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We establish a connection between the conjectural
two-over-two ratios formula for the Riemann zeta-
function and a conjecture concerning correlations of a
certain arithmetic function. Specifically, we prove that
the ratios conjecture and the arithmetic correlations
conjecture imply the same result. This casts a new
light on the underpinnings of the ratios conjecture,
which previously had been motivated by analogy
with formulae in random matrix theory and by a
heuristic recipe.

1. Introduction
Montgomery in his famous pair correlation paper
[1] used heuristics based on the Hardy–Littlewood
conjecture concerning the distribution of prime pairs [2]
to conclude that pairs of zeros of the Riemann zeta-
function have the same scaled statistics, in the limit
in which their height up the critical tends to infinity,
as pairs of eigenvalues of large random Hermitian
matrices (or of unitary matrices with Haar measure).
Montgomery did not give the details of the calculation
involving twin primes in his paper, but that calculation
has been repeated with variations several times in
the literature (e.g. [3–7]). Goldston & Montgomery [8]
proved rigorously that the pair correlation conjecture is
equivalent to an asymptotic formula for the variance
of the number of primes in short intervals, and
Montgomery & Soundararajan [9] proved that this
variance formula follows from the Hardy–
Littlewood prime-pair conjecture, under certain
assumptions.

In a slightly different vein, Bogomolny & Keating
[10,11] and later Conrey & Snaith [12] developed
methods to give more precise estimates for the
pair correlation (and higher correlations) of Riemann
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zeros. Bogomolny and Keating gave four different heuristic methods to accomplish this, while
Conrey and Snaith used a uniform version of what is known as the ratios conjecture from which
assumption they could rigorously derive this precise form of pair correlation. All of these methods
lead to the same formulae.

In this paper, we reconsider this circle of ideas from yet another perspective, namely that of
deriving a form of the ratios conjecture from consideration of correlations between the values
of a certain arithmetic function. This provides a new perspective on the underpinnings of the
ratios conjecture, which previously had been motivated by analogy with formulae in random
matrix theory and by a heuristic recipe [13–15]. This is similar to how, in a recent series of papers
[16–19] we have shown that moment conjectures previously developed using random matrix
theory [14,20] may be recovered from correlations of divisor sums.

The twin prime conjectures are easily stated in terms of the von Mangoldt functionΛ(n) which
is the generating function for −ζ ′/ζ (e.g. [21]):

− ζ
′

ζ
(s) =

∞∑
n=1

Λ(n)
ns

or equivalently

Λ(n) =
{

log p if n = pk for some prime p

0 otherwise.

In the Conrey–Snaith approach, zeros of ζ (s) are detected as poles of (ζ ′/ζ )(s) which in turn is
realized via

ζ ′

ζ
(s) = d

dα
ζ (s + α)
ζ (s + γ )

∣∣∣∣
α=0
γ=0

.

Passing to coefficients, we write

Iα,γ (s) =
∞∑

n=1

Iα,γ (n)
ns = ζ (s + α)

ζ (s + γ )
;

explicitly

Iα,γ (n) =
∑
de=n

μ(e)
dαeγ

.

Note that

Iα,γ (n) = nrIα+r,γ+r(n)

for any r. Also we have

Λ(n) = − d
dα

Iα,γ (n)
∣∣∣∣
α=0
γ=0

.

Here we will investigate the averages

Rα,β,γ ,δ(T) :=
∫∞

0
ψ

(
t
T

)
ζ (s + α)ζ (1 − s + β)
ζ (s + γ )ζ (1 − s + δ)

dt,

where s = 1
2 + it and ψ(z) is holomorphic in a strip around the real axis and decreases rapidly

on the real axis. Not surprisingly, R is related to averages of the (analytic continuation of the)
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Rankin–Selberg convolution

Bα,β,γ ,δ(s) :=
∞∑

n=1

Iα,γ (n)Iβ,δ(n)
ns .

In fact, the simplest case of the ratios conjecture asserts that

Rα,β,γ ,δ(T) =
∫∞

0
ψ

(
t
T

)(
Bα,βγ ,δ(1) +

(
t

2π

)−α−β
B−β,−α,γ ,δ(1)

)
dt + O(T1−η) (1.1)

for some η > 0. It is also not surprising that R is connected to weighted averages over n and h of

Iα,γ (n)Iβ,δ(n + h).

It is this connection that we are elucidating. Using the δ-method, it transpires that these weighted
averages may be expressed in terms of

Cα,β,γ ,δ(s) := 1
(2π i)2

∫
|w−1|=ε

∫
|z−1|=ε

χ (w + z − s − 1)
∞∑

q=1

∞∑
h=1

rq(h)

hs+2−w−z

×
∞∑

m=1

Iα,γ (m)e(m/q)
mw

∞∑
n=1

Iγ ,δ(n)e(n/q)
nz dw dz,

where rq(h) denotes Ramanujan’s sum and where χ (s) is the factor from the functional equation
ζ (s) = χ (s)ζ (1 − s); also here and elsewhere ε is chosen to be larger than the absolute values of the
shift parameters α,β, γ , δ but smaller than 1

2 . The result that ties this all together is the following
identity.

Theorem 1.1. Assuming the generalized Riemann hypothesis

Cα,β,γ ,δ(s) =B−β,−α,γ ,δ(s + 1).

In a recent series of papers [16–19], we have outlined a method that involves convolutions of
coefficient correlations and leads to conclusions for averages of truncations of products of shifted
zeta-functions implied by the recipe of [14]. In this paper, we strike out in a new direction, using
similar ideas to evaluate averages of truncations of products of ratios of shifted zeta-functions.
In particular, the approach of Bogolmony & Keating [6,7] on convolutions of shifted coefficient
sums guide the calculations and we are led, as in the previous series, to formulate a kind of multi-
dimensional Hardy–Littlewood circle method. This first paper, as indicated above, may be viewed
in a more classical context.

It turns out to be convenient to study an average of the ratios conjecture. To this end, let

Iα,γ (s; X) =
∑
n≤X

Iα,γ (n)n−s.

We are interested in the average over t of Iα,γ Īβ,δ in the case that X = Tλ for some λ> 1. (When λ<
1 this average is dominated by diagonal terms.) We give two different treatments of the average
of ‘truncated’ ratios:

Mα,β,γ ,δ(T; X) :=
∫∞

0
ψ

(
t
T

)
Iα,γ (s, X)Iβ,δ(1 − s, X) dt,

(where again s = 1/2 + it) which lead to the same answer. The first is by the ratios conjecture and
the second is by consideration of the correlations of the coefficients.

In each case, we prove the following theorem.

Theorem 1.2. Let α,β, γ , δ be complex numbers smaller than 1/4 in absolute value. Then, assuming
either a uniform version of the ratios conjecture or a uniform version of a conjectured formula for
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correlations of values of Iα,γ (n) (conjecture 5.1, §5), we have for some η > 0 and some λ> 1,

Mα,β,γ ,δ(T; X)

=
∫∞

0
ψ

(
t
T

)
1

2π i

∫
�s=2

(
Bα,β,γ ,δ(s + 1) +

(
t

2π

)−α−β−s
B−β,−α,γ ,δ(s + 1)

)
Xs

s
ds dt + O(T1−η).

This shows that the ratios conjecture follows not only from the ‘recipe’ of [14,15], but also
relates to correlations of values of Iα,γ (n).

2. Approach via the ratios conjecture
We have

Iα,γ (s, X) = 1
2π i

∫
(2)

Iα,γ (s + w)
Xw

w
dw;

there is a similar expression for Iβ,δ(s, X). Inserting these expressions and rearranging the
integrations, we have

Mα,β,γ ,δ(T; X) = 1
(2π i)2

∫
�w=2

∫
�z=2

Xw+z

wz
Rα+w,β+z,γ+w,δ+z(T) dw dz.

We observe from expression (1.1) for the ratios conjecture that the integrand Rα+w,β+z,γ+w,δ+z is,
to leading order in T, expected to be a function of z + w. We therefore make the change of variable
s = z + w; now the integration in the s variable is on the vertical line �s = 4. We retain z as our
other variable and integrate over it. This turns out to be the integral

1
2π i

∫
�z=2

dz
z(s − z)

= 1
s

as is seen by moving the path of integration to the left to �z = −∞. Thus, we have that
Mα,β,γ ,δ(T; X) is given to leading order by

1
2π i

∫
�s=4

Xs

s
Rα+s,β,γ+s,δ(T) ds.

We move the path of integration to �s = ε, avoiding crossing any poles, insert the ratios conjecture
(1.1) (cf. the uniform version as laid out in [12]), and observe that

Bα+s,β,γ+s,δ(1) =Bα,β,γ ,δ(s + 1).

In this way, we have that the uniform ratios conjecture implies the conclusion of theorem 1.2.

3. Approach via coefficient correlations
We follow the methodology developed by Goldston & Gonek [5] on mean-values of long Dirichlet
polynomials.

If we expand the sums and integrate term-by-term, we have

Mα,β,γ ,δ(T; X) = T
∑

m,n≤X

Iα,γ (m)Iβ,δ(n)√
mn

ψ̂

(
T

2π
log

m
n

)
.

(a) Diagonal
The diagonal term is

Tψ̂(0)
∑
m≤X

Iα,γ (m)Iβ,δ(m)
m

.

By Perron’s formula, the sum here is

1
2π i

∫
(2)

Bα,β,γ ,δ(s + 1)
Xs

s
ds.
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(b) Off-diagonal
For the off-diagonal terms, we need to analyse

2T
∑

T≤m≤X

∑
1≤h≤X/T

Iα,γ (m)Iβ,δ(m + h)
m

ψ̂

(
Th

2πm

)
.

We replace the arithmetic terms by their average and express this as

2T
∫X

T

∑
1≤h≤X/T

〈Iα,γ (m)Iβ,δ(m + h)〉m∼u

u
ψ̂

(
Th

2πu

)
du.

We compute the average heuristically via the delta-method [22]:

〈Iα,γ (m)Iβ,δ(m + h)〉m∼u ∼
∞∑

q=1

rq(h)
〈
Iα,γ (m)e

(
m
q

)〉
m∼u

〈
Iβ,δ(m)e

(
m
q

)〉
m∼u

,

where rq(h) is the Ramanujan sum, a formula for which is rq(h) =∑
d|h
d|q

dμ(q/d); note that to actually

prove this formula would be as difficult as proving the Twin Prime conjecture. We formalize this
as a precise conjecture in §5. It is this conjecture that we refer to in theorem 1.2. Now

〈
Iα,γ (m)e

(
m
q

)〉
m∼u

= 1
2π i

∫
|w−1|=ε

∞∑
m=1

Iα,γ (m)e
(

m
q

)
m−wuw−1 dw.

Thus, the off-diagonal contribution is

2T
∑

1≤h≤X/T

∫X

T

1
(2π i)2

∫∫
|w−1|=ε
|z−1|=ε

∞∑
q=1

rq(h)ψ̂
(

Th
2πu

)
uw+z−2

×
∞∑

m1=1

Iα,γ (m1)e(m1/q)
mw

1

∞∑
m2=1

Iβ,δ(m2)e(m2/q)
mz

2
dw dz

du
u

.

We make the change of variables v = Th/2πu. The inequality u ≤ X then implies that Th/2πv ≤ X
or h ≤ 2πvX/T. The above can be re-expressed as

2T
∫∞

0

∑
1≤h≤2πvX/T

1
(2π i)2

∫∫
|w−1|=ε
|z−1|=ε

∞∑
q=1

rq(h)ψ̂(v)
(

Th
2πv

)w+z−2

×
∞∑

m1=1

Iα,γ (m1)e(m1/q)
mw

1

∞∑
m2=1

Iβ,δ(m2)e(m2/q)
mz

2
dw dz

dv
v

.

Using Perron’s formula to capture, the sum over h gives

2T
∫∞

0

1
(2π i)3

∫
�s=2

∫∫
|w−1|=ε
|z−1|=ε

∞∑
q=1

∞∑
h=1

rq(h)
hs ψ̂(v)

(
Th

2πv

)w+z−2 (2πvX
T

)s

×
∞∑

m1=1

Iα,γ (m1)e(m1/q)
mw

1

∞∑
m2=1

Iβ,δ(m2)e(m2/q)
mz

2

ds
s

dw dz
dv
v

.

Now

2
∫∞

0
ψ̂(v)vA dv

v
= χ (1 − A)

∫∞

0
ψ(t)t−A dt.
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Incorporating this formula leads us to

T
∫∞

0
ψ(t)

1
(2π i)3

∫
�s=2

∫∫
|w−1|=ε
|z−1|=ε

∞∑
q=1

∞∑
h=1

rq(h)

hs+2−w−z

(
Tt
2π

)w+z−2 (2πX
tT

)s
χ (w + z − s − 1)

×
∞∑

m1=1

Iα,γ (m1)e(m1/q)
mw

1

∞∑
m2=1

Iβ,δ(m2)e(m2/q)
mz

2

ds
s

dw dz dt.

Hence, by theorem 1.1, this is
∫∞

0
ψ

(
t
T

)
1

2π i

∫
�s=2

(
t

2π

)−α−β−s
B−β,−α,γ ,δ(s + 1)

Xs

s
ds dt.

Thus, adding the diagonal and off-diagonal terms we obtain that the conjecture for the
correlations of values of Iα,γ (n) also implies the conclusion of theorem 1.2.

4. Proof of theorem 1.1
First of all, we have

∞∑
h=1

rq(h)

hA =
∞∑

h=1

∑
g|q
g|h

gμ(q/g)

hA =
∑
g|q

g1−Aμ

(
q
g

)
ζ (A) = q1−AΦ(1 − A, q)ζ (A),

where

Φ(x, q) =
∏
p|q

(
1 − 1

px

)
.

Using this and the functional equation for ζ , we have to evaluate

1
(2π i)2

∫∫
|w−1|=ε
|z−1|=ε

∞∑
q=1

qw+z−s−1Φ(w + z − s − 1, q)

× ζ (w + z − s − 1)
∞∑

m1=1

Iα,γ (m1)e(m1/q)
mw

1

∞∑
m2=1

Iβ,δ(m2)e(m2/q)
mz

2
dw dz.

We can identify the polar structure of the Dirichlet series here by passing to characters via the
formula

e
(

m
q

)
=
∑
d|m
d|q

1
φ(q/d)

∑
χ mod (q/d)

τ (χ̄ )χ
(m

d

)
.

Assuming GRH, the only poles near w = 1 arise from the principal characters χ (0)
q/d. Using

τ (χ (0)
q/d) =μ

( q
d

)
,

we have that the poles of
∑∞

m=1 Iα,γ (m)e(m/q)m−w are the same as the poles of

∑
d|q

μ(q/d)
φ(q/d)

∞∑
m=1

Iα,γ (md)χ (0)
q/d(m)m−wd−w

= q−w
∑
d|q

μ(d)
φ(d)

dw
∞∑

m=1

Iα,γ (mq/d)χ (0)
d (m)

mw

and the principal parts are the same. We replace χ (0)
d (m) by

∑
e|d
e|m
μ(e). Thus, we have

q−w
∑
d|q

μ(d)dw

φ(d)

∑
e|d
μ(e)e−w

∞∑
m=1

Iα,γ (meq/d)
mw .
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Now we need the polar structure of
∞∑

m=1

Iα,γ (mr)m−w

for r = qe/d.
We use a lemma from [23] which asserts that if A(w) = B(w)C(w), where A(w) =∑∞

m=1
(a(m)/mw), B(w) =∑∞

m=1(b(m)/mw) and C(w) =∑∞
m=1(c(m)/mw) then

∞∑
m=1

a(mr)
mw =

∑
r=r1r2

∞∑
m=1

b(mr1)
mw

∞∑
m=1(m,r1)=1

c(mr2)
mw .

We apply this identity with a(m) = Iα,γ (m), with b(m) = m−α and with c(m) =μ(m)m−γ . Then

∞∑
m=1

b(mr1)
mw = r−α

1 ζ (w + α)

and

∑
(m,r1)=1

c(mr2)
mw =

∑
(m,r1)=1

μ(mr2)
mw+γ rγ2

= μ(r2)
rγ2

∑
(m,r)=1

μ(m)m−w−γ = μ(r2)r−γ
2

Φ(w + γ , r)ζ (w + γ )
.

Now ∑
r=r1r2

μ(r2)r−α
1 r−γ

2 = r−α ∑
r=r1r2

μ(r2)rα−γ
2 = r−αΦ(γ − α, r).

Thus,
∞∑

m=1

Iα,γ (mr)
mw = ζ (w + α)r−αΦ(γ − α, r)

Φ(w + γ , r)ζ (w + γ )
.

In particular, we see that the only pole near to w = 1 is at w = 1 − α with residue

r−αΦ(γ − α, r)
Φ(1 + γ − α, r)ζ (1 + γ − α)

.

Inserting this with r = qe/d into the above, we now have that

Res
w=1−α

∞∑
m=1

Iα,γ (m)e(m/q)
mw = qα−1

∑
d|q

μ(d)d1−α

φ(d)

∑
e|d
μ(e)eα−1 (qe/d)−αΦ(γ − α, qe/d)

Φ(1 + γ − α, qe/d)ζ (1 + γ − α)

= Fα,γ (q)
qζ (1 + γ − α)

,

where

Fα,γ (q) = qα
∑
d|q

μ(d)d1−α

φ(d)

∑
e|d
μ(e)eα−1 (qe/d)−αΦ(γ − α, qe/d)

Φ(1 + γ − α, qe/d)

is a multiplicative function of q. At a prime p, we have

Fα,γ (p) = pα
(

p−αΦ(γ − α, p)
Φ(1 + γ − α, p)

− p1−α

p − 1

(
1 − pα−1p−αΦ(γ − α, p)

Φ(1 + γ − α, p)

))

= Φ(γ − α, p)
Φ(1 + γ − α, p)

(
1 + 1

p − 1

)
− p

p − 1

= p
(p − 1)

(
Φ(γ − α, p)

Φ(1 + γ − α, p)
− 1

)
= p

(p − 1)

(
(1 − pα−γ )

(1 − p−1+α−γ )
− 1

)

= p
(p − 1)

(−pα−γ + p−1+α−γ )
(1 − p−1+α−γ )

= −pα−γ

(1 − p−1+α−γ )
= −pα−γ + O

(
1
p

)
.
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With w = 1 − α and z = 1 − β, we see that our sum is

ζ (1 − α − β − s)
ζ (1 − α + γ )ζ (1 − β + δ)

∞∑
q=1

q−1−α−β−sΦ(1 − α − β − s, q)Fα,γ (q)Fβ,δ(q).

Because of Fα,γ (p) = −pα−γ + O(1/p), we have

∞∑
q=1

q−1−α−β−sΦ(1 − α − β − s, q)Fα,γ (q)Fβ,δ(q) = ζ (1 + γ + δ + s)Bα,β,γ ,δ(s),

where B is an Euler product that is absolutely convergent for s near 0. We claim that Bα,β,γ ,δ(s) =
A−β,−α−s,γ+s,δ . This is easily seen to be equivalent to showing that

Bα,β,γ ,δ(0) = A−β,−α,γ ,δ .

To prove this, we first note that for j ≥ 2 we have

Fα,γ (pj) = pjα

(
p−jαΦ(γ − α, p)
Φ(1 + γ − α, p)

− p1−α

p − 1

(
p−(j−1)αΦ(γ − α, p)
Φ(1 + γ − α, p)

− pα−1 p−αjΦ(γ − α, p)
Φ(1 + γ − α, p)

))

= Φ(γ − α, p)
Φ(1 + γ − α, p)

(
1 − p

(p − 1)
+ pα−1

)
= Φ(γ − α, p)
Φ(1 + γ − α, p)

(
− 1

(p − 1)
+ 1

(p − 1)

)
= 0.

Now the sum of the series
∞∑

j=0

p(−1−α−β)jΦ(1 − α − β, pj)Fα,γ (pj)Fβ,δ(pj)

is just

1 + p−1−α−βΦ(1 − α − β, p)Fα,γ (p)Fβ,δ(p)

= 1 + (1 − 1/p1−α−β )
p1+α+β

pα−γ

(1 − p−1+α−γ )
pβ−δ

(1 − p−1+β−δ)

= 1 + (1 − 1/p1−α−β )
p1+γ+δ(1 − p−1+α−γ )(1 − p−1+β−δ)

=
(

1 − 1
p1+γ+δ

)−1
B(p)
α,β,γ ,δ(0),

where

B(p)
α,β,γ ,δ(0) =

(
1 − 1

p1+γ+δ

)(
1 + (1 − 1/p1−α−β )

p1+γ+δ(1 − p−1+α−γ )(1 − p−1+β−δ)

)
.

The identity will be proven provided we can show that

1 + (1 − 1/p1−α−β )
p1+γ+δ(1 − p−1+α−γ )(1 − p−1+β−δ)

= (1 − 1/p1−α+γ − 1/p1−β+δ + 1/p1+γ+δ)
(1 − 1/p1−β+δ)(1 − 1/p1−α+γ )

.

This is equivalent to showing that

1 + XCD(1 − X/AB)
(1 − XC/A)(1 − XD/B)

= (1 − XC/A − XD/B + XCD)
(1 − XD/B)(1 − XC/A)

,

where X = 1/p; A = p−α ; B = p−β ; C = p−γ ; D = p−δ . This reduces to(
1 − XC

A

)(
1 − XD

B

)
+ XCD

(
1 − X

AB

)
=
(

1 − XC
A

− XD
B

+ XCD
)

or
(A − XC)(B − XD) + XCD(AB − X) = AB − XC − XD + XABCD,

which is easily checked.
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5. Conjecture 1
We can use the results of the previous two sections to formulate the conjecture that is part of the
input for theorem 1.2.

We expect Iα,γ (n)Iβ,δ(n + h) for n near u to behave on average like

∞∑
q=1

rq(h)
1

(2π i)2

∫
|w−1|=ε

∞∑
m=1

Iα,γ (m)e(m/q)
mw uw−1 dw

∫
|z−1|=ε

∞∑
n=1

Iβ,δ(n)e(n/q)
nz uz−1 dz.

The integrals over w and z are

Fα,γ (q)u−α

qζ (1 + γ − α)
Fβ,δ(q)u−β

qζ (1 + δ − β)
,

respectively. Thus, Iα,γ (n)Iβ,δ(n + h) behaves like

n−α−β

ζ (1 + γ − α)ζ (1 + δ − β)

∞∑
q=1

rq(h)Fα,γ (q)Fβ,δ(q)

q2 .

In particular, we expect that

∞∑
n=1

Iα,γ (n)Iβ,δ(n + h)
ns − ζ (s + α + β)

ζ (1 + γ − α)ζ (1 + δ − β)

∞∑
q=1

rq(h)Fα,γ (q)Fβ,δ(q)

q2

is analytic in σ > σ0 for some σ0 < 1.
This leads us to the following conjecture.

Conjecture 5.1. There are numbers φ < 1 and ψ > 0 such that

∑
n≤x

Iα,γ (n)Iβ,δ(n + h) = m(x, h) + O(xφ)

uniformly for h � xψ where

m(x, h) = 1
ζ (1 + γ − α)ζ (1 + δ − β)

∞∑
q=1

rq(h)Fα,γ (q)Fβ,δ(q)

q2
x1−α−β

1 − α − β
.

6. Conclusion
In subsequent papers, we will extend this process to averages of truncated ratios with any number
of factors in the numerator and denominator.
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Appendix A
For ease of comparison with results in the literature, we give a more concrete expression for M.

First of all, we note that the Rankin–Selberg Dirichlet series has an Euler product

Bα,β,γ ,δ(s) =
∞∑

m=1

Iα,γ (m)Iβ,δ(m)
ms =

∏
p

∞∑
j=0

Iα,γ (pj)Iβ,δ(pj)

pjs
.

Now ∞∑
j=0

Iα,γ (pj)xj = 1 − p−γ x
1 − p−αx

= (1 − p−γ x)(1 + p−αx + p−2αx2 + · · · )

so that

Iα,γ (pj) =
{

p−αj(1 − pα−γ ) if j ≥ 1

1 if j = 0.

Thus,
∞∑

j=0

Iα,γ (pj)Iβ,δ(pj)xj = 1 + (1 − pα−γ )(1 − pβ−δ)
∞∑

j=1

p−(α+β)jxj

= 1 − p−β−γ x − p−α−δx + p−γ−δx
1 − p−α−βx

and
∞∑

m=1

Iα,γ (m)Iβ,δ(m)
ms = ζ (s + α + β)

∏
p

(
1 − 1

ps+β+γ − 1
ps+α+δ + 1

ps+γ+δ

)

= ζ (s + α + β)ζ (s + γ + δ)
ζ (s + α + δ)ζ (s + β + γ )

Aα,β,γ ,δ(s),

where

Aα,β,γ ,δ(s) =
∏

p

(
1 − 1/ps+γ+δ) (1 − 1/ps+β+γ − 1/ps+α+δ + 1/ps+γ+δ)(

1 − 1/ps+β+γ ) (1 − 1/ps+α+δ) .

Now it is an easy exercise to calculate that

Mα,β,γ ,δ(T; X)

=
∫∞

0
ψ

(
t
T

)(
ζ (1 + α + β)ζ (1 + γ + δ)
ζ (1 + α + δ)ζ (1 + β + γ )

Aα,β,γ ,δ(1)

+
(

t
2π

)−α−β
ζ (1 − β − α)ζ (1 + γ + δ)
ζ (1 − β + δ)ζ (1 − α + γ )

A−β,−α,γ ,δ(1)

− X−γ−δ

(γ + δ)
ζ (1 + α + β − γ − δ)

ζ (1 + α − γ )ζ (1 + β − δ)
Aα−γ−δ,β,−δ,δ(1)

+
(

t
2π

)−α−β ( t
2πX

)γ+δ
ζ (1 + γ + δ − α − β)

ζ (1 − α + γ )ζ (1 − β + δ)(γ + δ)
A−β,γ+δ−α,−δ,δ(1)

)
dt

+ O(T1−η)

for some η > 0.
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