
 Hosseinabady, M., & Nunez-Yanez, J. (2015). Energy Optimization of
FPGA-Based Stream-Oriented Computing with Power Gating. In 2015 25th
International Conference on Field Programmable Logic and Applications
(FPL 2015): Proceedings of a meeting held 2-4 September 2015, London,
United Kingdom. [7293946] Institute of Electrical and Electronics Engineers
(IEEE). DOI: 10.1109/FPL.2015.7293946

Peer reviewed version

License (if available):
Unspecified

Link to published version (if available):
10.1109/FPL.2015.7293946

Link to publication record in Explore Bristol Research
PDF-document

(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73983639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/FPL.2015.7293946
http://research-information.bristol.ac.uk/en/publications/energy-optimization-of-fpgabased-streamoriented-computing-with-power-gating(1035163a-a21d-4272-9f16-c74279028d60).html
http://research-information.bristol.ac.uk/en/publications/energy-optimization-of-fpgabased-streamoriented-computing-with-power-gating(1035163a-a21d-4272-9f16-c74279028d60).html

Energy Optimization of FPGA-Based Stream-Oriented
Computing with Power Gating

Mohammad Hosseinabady and Jose Luis Nunez-Yanez
Department of Electrical and Electronic Engineering University of Bristol, UK.

Email: {m.hosseinabady, j.l.nunez-yanez}@bristol.ac.uk

Abstract—In this paper, we propose a technique to improve the energy
efficiency of FPGA devices by exploiting power gating techniques during
idle periods in streaming applications. The main idea is to shuffle idle
periods during application execution so that the energy and timing
overheads of turning the FPGA on and off can become acceptable. A key
requirement is that fast FPGA-based accelerators are available and that
the application follows a repetitive nature of execution. In this case, the
accelerators work on a successive computing mode to accumulate the idle
intervals in different iterations in order to make power gating feasible.
Streaming on demand applications which are ubiquitous in embedded and
portable devices are very good candidates to benefit from this technique.
A case study is presented based on an MP3 player as the streaming
application which shows up to 52.9% energy reduction.

Index Terms—FPGA, Power Gating, SDF, Stream Computation, Suc-
cessive Computing, Hybrid FPGA-ARM Platform

I. INTRODUCTION

FPGA-based accelerators are traditionally used for implementing
computational extensive tasks. In this case, effectively optimised
accelerators can provide a very fast implementation for a given task.
However, low power and energy consumptions are other important
features of FPGAs that have recently grabbed the researchers’ at-
tention to provide energy efficient yet fast platforms. Accelerator
rich platforms [1] are among the state-of-the-art ideas to improve
the energy efficiency by offloading computation from CPU cores to
accelerators and increase the utilisation of resources in the future
dark silicon era [2]. FPGAs are among the technologies used in these
platforms [3].

This paper utilises the power gating technique for FPGA-based
accelerators to efficiently reduce the energy consumption of tasks
running on the FPGA. The focus of this technique is streaming
applications with repetitive nature of execution. The power gating
technique is effective, if the FPGA idle time is long enough to cancel
the timing and energy overheads caused by the technique. As there is
no thorough low-level power gating in commercial FPGA, this paper
focuses on system level FPGA power gating. The system level FPGA
power gating requires reconfiguring the FPGA after turn-on which
usually is slow and consumes energy. This makes the power gating
technique inapplicable to most of streaming applications in which
the idle times are very short. In order to increase the idle times in
streaming applications, this paper proposes an accelerator utilisation
technique, called successive computing, to make the power gating
effective. In the proposed techniques, the FPGA-based accelerator
runs more than one iteration of a periodic task very quickly (instead
of running just one iteration each time) and then goes to the idle
state for a longer interval. Using Synchronous Data Flow Graph
(SDFG) [4], this paper explains a systematic approach to apply
the technique to an application. Applying the proposed method
to the MP3 player running on FPGA part of the Xilinx Zynq
SoC [5] as a case study shows up to 52.9% energy reduction. The
main overhead of the proposed technique is buffering a few data
tokens (e.g., frames in video/audio applications) in the main memory

resulting in an initial delay to applications. Note that buffering is
acceptable in some streaming applications such as video/audio on
demand scenarios and in interactive streaming applications such as
video/audio conferencing its acceptable if the delay does not exceed
200ms [6]. In addition, buffering is one of the basic techniques in
video and audio applications to overcome the low speed network
connections in video or audio on demand applications. The main
novelty of this research is utilising the FPGA power gating for
streaming applications on commercial hybrid ARM+FPGA platforms
such as Xilinx Zynq SoC.

The rest of this paper is organised as follows. Reviewing the pre-
vious work, the next section explains the motivation and contribution
of this paper. Section 3 models the proposed technique to study its
applicability and overheads. Section 4 studies two examples as use
cases. Finally, Section 5 concludes the paper.

II. PREVIOUS WORK, MOTIVATIONS AND CONTRIBUTIONS

Power gating techniques on FPGA-based platforms have been
investigated by academic and industrial researchers [7–10]. A lookup
table-level, gate-level fine-grain and unused logic blocks power gating
techniques are proposed in [7], [8] and [9], respectively. After all,
the internal structure of the an FPGA could be changed by the
manufacturer based on these approaches. A system level power
gating technique for Xilinx Zynq SoC is presented by authors [10],
investigating the overhead of the technique. Utilising this work, our
approach in this paper explains when and how we can apply the
FPGA power gating on streaming applications.

An unused block RAM power gating technique is presented by
Xilinx in 28nm 7-series devices [11] in which only block RAMs
are utilised by a design consume power. Independently controllable
power domains are supported in Xilinx Zynq-7000 [5] and Zynq
UltraScale+ MPSoC [12] which makes them suitable for system level
power gating techniques. In this paper, we utilise this feature in the
Zynq-7000 SoC to reduce the energy consumption.

A. Motivation

Taking Sobel filter as a simple image processing algorithm, this
subsection discusses the motivation behind this paper. Sobel filter is
one of the edge detection algorithms in which two 3× 3 masks are
convolved with an input image. We have used the Xilinx Vivado-
HLS to synthesis a C version of this algorithm for the FPGA in
the Xilinx Zynq SoC (i.e., the PL part). Table I shows the resource
utilisation for this implementation. This implementation on the PL
takes about 0.820msec to be applied on a 480 × 270 image. In
the sequel, we compare the impact of three FPGA power reduction
techniques (which are voltage/frequency scaling, clock gating and
power gating) on this example.

Let’s assume this filter is applied to the frames of an input
video with the rate of 60 frames per second. Therefore, the PL is
active for 0.820msec performing the filter and then goes to the

TABLE I: Sobel filter resource utilisation on Zynq

Slice LUT Slice Register BRAM DSP

39073 (73.45%) 40084(37.67%) 28 (20%) 80(36.36%)

TABLE II: PL power consumption

active(VCCINT=1V,
f=100MHz)

idle active(VCCINT=0.8V,
f=13.89MHz)

clock gating

0.448 W 0.388 W 0.212 W 0.15 W

idle mode for about 15.85msec waiting for the next frame. Table II
shows the average power consumption associated with running the
Sobel filter on the PL. The power consumption on PS and DDR3
have been omitted for the sake of simplicity. These powers will
be considered later in this paper. When the PL is active (shown
in the first column of the table), the task draws power from PL
voltage rails (i.e., VCCINT, VCCAUX and VCCBRAM [13]). During
the idle mode, the main source for power consumptions are clock
activities and static power in the PL (shown in the second column
of the table). The energy consumption for processing 60 frames
is 60 ∗ (0.448 ∗ 0.820 + 0.388 ∗ 15.85) = 391.03mJ . Applying
the voltage and frequency scaling on the PL, third column shows
the power consumption in the PL. The voltage and frequency have
been reduced to the extent that the filter takes all its allowance time
for execution which is about 16.67msec. In this case, the energy
consumption for processing 60 frame is 60 ∗ (0.212 ∗ 16.67) =
212.042mJ , which shows 45.7% energy reduction. The last column
shows the power consumption during idle mode after applying the
clock gating to the PL. In this case, the total energy for processing
60 frame is 60 ∗ (0.448 ∗ 0.820 + 0.15 ∗ 15.85) = 164.69mJ
which the percentage of the energy reduction is 57.88%. The power
consumption during idle time using the PL power gating is zero.
Therefore, the energy consumption for processing 60 frame in this
case is 60 ∗ (0.448 ∗ 0.820) = 22.04mJ which results in 94.36%
energy reduction.

As can be seen, the power gating technique shows better per-
formance in terms of the energy reduction. The PL power gating
can be done by turning the PL off and on. However, PL loses its
configuration if it is turned off. A PL full reconfiguration is required
to make the PL active again. The reconfiguration process for available
SRAM-based FPGAs is slow (around 100msec) and also associated
with power consumption overhead, which makes that impossible to
be used in the frame-by-frame Sobel filter algorithm. This problem
has motivated us to propose an effective power gating scenario for
streaming algorithm mapped on FPGAs. The next subsection explains
the main contributions of this paper in more detail.

B. Contributions

The basic idea to apply the power gating technique to a streaming
application with a fixed data rate (such as video processing) is to
process a few data tokens (e.g., frames) consecutively in a successive
mode instead of processing the stream in a token-by-token manner.
Fig. 1a shows the normal stream computing in which the accelerator
processes each token separately and then goes to the idle mode for a
short period waiting for the next token. Fig. 1b shows the successive
stream computing mode in which the accelerator processes n tokens
very quickly and then goes to the idle mode for a long period. In
this case, the FPGA is active between time stamps t0 and t1 and is
idle between t1 and t3, which can be turned off. However, it should
be turned on and reconfigured at time t2.

Some of the requirements to apply the successive computing mode
efficiently are as follows:

• Providing a fast accelerator for a given task

Fig. 1: Stream Computing

Fig. 2: An SDFG with five actors and four channels
• Prepare enough buffer in the system to keep the data consumed

and generated by a task in a successive computing mode
• Investigating the dependencies (especially cyclic dependencies)

among the tasks of an application to make sure that running n
iterations of the task on the accelerator is possible and is not
the subject to deadlocks

• Application performance constraints should be satisfied

The main contributions of this paper are coping with these require-
ments and investigating the overheads and energy efficiency of the
proposed technique.

III. MODELLING TECHNIQUES

A stream computing processes a sequence (or stream) of data
elements received (usually at a fixed rate) over time. Audio or video
players in which frames (as data elements) are received and should be
decoded and played at a constant rate are typical examples of stream
computing. In this paper, the rates of generating and consuming data
by source and sink tasks are denoted by fsrc and fdst, respectively.

We assume the underlying hardware platform consists of a proces-
sor and an FPGA (such as Zynq). For the sake of simplicity, we also
assume that the FPGA, as the accelerator hardware, implements one
of the tasks on an streaming application and the rests are implemented
by the processor.

A. Application model

We use Synchronous Data Flow Graph (SDFG) [4] to model
streaming applications. An SDFG is a graph-based modelling to de-
scribe a streaming application (which have repetitive nature of execu-
tion) in the Digital Signal Processing (DSP) and multi-core/processor
SoCs. The main features of SDFGs are modelling the stream pipeline
dependency as well as cyclic dependencies among different tasks in
an application. In an SDFG, tasks are modelled by graph vertices
called actors. The edges between actors represent the communication
channels among actors. When an actor fires (executes), it consumes
a fixed number of data unites (called tokens) from its input channels
and generates a fixed number of tokens on its output channels. The
number of tokens (called rate) required by an actor to be fired are
denoted on the incoming edges of that actor. The number of tokens
generated by an actor is denoted by numbers (i.e., rate) on the
outgoing edges. Fig. 2 shows an example of an SDFG consisting of
five actors and four channels. In this graph, actor src is the source
of data and produces one token whenever it fires, actor a consumes
one token and generates two tokens, actor b consumes and generates
one token, actor c consumes two tokens and generates one token.
Finaly, snk is the sink actor that consumes one token whenever

it fires. These fixed rates provide statically finite periodic schedule
for SDFGs if it is consistent and there is enough initial tokens on
cycles in the graph [4]. An SDFG is consistent if the corresponding
balance equations has a solution. The balance equations represent
the relation between token production and consumption on a channel.
The answer of the balance equations is called repetition vector. The
balance eauations for Fig. 2 are rsrc = ra, 2ra = rb, rb = 2rc and
rc = rsnk where, rsrc, ra, rb, rc and rsnk denote the number of
times that actors src, a, b, c and snk are activated in one iteration,
respectively. The repetition vector is (1, 1, 2, 1, 1). Therefore, one
iteration of the SDFG execution consists of one fireing of src, one
firing of a, two firing of b, one firing of c and one firing of snk
actors. This iteration can be repeated indefinitely, and at the end of
each iteration the states of channels are the same as those of the initial
states before the first iteration. Note that executing inconsistent SDFG
requires unbounded memory. Therefore, we only consider consistent
SDFG. To avoid deadlock situation in a cyclic SDFG, enough number
of delays (i.e., initial tokens) should be added on the channels of
cycle paths. An edge f from actor a to actor b with delay count D
means that the computation of node b at iteration i depends on the
computation of node a at iteration i−D. According to the repetition
vector a finite periodic schedule for the SDFG of Fig. 2 can be
shown by a compact form as S = src.a.b2.c.snk. This compact
form defines the execution order of actors if they are bound to the
same hardware platform.

B. Successive computing model

This subsection explains how we can model the successive comput-
ing technique in an SDFG. This integration of successive computing
into the SDFG helps us to investigate the application in terms of
throughput and buffer sizes at model level. In addition, the modified
SDFG will be used to propose a valid schedule for the application. As
shown in Fig. 1b, in the successive computing mode, n iterations of a
specific task (i.e., an actor in the SDFG) should be run consecutively.
Therefore, the length of that actor firing in the schedule compact
form should be greater than n. For example, if x represents the
actor mapped on the FPGA then there should be a term of xn

in the schedule compact form. For example, if the b actor in the
SDFG of Fig 2 is mapped on the FPGA and we want to run
6 iterations of this actor, consecutively, then in the schedule of
the SDFG we should have the b6 term. Considering 3 iterations
of the SDFG can provide 6 firings of the b actor. In this case,
the schedule SB1 = (src.a)3.b6.(c.dst)3 describes the required
successive processing. Note that, there may be many of other valid
schedules available such as SB1 = src3.a3.b6.c3.dst3.

We utilise an approach similar to the decision state modelling
technique proposed in [14] [15] to integrate the successive computing
schedule constraints into the SDFG. Considering the SDFG example
shown in Fig. 2, we explain this process.

The constraint is that there should be enough tokens at the input
channels of actor b to guarantee the successive computing. As this
actor requires the tokens for 6 firing then actor a should be fired
enough times before actor b to provide the input token. According
to the repetition vector of Fig. 2 in each iteration actor a fires once
and provide tokens for two firing of actor b, therefore 3 iterations of
SDFG are required to actor b has tokens for 6 consecutive firings.
We create the dependency between b and a as shown in Fig 3a by
adding the dummy actor α which does not do anything and two
channels. This dependency prevents b from getting fired unless a has
provided enough tokens. The repetition vector for the modified SDFG

Fig. 3: Successive stream computing SDFG model

Algorithm 1: Successive computing modelling
Data: Gin: the input SDFG
Data: afpga: the actor to be mapped on FPGA for successive

computing
Data: noFiring: the number of firing required for the actor afpga

in the successive computing to save energy
Result: Gout: the SDFG with successive computing constraint

1 Find the repetition vector for Gin
2 iter = dnoFiring/rafpgae // the number of required SDFG

iteration
3 forall the ai: precedence actors of afpga in Gin do
4 gi=generation rate of the channel between ai and afpga

ci=consumption rate of the channel between ai and afpga
pr = iter ∗ ci

5 Add the actor αi to SDFG
6 Add a channel between ai and αi with production rate of gi

and consumption rate of pr
7 Add a channel between αi and afpga with production rate of

pr and consumption rate of ci
8 end
9 Add self loops around src and snk actors with consumption and

generation of 1 and one initial token
10 srcg = token generation rate of source
11 dstc = token consumption rate of source
12 Add iter ∗ srcg initial tokens to the src output channel
13 Add iter ∗ dstc initial tokens to the dst input channel

is (3, 1, 3, 6, 3, 3) which means rsrc = 3, rα = 1, ra = 3, rb = 6,
rc = 3 and rsnk = 3.

C. Timing constraints

Producing and consuming tokens in a constant rate at the input
(i.e., src actor) and output (i.e., snk actor), respectively, are main
features in most of streaming applications. Any proposed scheduling
for a successive computing should satisfy these timing constraints. To
explain how to add these constraints in the SDFG, let’s consider the
timing schedule shown Fig. 4a for SDFG of Fig. 2a. This schedule
shows three normal iterations of this applications that we assume
the src and snk actors comply with the timing constraints in the
application. Fig. 4b shows a schedule for the successive computing
described with SDFG shown in Fig. 3a which does not comply the
timing constraints associated with src and snk actors. One solution to
satisfy these constraints is that, in an iteration, the src actor generates
the tokens for the successor iteration and snk actor consumes the
tokens from predecessor iteration. Such a timing schedule is shown in
Fig. 4c with +1 and −1 superscript to show the iteration dependency.

This iteration dependency can be modelled in the SDFG by adding
self-loops with one initial tokens around src and snk and buffers
at the output and input of src and snk actors, respectively. The
length of these buffers are defined by the repetition vector of the
successive stream computing SDFG. For example, Fig. 3b shows
these constraints for the aforementioned example. Note that, SDFG
cannot model the timing values for actors directly. However, timing
techniques such as Max-Plus algebra [16] or real-time scheduling
[17] can be used which are out of the scope of this paper.

Algorithm 1 propose a systematic approach to add successive
computing and timing constraints to a given SDFG. The input of
this algorithm are the given SDFG (denoted by Gin), the actor to be
mapped on FPGA for successive computing (represented by afpga)
and the number of actor firing that will save energy (determined by
noFiring).

D. Energy model

The total energy consumption of an actor (i.e., a task) running on an
accelerator during one iteration (shown in Equ. 1) is the sum of the
energy consumption when it is active and the energy consumption
when it is idle. The active energy is the sum of the computation
energy (i.e., the PL energy which does the computation) and the
contributing energy of contextual resources. Contextual resources,
such as the DDR memory/controller, are the resources that help
the FPGA to do its task. The energy consumption of a contextual
resource has two components: background and contributing energies.
The background energy is the portion of a contextual resource energy
consumed to make the resource available even if there is no FPGA
accelerator in the system. The power consumption of the main
memory is a good example of this, when there is no application
running on the system apart from the Operating System (OS). The
contextual contributing energy is the amount of energy that contextual
resources consume to help the FPGA in performing its tasks. Note
that the background energy of a contextual resource dedicated to an
FPGA-based accelerator is zero and all its energy consumption is
contributing.

The computation energy is determined by multiplying the execu-
tion time (i.e., tcomp) and the sum of average dynamic power and
static power. The dynamic power in CMOS technology is proportional
to design capacitance (i.e., C), frequency (i.e., f) and voltage square
(V 2). The idle energy is sum of the FPGA static and clock activity
(if clocks are not gated) energies. In an embedded system, when
the FPGA is idle we assume that contextual resources are also used
to execute other tasks in the system so they do not contribute in
accelerator energy consumption any more or their contributing energy
is zero. However, if there are contextual resources dedicated to the
FPGA computation, their idle energy consumption should also be
included.

Etotal =

active︷ ︸︸ ︷
tcomp(αCfV

2 + Pstatic + Pmem + PPS︸ ︷︷ ︸
contributing

)

+ tidle.(Pstatic + γCfV 2)︸ ︷︷ ︸
idle

(1)

If we utilise power gating and disconnect the power supply from
FPGA when it is idle then Equ. 2 shows the total energy which
includes power gating energy overhead (i.e., EpwrGated−ovrhd).

Etotal−pwrGated = tcomp(αCfV
2 + Pstatic + Pmem + PPS︸ ︷︷ ︸

contributing

)+

+ EpwrGated−ovrhd (2)

Power gating, in which power supply is disconnected from the
FPGA for an interval of time, consists of six phases [10] (shown in
Fig. 5): store states, turning off the FPGA, FPGA turned off, turning
on the FPGA, reconfiguration and finally restore the states. Each of
these steps can have timing or energy overheads on the system which
are shown in Equs. 3 and 4, respectively.

tpwrGated−ovrhd = tss + ttrof + ttron + treconf + trs (3)
EpwrGated−ovrhd = Ess + Etrof + Eoff + Etron + Ereconf + Ers

(4)

In order to reduce energy using the power gating for a specific
module that following constraints should be satisfied. Equ. 5 implies
that the idle time of the FPGA should be greater than the timing
overhead cased by power gating. The second equations (i.e., Equ. 6)
implies that the energy consumption of the FPGA during its idle
mode should be greater than the power gating energy overhead.

tidle > tpwrGated−ovrhd (5)
Eidle > EpwrGated−ovrhd (6)

In the proposed successive processing techniques in which the
FPGA executes n iterations successively these equations are con-
verted to Equs. 7 and 8. Note that, these equations have intuitively
more chance to be satisfied for a design.

ntidle > tpwrGated−ovrhd (7)
nEidle > EpwrGated−ovrhd (8)

E. Proposed Algorithm

Algorithm 2 contains the pseudocode for applying the proposed
power gating technique on a streaming application described by
SDFG which runs one of its actor (i.e., afpga) on the FPGA. The
algorithm first find the minimum number of firing of afpga that
satisfy Equs. 7 and 8. Then it calls Algorithm 1 to modify the
SDFG. The algorithm then increases the number of afpga firings
in an iterative scheme to find the maximum energy consumption for
given buffer size and initial delay acceptable by the application.

IV. CASE STUDY

A. Cyclic SDFG

Fig. 6a shows a cyclic SDFG with five actors and channels.
The corresponding repetition vector is (rsrc, ra, rb, rc, rdst) =
(2, 2, 2, 1, 1). Because of the cycle path exist in the graph, it is
subject to deadlock unless some initial tokens are presented in the
cycle path. Considering two initial tokens on the edge between d
and b solves the deadlock. However, (src)n(a2b2c)n(snk)n is the
general form of deadlock free schedules in which two iterations of
a should be followed by two iterations of b and one iteration of c .
Therefore, it is not possible to map only one of these actors on an
FPGA in a successive processing mode. In order to apply successive
processing to this SDFG, all three actors a, b and c should be mapped
on the FPGA. For this purpose, these actors can be combined as
a hierarchical actor, denoted by abc in Fig. 6b. The techniques to
combine a few actors to form an hierarchical actor is explained in
[18].

B. MP3 player

Fig. 7 shows the SDFG of an MP3 player [19] which consists
of 18 actors. We have executed a simple version of the MP3 player
based on [20] on Zynq board. After running gprof profiling tool for an
execution of this player with a 2 minutes audio input, the computation
extensive parts of this player are IMDCT and Syn. Filter Bank actors.

Fig. 4: Successive computing timing constraints

The Syn. Filter Bank actors (i.e., m and n) take more than 57% of the
player execution time. In addition, the amount of energy consumption
by this application is 5437.86mJ in which 3637.24mJ is consumed
by Syn. Filter Bank actors. Therefore, we have synthesised a C
version of these actors for Zynq FPGA using Xilinx Vivado-HLS tool.
Table III shows the corresponding resource utilisation. One iteration
of this actor on FPGA takes about 87.5µsec.

We used similar technique as the one presented in [10] for power
gating the PL. Whereas [10] consider the baremetal (without Linux
operating system) mode, we applied the technique on the Zynq when
Linux is running on the PS. Table IV contains the timing and power
overheads caused by the PL power gating in Zynq SoC. The last
column shows the total power overhead which is the sum of the PL
power consumption and contributing power consumptions of the PS
and the DDR3 memory.

Table V contains the energy consumption of different MP3 im-
plementations. The first column shows the number of seconds of
audio that has been buffered in the proposed successive streaming
computing method. The second column contains the energy con-
sumption for the software-implemented MP3 running on PS. The
third column shows the energy consumption of the hybrid PS-PL
implementations in which PL is clock-gated when it is idle. The
fourth column contains the energy consumption of the hybrid PS-
PL implementation in which PL is power-gated when it is idle. The
last column shows the percentage of the energy reduction for the
PL power-gated. As can be seen, PL clock gating consumes more
energy than software version, and the main reason is the long idle
time in this application which makes the PL static energy dominant.
However, by the PL power gating, the PL static energy during idle
mode is removed from the system. Therefore, with 10 second of audio
buffering 48.5% of the energy can be saved. By buffering the whole
audio, the last row shows at most 52.9% energy reduction.

Fig. 5: FPGA power gating phases

Algorithm 2: Successive processing based power gating
Data: Gin: the input SDFG
Data: afpga: the actor to be mapped on FPGA for successive

computing
Data: initDelaymax: maximum initial delay acceptable by the

application
Data: buffermax: maximum used buffer acceptable by the

application
Result: Gout: the SDFG with successive computing constraint
Result: Gout: the SDFG with successive computing constraint

1 Pidle = Measure the idle power on the FPGA
2 E1idle = t1idle ∗ Pidle;
3 n = 1;
4 Enidle = E1idle;
5 tnidle = t1idle;
6 do
7 Enidle = n ∗ E1idle;
8 tnidle = n ∗ t1idle;
9 n = n+ 1;

10 while (Enidle < EpwrGated−ovrhd AND tnidle < tpwrGated);
11 noFiring = n

12 do
13 Gout =Algorithm 1 (Gin, afpga, noFiring)
14 delay = Calculate the initial delay in the Gout SDFG buffer

= Calculate the used buffer in the Gout SDFG
noFiring = noFiring + 1

15 while (delay < initDelaymax AND buffer < buffermax);
16 Choose the latest iteration of the previous loop that satisfies the

conditions as the final solution

TABLE III: Syn. Filter Bank resource utilisation on Zynq

Slice LUT Slice Register BRAM-18K DSP

15862 (29.82%) 12626(11.87%) 36 (25.71%) 184(83.64%)

TABLE IV: Zynq PL power gating overhead under Linux OS

ttrof (msec) ttron(msec) treconf (msec) Preconf (W)

4.84 4.84 48 0.0178(PS) +
0.133(PL) +
0.047(DDR3) =
0.1978

V. CONCLUSION

This paper has proposed an FPGA power gating technique to
be applied on streaming applications. Synchronous data flow graph
(SDFG) has been used for modelling and investigate the applicability

(a) Cyclic SDFG

(b) Cyclic SDFG with successive com-
puting constraints

Fig. 6: Case studies:cyclic SDFG

Fig. 7: MP3 decoder SDFG
TABLE V: MP3 energy (mJ) consumption for 2 minuets audio

of
second
buffer

Only PS PS and
PL clock-
gated

PS and
PL
power-
gated

Power
gating
energy
saving

1 5437.86 18272.60 5138.46 5.6%

5 5437.86 18272.60 3064.86 43.7%

10 5437.86 18272.60 2805.6 48.5%

120 5437.86 18272.60 2568.06 52.9%

of the technique to a given application. Applying the proposed
method on MP3 player, as a case study, shows up to 52.9% reduction
in the consumed energy for playing a audio file.

ACKNOWLEDGEMENT

The authors would like to thank the reviewers for their valuable
comments. This research is a part of the ENPOWER project spon-
sored by EPSRC.

REFERENCES

[1] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj,
and G. Reinman, “Accelerator-rich architectures: Opportunities
and progresses,” in Proceedings of the 51st Annual Design
Automation Conference, ser. DAC ’14. New York, NY,
USA: ACM, 2014, pp. 180:1–180:6. [Online]. Available:
http://doi.acm.org/10.1145/2593069.2596667

[2] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The
EDA challenges in the dark silicon era: Temperature, reliability,
and variability perspectives,” in Proceedings of the 51st Annual
Design Automation Conference, ser. DAC ’14. New York,
NY, USA: ACM, 2014, pp. 185:1–185:6. [Online]. Available:
http://doi.acm.org/10.1145/2593069.2593229

[3] Y.-T. Chen, J. Cong, M. A. Ghodrat, M. Huang, C. Liu, B. Xiao, and
Y. Zou, “Accelerator-rich cmps: From concept to real hardware.” in
ICCD. IEEE, 2013, pp. 169–176.

[4] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235 – 1245, September 1987.

[5] Xilinx, “Zynq-7000 all programmable SoC,” Xilinx, Tech. Rep.,
2014. [Online]. Available: http://www.xilinx.com/products/silicon-
devices/soc/zynq-7000/

[6] C. Krasic, K. Li, and J. Walpole, “The case for streaming multimedia
with tcp.” in IDMS, ser. Lecture Notes in Computer Science, D. Shep-
herd, J. Finney, L. Mathy, and N. J. P. Race, Eds., vol. 2158. Springer,
2001, pp. 213–218.

[7] S. Ishihara, M. Hariyama, and M. Kameyama, “A low-power fpga based
on autonomous fine-grain power-gating,” in Proceedings of the 2009
Asia and South Pacific Design Automation Conference, ser. ASP-DAC
’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 119–120. [Online].
Available: http://dl.acm.org/citation.cfm?id=1509633.1509670

[8] A. A. M. Bsoul and S. Wilton, “An fpga architecture supporting dy-
namically controlled power gating,” in Proceedings of the International
Conference on Field-Programmable Technology (FPT), 2010, pp. 1–8.

[9] A. Ahari, B. Khaleghi, Z. Ebrahimi, H. Asadi, and M. Tahoori, “Towards
dark silicon era in fpgas using complementary hard logic design,” in
Proceedings of 24th International Conference on Field Programmable
Logic and Applications (FPL), 2014, pp. 1–6.

[10] M. Hosseinabady and J. L. Nunez-Yanez, “Run-time power gating
in hybrid ARM-FPGA devices,” in Proceedings of 24th International
Conference on Field Programmable Logic and Applications (FPL), 2014,
pp. 1–6.

[11] J. Hussein, M. Klein, and M. Hart, “Lowering power at 28 nm with
Xilinx 7 series devices,” Xilinx, White paper, WP389 (v1.2), 2013.

[12] Xilinx. (2015) Zynq ultrascale+ mpsoc. [Online].
Available: http://www.xilinx.com/products/silicon-devices/soc/zynq-
ultrascale-mpsoc.html

[13] ——, “Zc702 evaluation board for the Zynq-7000 XC7Z020
all programmable soc, user guide,” Xilinx, Tech. Rep., April
4, 2013. [Online]. Available: http://www.xilinx.com/products/silicon-
devices/soc/zynq-7000/

[14] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corporaal,
“Schedule-extended synchronous dataflow graphs,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 10, pp. 1495 – 1508, October 2013.

[15] ——, “Modeling static-order schedules in synchronous dataflow
graphs,” in Proceedings of the Conference on Design, Automation and
Test in Europe (DATE’12), 2012, pp. 775–780. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2492708.2492901

[16] R. de Groote, D. J. Kuper, P. H. Broersma, and D. G. J. Smit, “Max-
plus algebraic throughput analysis of synchronous dataflow graphs,” in
38th EUROMICRO Conference on Software Engineering and Advanced
Applications, SEAA 2012. USA: IEEE Computer Society, 2012, pp.
29–38.

[17] A. Bouakaz, “Real-time scheduling of dataflow graphs,” Theses,
Université Rennes 1, Nov. 2013. [Online]. Available: https://tel.archives-
ouvertes.fr/tel-00945453

[18] S. Tripakis, D. Bui, M. Geilen, B. Rodiers, and E. A. Lee,
“Compositionality in synchronous data flow: Modular code generation
from hierarchical sdf graphs,” ACM Trans. Embed. Comput. Syst.,
vol. 12, no. 3, pp. 83:1–83:26, Apr. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2442116.2442133

[19] S. Gadd and T. Lenart, “A hardware accelerated MP3 decoder with blue-
tooth streaming capabilities,” Master’s thesis, Lund University, Sweden,
2001.

[20] M. J. Fiedler. (2007) Mini-MP3. [Online]. Available:
http://keyj.emphy.de/minimp3/

