ZZ strain field (dependent on local ply properties).

(b) Stress field assumption
The axial stress field is derived from the axial strain in equation (2.4) using the constitutive
equation

σ
(k)
x = Q̄(k)f (k)

ε E , (2.6)

where Q̄(k) is the reduced stiffness matrix, assuming a plane strain condition in the y-direction
and a plane stress condition in the z-direction.

Next, the in-plane stress resultants are derived by integrating the axial stress of equation (2.6),
weighted by the expansion functions f (k)

ε , through the thickness of the plate

F =
∫ t/2

−t/2
f (k)�
ε σ

(k)
x dz =

∫ t/2

−t/2
f (k)�
ε Q̄(k)f (k)

ε dz · E = SE , (2.7)

where S is the higher-order laminate stiffness matrix of membrane and flexural rigidities
with respect to the reference surface Ω . The first two terms of the stress resultant vector F
are the classical membrane force N and bending moment M, and the following terms are
higher-order moments.

The relation between stress resultants and strain variables equation (2.7) is now inverted
to give

E = sF , where s = S−1 and S =
∫ t/2

−t/2
f (k)�
ε Q̄(k)f (k)

ε dz (2.8)

and the in-plane stress of equation (2.6) recast in terms of stress resultants F

σ
(k)
x = Q̄(k)f (k)

ε E = Q̄(k)f (k)
ε sF . (2.9)

Note, the advantage of expressing the in-plane stresses in terms of stress resultants rather than
displacements is that the stresses are now functions of unknown variables rather than their
derivatives, and this helps to reduce the order of the derived differential equations.

The transverse shear stress is derived by integrating the axial stress of equation (2.9) in
Cauchy’s axial equilibrium equation in the absence of body forces. This step yields

τ
(k)
xz = −

∫
∂σx

∂x
dz = ∂

∂x
[{−Q̄(k)g(k) + α(k)}sF ] + T̂b, (2.10)

where g(k) is the indefinite integral of f (k)
ε and captures the variation of τ (k)

xz through the thickness
of each ply k. Note, the derivative ∂/∂x applies to all terms within the square brackets in
equation (2.10) as the material dependent quantities Q̄(k), g(k) and s, as well as the stress resultants
F can vary over the dimensions of a variable-stiffness plate. The integration constants α(k)

enforce the interfacial continuity conditions of the shear tractions and one of the prescribed
surface conditions.

The transverse normal stress is derived in a similar fashion. Integrating the transverse shear
stress of equation (2.10) in Cauchy’s transverse equilibrium equation in the absence of body forces

σ
(k)
z = −

∫
∂τxz

∂x
dz = ∂2

∂x2 [{Q̄(k)h(k) − α(k)z + β(k)}sF ] − T̂b,x(z − z0) + P̂b, (2.11)

where h(k) is the indefinite integral of g(k) and captures the variation of σ (k)
z through the thickness

of each ply k. The integration constants β(k) enforce the interfacial continuity conditions of the
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normal tractions and one of the prescribed surface conditions. For explicit derivations of the
integration constants α(k) and β(k), the interested reader is directed to [36,37].

Note, in the derivation of the integration constants of equations (2.10) and (2.11) the traction
conditions are only enforced explicitly for one of the external surfaces. The condition on the other
surface is automatically satisfied if the membrane and bending moment equilibrium equations

N,x + T̂t − T̂b = 0

and M,xx + t
2

(T̂t,x + T̂b,x) + P̂t − P̂b = 0

⎫⎪⎬
⎪⎭ (2.12)

are enforced when deriving the governing equations from the HR variational statement (see [17,
37], for more details).

(c) A contracted Hellinger–Reissner functional
The governing equations are derived by means of minimizing the potential energy functional
ΠHR of the Hellinger–Reissner mixed-variational principle. For a 3D continuum independent of
variations in the y-direction, the HR functional reads

ΠHR(u, σ ) =
∫

V
U∗

0(σij) dV −
∫

S1

ûiti dS +
∫

V
ui(σij,j + fi) dV

−
∫

S2

ui(ti − t̂i) dS, i, j = x, z, (2.13)

where, for linear elasticity with small strains and infinitesimal displacements, U∗
0(σij) is

the complementary energy density expressed in terms of the Cauchy stress tensor σij. The
displacements ui are the Lagrange multipliers that enforce Cauchy’s equilibrium equations σij,j +
fi throughout the volume of the continuum and also enforce the traction boundary conditions
ti − t̂i on the boundary surface S2.

In this work, the model assumption of the axial displacements is as per equation (2.2), i.e. u(k)
x =

f (k)
u U , whereas the transverse displacement uz = w0 is constant throughout the thickness. Thus, the

term associated with Cauchy’s equilibrium equations (ignoring body forces) in equation (2.13) is

ΠL =
∫

V
uiσij,j dV =

∫
V

[
U�f (k)�

u

(
∂σ

(k)
x

∂x
+ ∂τ

(k)
xz

∂z

)
+ w0

(
∂τ

(k)
xz

∂x
+ ∂σ

(k)
z

∂z

)]
dV. (2.14)

Taking the first variation of this functional with respect to the displacement variables, i.e. δU
and δw0, results in the higher-order equilibrium equations of the theory. By integrating the
U-coefficient term in equation (2.14) by parts in the z-direction (note, U is independent of z), and
then taking the first variation we have

δΠL1 =
∫∫ t/2

−t/2
δU�

(
f (k)�

u
∂σ

(k)
x

∂x
− ∂f (k)�

u

∂z
τ

(k)
xz

)
dz dx +

∫
δU�f (k)�

u τ
(k)
xz |t/2−t/2 dx

=
∫
δU�

[
F∗

,x − T + f (Nl)�
u

(
z = t

2

)
T̂t − f (1)�

u

(
z = −t

2

)
T̂b

]
dx, (2.15)

where the vector of in-plane stress resultants F∗ and higher-order shear forces T is

F∗ =
∫ t/2

−t/2
f (k)�

u σ
(k)
x dz, T =

∫ t/2

−t/2

∂f (k)�
u

∂z
τ

(k)
xz dz. (2.16)

Setting the first variation to zero, the term in square brackets of equation (2.15) represents the
set of equilibrium equations of the equivalent single-layer expressed in matrix form. These are
the same higher-order equilibrium equations that result from the assumed displacement field if
the principle of virtual displacements is applied. For a general assumption of displacements u
and stresses σ , the entire set of higher-order equilibrium equations in equation (2.15) needs to be
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satisfied. However, in this work the transverse shear stress and in-plane stress are inherently
equilibrated, and this means that the equilibrium equations (2.15) are automatically satisfied
a priori and do not need to be enforced in the HR variational statement as is shown below.

Integrating the transverse shear stress resultants T of equation (2.16) by parts we have

T = f (k)�
u τ

(k)
xz |t/2−t/2 −

∫ t/2

−t/2
f (k)�

u
∂τ

(k)
xz

∂z
dz. (2.17)

As the transverse shear stress and axial stress balance explicitly in the present model, we can
replace ∂τ (k)

xz /∂z with −∂σ (k)
x /∂x such that

T = f (Nl)�
u

(
z = t

2

)
T̂t − f (1)�

u

(
z = −t

2

)
T̂b +

∫ t/2

−t/2
f (k)�

u
∂σ

(k)
x

∂x
dz. (2.18)

Finally, by using the expression for F∗ in equation (2.16)

T = f (Nl)�
u

(
z = t

2

)
T̂t − f (1)�

u

(
z = −t

2

)
T̂b + F∗

,x. (2.19)

Thus, substituting equation (2.19) back into equation (2.15) the equilibrium equations in the
square brackets vanish identically. The same arguments can be made for the second term in
equation (2.14), namely ∂τ

(k)
xz /∂x + ∂σ

(k)
z /∂z, but for brevity this is not elucidated in further

detail herein.
However, the membrane and bending equilibrium equations (2.12) need to be satisfied

to guarantee accurate recovery of the transverse stresses. To do this, these equilibrium
equations (2.12) are enforced via two Lagrange multipliers, resulting in a contracted version of
the HR principle.

Substituting all stress expressions equations (2.9)–(2.11) and their associated strains derived
from the appropriate constitutive laws into the contracted functional gives

ΠHR = 1
2

∫
V

U∗
0(F ) dV −

∫
S1

(σxû(k)
x + τxzŵ0) dS −

∫
S2

{u(k)
x (σx − σ̂x) + w0(τxz − τ̂xz)} dS

+
∫

u0(N,x + T̂t − T̂b) dx +
∫

w0

(
M,xx + t

2
(T̂t,x + T̂b,x) + P̂t − P̂b

)
dx, (2.20)

where û(k)
x and ŵ0 are the displacements defined on the boundary surface S1, and σ̂x and τ̂xz are

the tractions defined on the boundary surface S2.
Setting the first variation of equation (2.20) to zero, the resulting Euler–Lagrange field

equations in terms of the functional unknowns u0, w0 and F are

δu0 : N,x + T̂t − T̂b = 0 (2.21a)

δw0 : M,xx + t
2

(T̂t,x + T̂b,x) + P̂t − P̂b = 0 (2.21b)

and δF� : (s + η)F + ηxF,x + ηxxF,xx + ηxxxF,xxx + ηxxxxF,xxxx + T̂bχ + T̂b,xχx + T̂b,xxχxx

+ T̂b,xxxχxxx + P̂bω + P̂b,xωx + P̂b,xxωxx + Λeq = 0. (2.21c)

The pertinent essential and natural boundary conditions are

on S1 δF� : ηbcF + ηbc
x F,x + ηbc

xxF,xx + ηbc
xxxF,xxx + T̂bχbc + T̂b,xχ

bc
x + T̂b,xxχ

bc
xx + P̂bωbc

+ P̂b,xω
bc
x + Λbc1 = Ûbc (2.22a)

on S1 δF�
,x : ρbcF + ρbc

x F,x + ρbc
xxF,xx + T̂b,xγ

bc
x + P̂bμbc + Λbc2 = Ŵ . (2.22b)

and on S2 δU� : F∗ = F̂∗ and δw0 : Q = Q̂, (2.22c)

where Q is the classical transverse shear force. Note, the full derivation of the above governing
equations, including details of all coefficients is available in references [37,38].
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The governing field equations and boundary conditions related to δF� are expressed in
vectorial notation, with each row defining a separate equation. Equation (2.21c) is an enhanced
version of the classical constitutive equation

{
u0,x

−w0,xx

}
=
[

A B
B D

]−1 {
N
M

}
= sF (2.23)

with u0,x and −w0,xx the reference surface stretching strain and curvature, respectively, but
additionally accounting for higher-order effects in s multiplied by derivatives of F , akin to the
stress-gradient approach of non-local elasticity. The members of η are correction factors related to
transverse shear stresses and transverse normal stresses. Similarly, members of row vectors χ and
ω are correction factors related to the surface shear and normal tractions, respectively. The terms
ρ, γ and μ are transverse normal correction factors on the boundary.

The column vectors Λ only include the Lagrange multipliers u0, w0 and their derivatives.
Specifically,

Λeq = [−u0,x w0,xx 0 . . .]� (2.24a)

Λbc1 = [u0 − w0,x 0 . . .]� and Ûbc = [Ûg 0 ψ̂]� (2.24b)

and Λbc2 = [0 w0 0 . . .]� and Ŵ = [0 ŵ0 0 . . .]�. (2.24c)

3. Results and discussion
A third-order ZZ version of the model derived in §2 denoted by HR3-RZT (expansion up to z3 and
using the RZT ZZ function [16]) is used from hereon to study boundary layer effects at clamped
edges of constant-stiffness laminates. Furthermore, the model is used to investigate localized
stress fields driven by variations in material stiffness along the plate length.

(a) Boundary layers towards clamped edges
We consider a wide multilayered plate clamped at two ends xA = 0 and xB = a with a pressure
load equally divided between the top and bottom surfaces, i.e. P̂b = −P̂t = q0/2 as shown in
figure 2, with a plane strain condition in the lateral y-direction. As shown in equation (2.21b),
the net pressure is given by P̂t − P̂b and hence the total pressure is equal to −q0.

The HR3-RZT model has two displacement unknowns u0 and w0, and five stress unknowns
F = (N, M, O, P, L)�, where N and O are the classic and second-order membrane stress resultants,
respectively; M and P are the classic bending moment and second-order bending moment,
respectively; and L is the ZZ moment.

We consider two laminates with stacking sequences shown in table 1, where laminate 1 is a
non-symmetric composite laminate, and laminate 2 is a non-symmetric sandwich panel. Both
plates have thickness-to-length ratio t/a = 1 : 10 and comprise materials p and pvc defined in
table 2. Material p represents an orthotropic material that was introduced by Pagano [39] which
has since been used by various researchers in model validation studies. Material pvc represents
an isotropic foam that is used in the sandwich panel.

Using the pseudo-spectral differential quadrature method (see §1) the governing differential
equations are converted into algebraic ones by replacing the differential operators with weighting
matrices that operate on all functional unknowns within the domain. In this work, the numerical
solution procedure was implemented in Matlab. The number of collocation points in the
discretization grid was increased until the absolute maximum value of all stress fields at one
end of the plate converged to within 0.5%. As the grid points are biased towards the boundaries
in the Chebychev–Gauss–Lobatto grid and due to the fact that stresses are treated as unknowns
in the present HR formulation, convergence occurs relatively quickly. All results that follow are
based on a grid of 45 collocation points.
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A

a

x

B

z
P̂t = –q0 /2

P̂b = q0 /2

Figure 2. A multilayered wide plate clamped at both ends and loaded by a uniform pressure on the top and bottom surfaces.
The total pressure acting on the plate is P̂t − P̂b = −q0.

Table 1. Composite laminate and sandwich plate stacking sequences with t/a= 1 : 10 used to investigate boundary layers.
Subscripts indicate the repetition of a property over the corresponding number of layers.

laminate t/a thickness ratio material stacking sequence

1 1 : 10 [(1/4)4] [p4] [0/90/0/90]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 1 : 10 [(1/8)2/0.5/(1/8)2] [p2/pvc/p2] [0/90/02/90]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Mechanical properties of materials p, pvc and IM7. Material p is commonly used in the 3D elasticity solutions of
Pagano [39].

material E1 E2 E3 G12 G13 G23
p 25 × 106 1 × 106 1 × 106 5 × 105 5 × 105 2 × 105

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pvc 25 × 104 25 × 104 25 × 104 9.62 × 104 9.62 × 104 9.62 × 104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IM7 163 × 109 12 × 109 12 × 109 5 × 109 4 × 109 3.2 × 109

material ν12 ν13 ν23

p 0.25 0.25 0.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pvc 0.3 0.3 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IM7 0.3 0.3 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The HR3-RZT model is validated numerically using a 3D finite-element method (FEM) model.
The plate was modelled in the commercial software package Abaqus using a 3D body 1000 mm
long, 100 mm thick and 1000 mm wide that was meshed with 96 000 C3D8R brick elements, i.e. 160
elements through the thickness, 600 elements along the length and one element across the width.
The plane strain condition in the width direction was enforced by using a single element in this
direction and by restraining the lateral edges from expanding. A load of P̂b = −P̂t = 50 kPa was
applied as a pressure loading on the top and bottom surfaces. Finally, all nodal degrees of freedom
were constrained throughout the thickness of the two clamped edges.

The three stress fields σx, τxz and σz are normalized using the expressions

w̄ = 106t2

q0a4

∫ t/2

−t/2
uz

( a
2

, z
)

dz, σ̄x = t2

q0a2 σx

( a
2

, z
)

, τ̄xz = 1
q0
τxz(0, z), σ̄z = 1

q0
σz

( a
2

, z
)

. (3.1)

The through-thickness distributions of the three stress fields are plotted in figures 3–5 at four
locations 5%, 10%, 15% and 20% of the plate length from the clamped end xA. The nearest position
of 5% to the clamped end was chosen to minimize the effect of the boundary on the displacement-
based 3D FEM stress results which are not guaranteed to converge at the edge. The stress plots of
HR3-RZT and 3D FEM correlate well in figures 3–5.

Consider the results for laminate 1. Figures 3a, 4a and 5a clearly show the changes in the
through-thickness profiles of the stress fields at different distances from the clamped edge. The
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Figure 3. Through-thickness plot of normalized axial stress σ̄x at locations 5%, 10%, 15% and 20% of the plate span from
clamped end xA. (a) Laminate 1 and (b) laminate 2. (Online version in colour.)
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Figure 4. Through-thickness plot of normalized transverse shear stress τ̄xz at locations 5%, 10%, 15%and 20%of the plate span
from clamped end xA. (a) Laminate 1 and (b) laminate 2. (Online version in colour.)

through-thickness profile of τ̄xz at the 20% location (figure 4a) represents the converged solution
free of boundary layer effects. Close to the clamped ends, e.g. at the 5% location, the clamped
condition induces a boundary layer and this causes a change in shape of the transverse shear
stress profile.

Between the 20% and the 5% curves in figure 4a, the maximum magnitude of τ̄xz redistributes
from the midplane towards the surfaces causing a reversal in the transverse shear stress profile
with smaller stress magnitudes towards the midplane. The same behaviour was previously
observed for sandwich beams (see figs 11b and 12b in [17]), and occurs because of the ZZ
effect. For the sandwich beams in [17], the extremely soft internal core cannot support the
transverse shear stress magnitude in the stiff outer layers and this causes a redistribution of
the loads from the core to the outside surfaces. Generally speaking, ZZ effects do not affect
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Figure 5. Through-thickness plot of normalized transverse normal stress σ̄z at locations 5%, 10%, 15% and 20% of the plate
span from clamped end xA. (a) Laminate 1 and (b) laminate 2. (Online version in colour.)

non-sandwich laminates, such as the [0/90/0/90] stacking sequence investigated here, to the
same extent as sandwich laminates. Therefore, an analyst may argue that ZZ deformations can be
ignored for non-sandwich laminates to improve computational efficiency. However, as observed
for laminate 1 in figure 4a, this is not so as the clamped support condition exacerbates the ZZ
deformations towards the boundaries.

The same effect also occurs in the transverse normal stress plots of figure 5a. The transverse
normal stress field at the 20% location represents the converged solution free of boundary layer
effects. Closer to the clamped boundary at the 5% location the through-thickness variation of σ̄z

changes considerably due to increased ZZ deformations.
The plots of axial stress in figure 3a show that ‘stress channelling’ decreases towards the

boundary. This manifests itself by a reduction of the cubic z-wise variation of σ̄x between the
20% and the 5% location. This is because at the 5% location the additional linear behaviour of
the ZZ effect reduces the relative magnitude of the cubic through-thickness variation.

Similarly, the plots for sandwich laminate 2 (figures 3b, 4b and 5b) show similar trends
for the through-thickness distributions of the three stress fields. Towards the boundaries the
increasing effect of ZZ deformations causes transverse shear loads to be redistributed from
the plate midplane to the surfaces. In fact, the redistribution of the transverse stresses can be
explained intuitively using Cauchy’s equilibrium equations. Given that the clamped support
causes localized axial stress gradients in σx, this rate of change of ∂σx/∂x must be balanced by
a rate of change ∂τxz/∂z. Hence, the stress gradients of the axial stress alter the through-thickness
profile of the transverse shear stress. In the same manner, the rate of change of τxz in the x-direction
leads to an increase in the z-wise rate of change of σz.

The extent of the boundary layers along the lengths of laminates 1 and 2 are shown graphically
in figure 6. The plots show the variation of normalized bending moment M/(q0a2) (figure 6a) and
ZZ moment L/(q0a2) (figure 6b) along the length of the plates. The plots only show half of the
plate span x/a ∈ [0, 0.5] due to the symmetry condition at x/a = 0.5.

According to the equilibrium of moments and transverse forces, the bending moments
M for laminates 1 and 2 are prescribed fully by the loading and boundary conditions and
are independent of stacking sequence. Thus, the bending moments show no observable local
variations towards the boundaries. However, the distributions of ZZ moment L are not the
same due to the different degrees of transverse anisotropy inherent in the stacking sequences.
Furthermore, we observe a boundary layer effect as L transitions from the global sinusoidal curve
remote from the edge to a local high-order behaviour towards the edge.
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Figure 6. Normalized bendingmomentM/q0a2 and ZZmoment L/qoa2 for two different laminates plotted against normalized
axial location x/a for different thickness-to-length ratios t/a. Only half of the plot is shown due to the symmetry condition at
x/a= 0.5. The insert shows the boundary layers of the thinner plate for x/a ∈ [0, 0.02]. (a) Bending moment,M, and (b) ZZ
moment, L. (Online version in colour.)

The boundary layer effects observed for laminates 1 and 2 in figures 3–5 are higher-order
phenomena that depend on the rate of change of the ZZ deformations within the structure. The
boundary layer scales with the thickness-to-length ratio t/a and the degree of transverse shear
modulus anisotropy. For example, consider laminates 1 and 2 with reduced thickness-to-length
ratio t/a = 1 : 200. The axial plots of the ZZ moment L for these two thinner configurations are
shown alongside the plots for the originally thicker configurations (t/a = 1 : 10) in figure 6b. For
both cases, the overall magnitude of the ZZ moment L (figure 6b) is comparable to the classical
bending moment M (figure 6a) and thus the ZZ moment plays a crucial role in the static behaviour
of the plate.

However, the boundary layer itself is not driven by the overall magnitude of the ZZ moment
but rather by localized changes with respect to the classic sinusoidal curve that governs the
behaviour in the absence of boundary layer effects. For the thinner configuration, the localized
change in the ZZ moment curve, characterized by the presence of an inflection point, occurs
significantly closer to the edge. Furthermore, the curvature of the ZZ moment curve, and thereby
the effect of the boundary layer on the stress profiles, also reduces for the thinner configuration.
Hence, reducing the thickness-to-length ratio has not affected the overall magnitude of the ZZ
moment close to the edge but eliminated the boundary layer effects associated with it.

The through-thickness plots of τ̄xz and σ̄z at locations 0.5%, 5% and 20% for the thinner
configurations (t/a = 1 : 200) are compared in figures 7 and 8. Compared with the plots for the
thicker laminates (t/a = 1 : 10), the differences between the shape of the 5% and 20% curves for
both τ̄xz and σ̄z are negligible. Because the transverse shear force varies with spanwise location,
the magnitudes of τ̄xz in figures 7a and 8a are different, but the overall through-thickness shape
remains the same. A visible difference however exists between the curves of τ̄xz and σ̄z at the 0.5%
and 5% locations. This confirms the previous observations regarding figure 6b that the length of
the boundary layer at the clamped edge decreases with the thickness-to-length ratio.

Second, consider the effects of maintaining the thickness-to-length ratio of laminate 1 at
t/a = 1 : 10 but reducing the ratio G13/G23 of material p from 2.5 : 1, as originally defined in table 2,
to a lesser ratio of 1.01 : 1. The transverse shear modulus orthotropy between the 0◦ and 90◦ layers
is almost removed entirely in this configuration, and as expected this reduces the magnitude of
the ZZ moment (figure 9a). Furthermore, compared with the original case of greater transverse
orthotropy in figure 6b, the local boundary layer of ZZ moment L close to the supports also
reduces. Therefore, the boundary layer effect associated with the ZZ moment not only reduces
for a lower thickness-to-length ratio t/a but also when the transverse orthotropy ratio decreases.
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Figure 7. Laminate 1: comparison of through-thickness plots of normalized transverse shear stress τ̄xz and transverse normal
stress σ̄z at locations 0.5%, 5% and 20% of the plate span from clamped end xA with t/a= 1 : 200. (a) Transverse shear stress,
τ̄xz , and (b) transverse normal stress, σ̄z . (Online version in colour.)
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Figure 8. Laminate 2: comparison of through-thickness plots of normalized transverse shear stress τ̄xz and transverse normal
stress σ̄z at locations 0.5%, 5% and 20% of the plate span from clamped end xA with t/a= 1 : 200. (a) Transverse shear stress,
τ̄xz , and (b) transverse normal stress, σ̄z . (Online version in colour.)

However, figure 10 shows that the through-thickness shapes of τ̄xz and σ̄z do undergo changes
in shape at different locations from the clamped boundary, even when the ZZ moment is benign.
This particular boundary layer effect relates to the higher-order moment O = ∫

z2σx dz which
becomes the dominant factor when ZZ effects are negligible. The axial distribution of the higher-
order moment O in figure 9b shows that a small boundary layer occurs close to the supports that
manifests itself by O,x ≈ 0 at the boundary. This local change in slope modifies the z-wise stress
profiles between locations 0.5% and 5% shown in figure 10.

Finally, combining the reduced transverse orthotropy ratio with a lower thickness-to-length
ratio (t/a = 1 : 200) basically eliminates the local boundary layer in higher-order moment O
(figure 9b). The through-thickness plots of the transverse stress fields τ̄xz and σ̄z in figure 11 show
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Figure 9. Axial variation of normalized ZZ moment L/q0a2 and higher-order moment O/q0a3 for laminate 1 with reduced
transverse orthotropy ratio G13/G23 = 1.01 : 1 of material p. Only half of the plot is shown due to the symmetry condition at
x/a= 0.5. (a) ZZ moment, L, and (b) higher-order moment, O. (Online version in colour.)
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Figure 10. Laminate 1: comparison of through-thickness plots of normalized transverse shear stress τ̄xz and transverse normal
stress σ̄z at locations 0.5%, 5% and 10% of the plate span from clamped end xA with t/a= 1 : 10 and reduced transverse
orthotropy ratio G13/G23 = 1.01 : 1 of material p. (a) Transverse shear stress, τ̄xz , and (b) transverse normal stress, σ̄z . (Online
version in colour.)

that a benign boundary layer effect remains; the overall change in shape considerably reduces
and manifests itself closer to the boundary, i.e. within x/a ∈ [0%, 2.5%].

In conclusion, boundary layer effects at clamped edges can arise from higher-order membrane
moments or from higher-order ZZ moments. These local effects scale in proportion to their
relative magnitude of the respective moments on the global behaviour of the structure remote
from any edges. When ZZ moments are important, such as for sandwich panels, the associated
boundary layer effects dominate. The influence of ZZ effects generally increases towards
clamped edges and these higher-order moments are therefore important even for non-sandwich
constructions. For laminated structures where the ZZ effects are negligible throughout, such
as composite laminates with thin plies evenly distributed through the thickness, or laminae
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Figure 11. Laminate 1: comparison of through-thickness plots of normalized transverse shear stress, τ̄xz and transverse normal
stress, σ̄z at locations 0.25%, 0.5% and 2.5% of the plate span from clamped end xA with t/a= 1 : 200 and reduced transverse
orthotropy ratio G13/G23 = 1.01 : 1 of material p. (a) Transverse shear stress, τ̄xz , and (b) transverse normal stress, σ̄z . (Online
version in colour.)

with negligible transverse shear modulus orthotropy, boundary layer effects associated with
higher-order membrane moments play a more important role.

These boundary layers can play a significant role in interlaminar failure initiation such as
delamination. A popular metric for predicting the onset of delamination in layered composites
is the quadratic failure criterion of Camanho et al. [40]

f =
( 〈σz〉

N

)2
+
( τxz

S

)2 +
( τyz

T

)2
, (3.2)

where N is the interlaminar tensile strength, and S and T are the interlaminar shear strengths.
Delamination initiation is assumed to occur when f ≥ 1. Macaulay brackets 〈〉1 are used because
compressive transverse normal stresses do not contribute to the initiation of delaminations. In
the problem considered here, τyz = 0 such that delamination initiation is driven by σz and τxz at
the interface between two plies with different material properties. Even when we consider the
configuration of laminate 1 with the most benign boundary effect (t/a = 1 : 200, G13/G23 = 1.01 : 1
in figure 11), the maximum transverse normal stress σz at the interface between the top 0◦ and
adjacent 90◦ layer (z/t = 0.1667) is increased by two orders of magnitude between 0.25% and 2.5%
from the edge. As a result, the boundary layer plays a crucial role in the failure initiation event
and needs to be appropriately considered in analysis and design.

In fact, within the framework of RZT resin-rich regions between layers can be modelled
explicitly by inserting a thin isotropic interlayer in the stacking sequence. A continuum damage
law can then be chosen to govern the initiation of damage and the degradation process within
resin-rich regions, and thereby model the sliding of the resulting sublaminates across each other
via ZZ kinematics [41,42].

(b) Localized stress gradients driven by tow steering
Previous studies [29,43] show that non-intuitive transverse shear stress profiles occur for straight-
fibre laminates at the corner of intersecting clamped edges. The results in this section show that
stiffness variations in the plane of a plate can induce the same boundary layer effects but remote

1〈x〉 = 0 for x ≤ 0 and 〈x〉 = x for x> 0.
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Figure 12. Through-thickness distribution of thenormalized transverse shear stressesτxz andτyz at location (0.066a, 0.066b, z)
of a [0/90/0] laminate. The two plots are not identical, even though the loading condition produces a doubly symmetric
displacement field, because of the orthotropy of the constituent materials. (a) Transverse shear stress, τxz , and (b) transverse
shear stress, τyz . (Online version in colour.)

from any edges. Most importantly, these non-intuitive stress gradients may adversely affect the
damage tolerance of tow-steered laminates.

To study the effect in straight-fibre laminates, consider a square [0/90/0] laminate with in-
plane dimensions a = b and thickness to characteristic length ratio of t/a = 1 : 10, clamped along
all four edges and loaded by a uniform pressure on the top surface. The bending behaviour of
this laminate is readily investigated using the HR plate model published recently by the present
authors [36]. The dual clamped condition at each corner of the plate induces a particular boundary
layer with non-intuitive transverse shear stresses, and this particular behaviour does not occur in
cylindrical bending of plates.

Figure 12 shows the through-thickness plots of the transverse shear stresses at a distance of
(x, y) = (0.066a, 0.066b) from one of the corners of the plate. The stress distributions of the HR3-
RZT and 3D FEM model closely match at this location. Note, the transverse shear stresses τxz and
τyz are not identical at this point, even though the loading condition produces a doubly symmetric
displacement field, because of the orthotropy of the constituent layers. Hence, in the xz-plane the
middle 90◦ layer is more compliant and the stresses redistribute towards the outer 0◦ layers via
the ZZ effect (figure 12a). In the yz-plane, the situation reverses and the stress distributes to the
stiffer central layer (figure 12b).

Conversely, figure 13 shows the through-thickness plots of the transverse shear stresses at a
corner of the plate, i.e. at (x, y) = (0, 0). It is apparent that the transverse shear plots in the corner
differ considerably from the plots adjacent to the corner. Adjacent to the corner in figure 12, we
observe the classical result of single sign, piecewise parabolic transverse shear stresses, i.e. the
applied pressure loading on the top surface causes the cross-section to shear in one direction only.
However, at the corner in figure 13, the model solution shows that both transverse shear stresses
change sign through the thickness, i.e. some parts of the cross-section shear in one direction,
whereas other parts shear in the opposite direction. This non-intuitive stress distribution arises
from the strong dual boundary condition of two coincident clamped edges at the corner point.
Small movements away from the corner, as shown in figure 12, completely eliminate this
phenomenon suggesting the presence of a boundary layer effect.

Similar plots are shown in the works by Vel & Batra [43] and Shah & Batra [29] but these
authors did not point out or study the peculiarity of these stress fields in further detail. As
is shown below, the same effects can be replicated in variable-stiffness plates at locations
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Figure 13. Through-thickness distribution of the normalized transverse shear stresses τxz and τyz at location (0, 0, z) of a
[0/90/0] laminate. Note the change of sign of the transverse shear stresses through the thickness. (a) Transverse shear stress,
τxz , and (b) transverse shear stress, τyz . (Online version in colour.)

Table 3. Stacking sequences andmaterial properties of two tow-steered laminates used to investigate localized stress fields due
to in-plane stiffness variations. The notation of the variable-stiffness lay-ups follows ref. [38, eq. (6.1), p. 119] and the subscript
‘s’ signifies symmetry of the lay-up about the midplane.

laminate lay-up tply (mm)

VS X [〈90|0〉/〈−90|0〉/〈45| − 45〉/〈−45|45〉]s 1.5625
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VS Y [〈90|20〉/〈45| − 25〉/〈−90| − 20〉/〈−45|25〉]s 1.5625
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

considerably removed from any boundaries. Thus, boundary layers that occur in the vicinity of
dual boundary conditions for straight-fibre laminates can be also induced by varying the material
properties alone.

For example, consider a multilayered plate with thickness to characteristic length ratio t/a =
1 : 20, comprising purely variable-stiffness composite layers, pinned (free to rotate) at both ends
xA = 0 and xB = a = 250 mm, and subjected to a uniformly pressure equally divided between the
top and bottom surfaces P̂b = −P̂t = 50 kPa.

Table 3 summarizes two balanced and symmetric, variable-stiffness lay-ups VS X and VS
Y that are analysed using the HR3-RZT model. The two laminates feature eight tow-steered
plies of equal thickness manufactured using the IM7 8552 carbon-fibre reinforced plastic defined
in table 2.

A 3D FEM model in Abaqus was also implemented that featured the 250 mm long (x-direction),
1000 mm wide (y-direction) and 12.5 mm thick (z-direction) plate that was meshed using a total
of 95 880 C3D8R elements with 799 elements in the x-direction, 120 elements in the z-direction,
i.e. 15 elements per ply. The plane strain condition in the y-direction was enforced by the use
of a single element in the y-direction and boundary conditions preventing the lateral sides from
expanding.

Figure 14 plots the through-thickness profile of the normalized (see equation (3.1)) transverse
shear stress τ̄xz for laminates VS X and VS Y at the quarterspan (x = a/4) of the plate. The
plots show that the 3D FEM solution from Abaqus and the HR3-RZT results correlate closely
throughout the entire thickness.

For both laminates, the external surface layers shear in one direction, whereas the internal
layers shear in the opposite direction. Hence, this behaviour qualitatively compares to the results
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Figure 14. Through-thickness distribution of the normalized transverse shear stress τxz (at x = a/4). Note the change of sign
of the transverse shear stress through the thickness. (a) Laminate VS X and (b) laminate VS Y. (Online version in colour.)

shown in figure 13. In this latter case, the two coincident clamped edges induced strong localized
boundary layers in the transverse shear stress profiles. However, for the two tow-steered plates VS
X and VS Y, the transverse shearing reversal occurs at the quarterspan, i.e. significantly removed
from any localized boundary condition.

The physical reason of why this occurs in tow-steered plates is readily explained by
investigating the transverse shear stress equation of the HR model with T̂b = 0:

τ
(k)
xz = ∂

∂x
[{−Q̄(k)g(k) + α(k)}sF ]. (3.3)

In equation (3.3), the only quantities that influence the layerwise sign of the transverse shear stress
are ply stiffness Q̄(k) and integration constant α(k), where the latter is a function of the ply stiffness
terms Q̄(k) itself. All other terms, s and F , are equivalent single-layer quantities that are the same
for all plies. For any material that satisfies the second law of thermodynamics the definition
Q̄(k) > 0 holds, but for tow-steered laminates the derivative ∂Q̄(k)/∂x �= 0 and can therefore be
positive for some layers and negative for others. Hence, the sign of the transverse shear stress
can change based on the local rate of change of the material stiffness Q̄(k).

The practicality of these non-intuitive transverse shear stress profiles is yet to be determined.
Perhaps, these localized stress fields can be used for actuation purposes in morphing structures
or for sensing of interlaminar damage sites. On the contrary, the presence of such stress fields
could be detrimental to the damage tolerance of tow-steered laminates. The external loading and
boundary conditions fully define the transverse shear force, i.e. the through-thickness integral of
the transverse shear stress, and hence the shear force is independent of the stacking sequence or
material properties of the laminate. If the overall transverse shear force is to remain constant,
locally positive transverse shear stresses must result in increased negative transverse shear
stresses at other locations of the cross-section and vice versa. As the magnitude of transverse
shear and normal stresses drive the debonding of layers in laminated composites, these locally
accentuated levels of transverse stresses could initiate premature delamination failure.

4. Conclusion
This work demonstrates that the proposed higher-order model derived from the Hellinger–
Reissner mixed variational principle accurately predicts local variations in the 3D stresses
towards clamped edges. In this model, the equilibrium of stresses and all surface traction
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conditions are enforced explicitly. This feature combined with a strong-form solution technique
and a spectral collocation grid allows accurate recovery of the steep stress gradients towards
clamped edge.

The observed boundary layer effects arise due to local variations in the higher-order stress
resultants. In fact, the relative significance of higher-order distortions increases towards clamped
boundaries such that a higher-order model is critical in capturing the observed phenomena. For
sandwich plates the boundary layer effects are driven by local variations in the ZZ moment. For
composite laminates variations in the higher-order membrane moment dominate the boundary
layer. Hence, the relative significance of the boundary layer is a function of both layerwise
differences in transverse shear moduli and the thickness-to-length ratio of the laminate.

The boundary layers towards clamped edges accentuate the transverse shear and transverse
normal stresses through the thickness of the laminate. As these through-thickness stresses play a
critical role in delamination initiation, robust modelling techniques that account for deleterious
stress fields induced by boundaries are essential.

In fact, the deleterious stress fields are not only restricted to the edges of laminates comprising
straight-fibre reinforced plastics. This work shows that non-intuitive localized stress fields can
also occur in tow-steered laminates remote from any boundaries. The significance of this finding
is twofold

(i) Optimization studies on tow-steered laminates have predominantly focused on
improving the structural stability of plates [44–46], shells [47] and stiffened panels [48].
The fibre paths are tailored to redistribute in-plane stresses over the planform to preempt
the onset of buckling. The present findings suggest that in-plane stiffness variations
facilitated by tow-steering can be used to tailor the through-thickness stresses. Pertinent
questions worth answering are to what extent the transverse stresses can be influenced
via stiffness variations? Could the through-thickness stresses be tailored to reduce the
likelihood of delaminations in critical areas? Perhaps, the reversal in transverse shear
stress through the plate thickness could be used for passive actuation of morphing
structures by means of relieving residual stresses?

(ii) Current design studies on the buckling and post-buckling optimization of tow-steered
laminates rarely account for transverse shear stresses because design codes deem these
effects to be negligible for thin-walled structures. However, if non-intuitive through-
thickness stresses, such as the transverse shear stress reversals described in this study,
are deleterious to the damage tolerance of tow-steered laminates, and these effects occur
remote from boundaries or other geometric discontinuities, then the effects need to be
accounted for by changes in the design guidelines. In this case, higher-order modelling of
non-classical effects is required throughout the entire structure, not just in areas with local
boundary features, and computationally efficient 2D modelling techniques will become
critical for safe design of these laminates.
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