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NORMAL FORMS A LA MOSER FOR APERIODICALLY TIME-DEPENDENT
HAMILTONIANSIN THE VICINITY OF A HYPERBOLIC EQUILIBRIUM.

ALESSANDRO FORTUNATI AND STEPHEN WIGGINS

ABSTRACT. The classical theorem of Moser, on the existence of a nofamai in the neighbourhood
of a hyperbolic equilibrium, is extended to a class of rewbgtic Hamiltonians with aperiodically time-
dependent perturbations. A stronger result is obtainedarcase in which the perturbing function exhibits
a time decay.

1. INTRODUCTION

The classical theorem of Moser, proven ids5q, establishes the existence of a (convergent) nor-
mal form in a neighbourhood of a hyperbolic equilibrium ofaea preserving map, either autonomous
or periodically dependent on time. A result contained@P4, extends this result to the the flow of
a priori unstable system in a neighbourhood of a partiallgdnigolic torus, including in this way the
guasiperiodic case. A concise description of the lattee cas be found inGal97.

The aim of this paper is to show the existence of a normal farmHamiltonians in the form1), i.e.
real-analytic and non-autonomous perturbations of a gdierequilibrium, for which the time depen-
dence is not required to be periodic or quasiperiodicaperiodic

In the same spirit of the aperiodic version of the Kolmogotteeorem of F\W144, which we use as a
guideline (see alsodioh]), the proof consists on the extension of the KAM approach@$94 and
[Gal97. Even in the original problem of Moser, despite the absesfcgenuine” small divisors the
well known property osuperconvergencef the KAM schemes, turns out to be of crucial importance in
order to compensate the accumulation of “artificial” divesgenerated by the Cauchy estimates. This
feature is profitably used also in our case.

The treatment of the class of time-dependent homologiazdtsans, naturally arising in the normaliza-
tion algorithm, has been improved with respectRo\[144. Basically, the canonical transformation on
which the single step of the mentioned algorithm is baseslft@property to leave the time unchanged
Hence, this can be interpreted as a family of canonical mapstiich the time plays the role of “param-
eter”. This allows to weaken the analyticity hypothesistf@ time dependence leading to a remarkable
simplification of the quantitative estimates.

The proof is carried out by using the formalism of the Lie sgnmethod developed by Giorgilli et al.
(see e.g.Gio03 and references therein).

2. PRELIMINARIES AND STATEMENT OF THE RESULT
Let us consider the following Hamiltonian

H(p,q,n,t) = wpq+n+ F(p,q,t), (1)

wherew € (0,1], (p,q,1) € [-7,7]?xR =: Dwithr > 0andt € R* := [0, c0). As usual, Hamiltonian
(1) is equivalent to the non-autonomous Hamiltonffy, ¢,t) = wpq + F(p, q,t) (which represents
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This is a common feature with the “non-purely hyperbolicsedreated inGiod.
This class of transformations was initially considered@pZ].
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our original problem), by defining asthe conjugate variable to

The functionF" will be supposed to be real-analyticirandq and such that, denoted #s(¢) its Taylor
coefficients, one hag,(t) = 0 for all® la| < 2, and allt € R*. Namely, the Taylor expansion df
starts from the terms of degrée

The standard framework for the analysis, features the cexiffglation of the domairD as follows.
Let R € (0,1/2] and define

Or :={(p.a) €C*: |pl,lgf <R},  Sr:={neC:|3m <R},

then setDy := Qr x Sg. The perturbatior¥’ will be supposed continuous @g and holomorphic in
the interior for allt € R™ (thenH is onDy) for someR. It will be sufficient to suppose that the real and
imaginary parts of the complex valued functiofigt) belong toC! (R*) for all a.

Given a functionG : Qr x Rt — C, we consider th@aylor norm

1G(P.a. Ol 7 =D _ lgalt)+ R, ()

where| - [ = sup;cg+ | - |- Clearly |G|, := supg,, |G|+ < ||G]|z. We briefly recall the following
standard result (which motivates the above described ggum onF): if a function G is continuous
on Qr and holomorphic in the interior, for all € R*, one hadg,(t)|+ < |G| R~12l. In particular,
|G| g < +ooforall R" < R.

In the described setting the main result can be stated asvil|

Theorem 2.1 (Aperiodic Moser 56). Suppose that + || F(p,q,t)|| =: Mr < oco. Then there exist
R., Ry with0 < R, < Ry < R*and a family of canonical changest : Dr, — Dg,, analytic onDg,
for all t € RT, casting the Hamiltonian1) in thetime-dependent Moser normal form

HE ()00 () 4) = 7o) (20 1) 1 (o). 3)
wherez := pq, J)(0,t) = 0 andd,J () (0,t) = w for all t € R,

Exactly as in the classical Moser theorem, the quantity’ is a first integral, hence the flow associ-
ated to Hamiltonian3) can be reduced to quadratures. In particular, one has

P () = p°)(0) exp(—A(z>(0),1)), ¢ (t) = ¢ (0) exp(A(x>)(0), 1)),

where A(z,t) := fg Dy J ) (z, 5)ds.

The use of an additional ingredient leads to an even straegeit. GivenG : Qr x RT — C we define
as the “time-dependent” Taylor norm 6f, the quantity||G|| p.5+ := >_, l94(¢)|RI%], i.e. @) in which
| - |+ is replaced witH - |. Now we introduce the next B

Hypothesis 2.2. (Slow decay) Suppose that there exi$t- € [1, +oc) anda > 0 such that
IF(p, ¢, )l gop+ < Mpe™®, (4)
forall (p,q,t) € Or x RT.
In this way we are able to prove the following

Theorem 2.3 (Strong Aperiodic Moser56). Under Hypothesig€.2it is possible to determing < R, <
Ry < R* and a family of canonical transformation$ts, analytic onDy for all t € RT, for which the
Hamiltonian () is transformed into thetrong Moser normal form

A (p(0) (00) 5(00) 4y = (3:(50) 4 (o), (5)

31t will be understood throughout the paperc N2, denotingla| := a1 + as.
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The Hypothesig.2, already used inf\W144, turns out to be necessary in order to ensure the existence
of certain improper integrals, which appear when dealintl wime-dependent homological equations.
As in the latter paper, this particular rate of decay is agsianly for simplicity of discussion. Similarly,
we stress that no lower bounds are imposed ¢axcept zero), in this way the time decay can be arbi-
trarily slow. The natural side-effect is that the estimaiaghe convergence radius of the normal form
worsen as is smaller and smaller.

It should be stressed that, in both cases, the choiceipfthe interval(0, 1] is discussed as the “inter-
esting” case. On the other hand, it is clear that the cortabiof the time perturbation is smaller as
increase$ That is why, the case > 1 can be treated with the same tools leading, in general, fereas
estimates.

The proof of Theoren?.1is (traditionally) achieved in two steps. In the first oneqS®8), a suitable
normalization algorithm is constructed and discussed atradl level. In the second part (Seg) the
problem of its convergence is addressed, after havingdstat@e tools of a technical nature (Ség.
Proof of Theoren®.3is just avariazione sul temalhe necessary modifications are outlined in $ec.

3. THE FORMAL PERTURBATIVE SETTING

The formal perturbative algorithm has the typical induetstructure. To start, we shall suppose that
Hamiltonian () can be written at thg—th stage of the normalization process as

HD(p,q,n,t) = JD(,t) + 1+ FD(p, q,1), ©

with £0) at least of degred in p, ¢. It is immediate to realize that) is in the form §) so that we can
setH := H. Our aim is to construct a class of canonical transformatibty, parametrised by, such
that HU+D) .= HU) o M, is still of the form €). Roughly, the transformations1; will be determined
in such a way the “mixed” terms, i.e. of the fopfit ¢*2 with a;; # a» contained in the perturbation, are
“gradually” removed ag increases, while the terms of the fofmy)” are progressively stored if/).
This effect will be quantified in the next section, showingttthe size of the “residual” perturbation is
asymptotic to zero, af— oco. Hence one sets

M= lim MjoM;_j0o...0My, @)

_]*)OO

so that, at least formallyi/ () = H o M.
First of all we write

FO(p,q.t)= Y fO®p™q* +>_ fllpa)* D(p,q,t) + AV (x, 1), 8
la|>3 k>2
a1 Faz
wherek := (k, k), then setting’V) (z, t) := JU)(z,t) + AU)(z,t), in such a way
HO(p,q,1) = T (@,t) +9+ F9(p,q,1), ©)

whereF(9) contains only “mixed” terms.

Now we consider the action oH ) of the transformationM ;, which is defined by the the Lie series
operatorexp(L, ) = Id+L, ) + 2822(1/s!)£;m. We recall thatCq F' = {F,G} = F,Gp +
F,G, — F,G, — F,Gy, while W) = xU)(p, ¢, t) is the (unknown) generating function. Supposing that
it is possible to determine it in such a way

Lo (T (@, t) +m) + F9(p,q,1) =0, (10)

4Namely, lety := O(w™") and setv := uw = O(1). Via atime rescaling = p7, problem () is equivalent to the “slowly
time-dependent” Hamiltoniall = wpq + un + pF(q, u, u).
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one has that, by setting+) := J(@) and

. 1., .
FUHD Z EXmF(J) + ;EX(].)(J(J) + 1), (11)
s>1 ! s>2 7

the transformed Hamiltoniaf ) := exp(L, ;) HY) has exactly the formd).
Note that by {0) and (L1)

FUHD =% ﬁxm{ F) +—ﬁx<j>(<7(j)+77)
s>1 !

s R .
=3 Gt 12)

Defining g\ (x,t) := 0,.JU)(z,t) one has that equation() reads as
9 (2, 0)3 + 0]xY) (p, ¢, 1) = F9) (p,q, 1), (13)

having denoted := ¢0, — pd,. Taking into account of the expansidft’) =: 3~ ;>3 79 (t)pr g

a1 Faz

the solution of equationl@) reads as

. . t ) )
quj ZF z, t aq a2 -Fo(éj)(w7t) — e—)\A(J)(x,t) |:-7:((1%( )+/ 6AA(J)(I7S)fO(é])(S)dS )
e} 0 <%

A (14)
where AU (z,t) := [ gU)(x, s)ds, A := az — a1 > 1 by hypothesis o) and]—“g%(x) are functions
to be determined. Clearly, we shall s@f%(x) = 0 for all a such thatv; = a» and such thaféj)(s) =0

in such a Wayfg)(m, t) are identically zero for those values.

It is evident that asa| > 3 for by hypothesis orf'(?), the generating function?) will be at least of
degree3. This implies that, by12), FU*1 will be at least of degree, in particular it will not contain
terms of degre€. By hypothesis orF" = F(©) and by induction, this is true for ajl, implying that
g9 (0,t) = wforallt > 0, i.e. ¢¥) has a strictly positive real part (by hypothesisw in a suitable
neighbourhood of the origin and more precisely via a suitahbice ofR,. This will play a crucial role
in our later arguments. The formal part is complete.

Remark 3.1 It is immediate to recognize the similarity between equat{®3) and those found in
[FW144 and [FW14H. The main difference is the presence of the functiéh(z,t) which requires
a careful analysis about its variation on time, as antiegatbove.

4. SOME PRELIMINARY RESULTS

4.1. Bounds on the solutions of the homological equation. First of all let us recall the following
elementary equality, valid for all € [0, 1), which will be repeatedly used in the follow

ZW =Y I+ =(1-X"2 (15)

>0

Then we state the next

Proposition 4.1. Suppose the existence of a positive considfit such that

H FO(p,q, t)‘ < MO, (16)

J
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and that, for all(z,t) € Qr, x R* one has
Rg) (z,t) > w/2, (17a)
99 (@, )] < (3/2)w. (17b)
Then for allé € (0, 1) the solution of {3) satisfies

AMG)
(-8R, — wd? ’

"X(j)(p’ q’t)Hu—a)Rj '

axY (p. g, t)H (18)
Remark 4.2. Note that hypothesisl{4) is essential as it is easy to find) (z, t) satisfying (L7b) for
which the solution of 14) is unbounded oiR .

The proof goes along the lines of a similar result contaimg@ 144, with the remarkable simplifi-
cation due to the fact that notis purely real. The very minor drawback with respect to thealgtic”
case treated inqW144, is that, in this case, the estimate of the time derivatiwesdnot follow directly
from a Cauchy estimate.

Proof. Recall that by hypothesis dfi one hag £\ (s)|. < M(j)R]._IQI. If o is such that\ > 0, we shall
setFJ)(x) = 0. By (178, we have thaR(AW) (z,t) — AV)(z,s)) > w(t — s)/2 on Qp, yielding

y ; w t ws (])
w0 < MOR e [eFas < 27

0 )\W

Ry (19)

—

Inthe case\ < 0, setA — —Awith A > 0, then we shall choosg

Q

0(x) 1= = s exp(=AAU) (2, 5)) fo(s)ds.
7)(s)) > ws/2 by hypothesis. In such

—

It is immediate to check thaﬁ-'g;%\ < 400 as, in particular(A

a way we get
- - w +0o0 ws (‘7) —
FD (1)) < MUR; 185" / 2% gs < M polal, (20)
a ] o J
Hence, by definitionZ) and by (9) and @O0), for all A € Z \ {0}
. oM ) (15) 9p70G)
(4) < _ Sl <
HX (P, q,t)H(l_é)Rj S Za:(l 0)s < —= (21)

which implies the first part ofi(g).
The second part oflf) is straightforward from14), bounds {6), (19), (20), and hypothesisl(Zb) then
proceeding as in(l). O

4.2. An estimate on the Lie operator. This is a standard result in the works of A. Giorgilli et akes
e.g. [Giog. The statement recalled below, is adapted to the notdtgeidng at hand

Lemma 4.3. Suppose thafx||;_s x and||G|[;_s 5 are bounded for somee (0,1/2). Then
HﬁiGH(l,%)R < 3!(625_2 HXH(l—&)R)S HGH(l—é)R7 Vs > 1. (22)
We shall also consider the case of boundé&d| ,, for which (22) clearly holds with the obvious

replacement. It is evident that a sufficient condition fax donvergence of the Lie operatatp(L,,) is
thate?d~2 x|l 1_s)r < 1/2.
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5. QUANTITATIVE ESTIMATES

5.1. Theiterative lemma. Let us consider a sequen¢e!’ } en € [0,1]° with u(© to be determined,
whereu) := (dj,e;, R;,m;, Mj). Letu, := (0,0, Ry, M., M) with w/2 < m, < M, < (3/2)w and
R, > 0to be determined as well. Our aim is now to prove the next

Lemma 5.1. Suppose that for somg € N, there exista:/) with ul(j) > (uy) forl = 1,...,4 and
M; < M., satisfying

|F9wqn)|| <e (23)
J
%g“ (,t) > 1y, (24)
1§ ()] < M;. (25)
forall (x,t) € QR]. x RT. Then, under the condition
4€2€j 1
< =, 26
wad? -2 (26)

it is possible to determinal(jH) € [(u*)l,ul(j)) forl = 1,...,4 and M4, € (M;, M,] such that
conditions 23), (24) and (5) are satisfied by=U+1) and gU*Y as defined in Seg.

The validity of 24) and @5) (compare with {7g) and (L7b)) with the above mentioned bounds @n
and on),, is clearly related to the possibility of using Prég for all j .

Proof. First of all, immediately from&) and @3), it follows ||F)|| . < e;. On the other hand, recall

R;
g9 (z,t) = §U)(z,t) + 8,A0) (x, 1), whered, AU (z,t) = 35, kfkj)() k=1 which implies

A)(w,t)H < gj[(1—2d)) Ry 72> k(1 — 2d,)*" < gj(Rudy)

hence orQ(;_sq,)r, x R*

A (24)
RV (z,t) > 1, —e;(Rud;) ™2 =: mj. (27)

The last quantity is well defined as a consequence of then@grd condition 26), beingm; > m, >
w/2. Similarly, [gU) (z,t)] < M; + &j(R.d;) =2 =: M;.

From Lemma4.3with § = d;, (12), (18) and £3), under theconvergence conditioguaranteed byXc)
we get

S
. 46 oF 86262
FUD(p gt H j I 28
H (p.a1) 1-2d,)R; — JZ wdf |~ wd? (28)
Hence we shall set
Ejt1 = 862(,«)718?}%;26[]-_6, Rj+1 = (1 — de)Rj, mj—f—l =my, Mj+1 = Mj, (29)

in order to obtain the validity of43), (24) and @5) at thej + 1-th step. The first ofZ9) is the well
known “heart” of the quadratic method.
O
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5.2. Determination of the bounding sequences. Our aim is now to construct the sequend@ for all
J under the constraint29) and show thatim;_, w9 = u,. The last step will be the determination of
ug, completed in the next section. The procedure is analogofis/¥144. We start by choosing, for all
j=1

gj =eo(j + 1) (30)
By substituting the latter into the first 029) we getde’e; /(wR2d%) = 271[(j + 1)/(j + 2)]'* < 1/2,
hence condition46) holds for allj > 0. Similarly we get

8e2e0\ © (j + 2)2
v ( R2w > Ej + 1§4' .
By supposing
g9 < 358 T 12e2WR2, (32)
it is easy to see that
S d; <4 [8e2eo(Ruw) 10 SO(G 1) 2 < 1/4 (33)
7>0 7>0

which implies, in particulard; < 1/4 for all j > 0 (essential for the correct definition @t;, ).
Condition 382) will be obtained via a suitable choice &} that will be addressed in Seg.3.
By (30), (31), then by 62)

)23 ed % < 87 edw(R2e) Y5 (n2/6) < w/A.

5>0

Hence, comparing2(?) with (29), lim;_o0 41 = M — £j(Red;) ™2 > g — w/4) This implies that
it is sufficient to setig = (3/4)w ands, := w/2. Similarly we haveim;_,., M; < M, := (3/2)w if
My := (5/4)w is chosen.
As for R, we haveR; := Ry H '(1 — 2d;). By writing log [[,(1 —2d;) =3, log(1 — 2d;) and using
(31) under condition 26) we obtalﬁ lim;,o R; > Ry/2 =: R,. By replacing this value in31) and
(32), we see thaty anddy are determined oncB, will be chosen.

5.3. Transformation of variables and convergence of the scheme. For all j > 0 the transformation
M; : Dg,,, — Dg, acts on the variables as follows?), ), n()) = L ;) (pli+h), qith pith),
while ¢ is unchanged (ag?) does not depend af). Hence, by Lemma.3, then by the first of 18) and
condition 6), we get

IS w R T N T
s>1

analogously one obtains
gUTY — ¢U)| < R3d2 /4. (35)

As for n, write L2 ;7 nUth = =Ly, XY then, similarly, by the second of®)

: 45 s — 1 4e%e ; . 4ece (26) R2
+1 0 74
‘77(] ) _ =5 E : < d‘%j) — Z < d4j> 12 d;. (36)
wa, «

J s>1 s>1

Our aim is now to determine the final value Bf), by proceeding as follows. AE'is supposed to be
analytic onDp, supposeR; < R* < 1/16. We have|f,|, < MpR™1d < MFRJ‘QW, hence (use

(19)

lal>3

Suse inequalityjog(1 — z) > —2z log 2 (valid for all z € [0, 1/2]).
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By substituting the latter inta3@) one gets
Ry < min{ (3527 % n 2e 20 M 1) RYY. (37)

Finally recall thatJ(® = wz that isg® = w. Hence, in order to guarantee that the choicergf
and of M, of Sec. 5.2is well defined, we need to show th‘er(o)HRO < w/4. Recall thatA(®) =
> k=2 fxz”, hence we get (use again the analyticity/on D), HarA(O)HRO < MpY 5o kRE <
8MpR2. It is immediate to realize that the latter is smaller thaft, for all w € (0, 1], under the

condition 7). This completes the choice af?.
In conclusion, by using3Y) in (34), (35) and 36) we get,

max Z |p(j+1) _p(j)|’ Z |q(j+1) _ q(j)|,z |77(j+1) _ U(j)| < Roy/4
J=0 Jj=0 j>0

(we usedRy < 1 < €2 /w, trivially from (37)). Hence, by the Weierstral theorem, the liri)t¢onverges
to a transformationM : Dp, — Dg,, Which is analytic for alt € R*. Hence(p(>), ¢(>),1(>)), de-
note the canonical variables @y, (and(p(?, ¢(©, 1) := (p, ¢, ) those oDy, ) and the Hamiltonian
H(), formally defined after¥), is an analytic function o®r, as well, and is in the desired Moser nor-
mal form.

6. AN OUTLINE OF THE PROOF OFTHEOREM 2.3
In this section we describe the necessary modificationsdrptbof of Thm. 2.1 in order to get its
“strong” version. However, we stress that the crucial p@nhe following: if we suppose the existence

of the integral [, g )(t)dt (guaranteed by the exponential decay$f)), then (L4) exists onR* also
for A = 0i.e. the r.h.s. of the homological equation can contain tens witha; = as.

Formal schemeThe definition ofJ(?) and of FU) is not necessary, we suppose th&f) is directly of
the form

HY = wpg +n+ FY9 (p,q,1). (38)

The initial Hamiltonian is exactly of the form above, so wencetH(®) := H. Suppose that) is
chosen in a way to satisfy the homological equation

L. (wpg+n) +FY) =0, (39)
it is sufficient to define
. S .
Fl+) . Z WEXU)F(J)’ (40)
=1 S !

in order to havefl U+1) of the form @8). By expandingy’) = 3" co(t)p*1¢* and FU) as welP, we
get this time, for alky B

D) + AP (1) = f9 (1), (41)

with A := w(a; — o) purely real

SNote that in this case the Taylor expansionfdf’ will contain also terms withy,; = as.
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Bounds on the homological equatiohe easy structure of eg4) simplifies remarkably the proof of

the equivalent of Propt.1, which states, in this case, as follows
Proposition 6.1. Suppose that there existg") > 0 such that]| F9)(p, q, < M) exp(—at).

Then for allé € (0, 1) the solution of41) satisfies

[x9@.q.1)] 9 (p, q,t)H(l_é)Rﬁ]R+ < AMWg 1573, (42)

B g, m+

)
(1-6)R;;RT

Proof. (Sketch) Ifw is such that\ > 0 then chooseg)(o) = 0. In this way

t < .
(1) < M(j)Rj@/ A e < M(])cflR;'g'. (43)
- 0
If A < 0seth — —Awith A > 0 and choose (0) := — [,7™ exp(—As) & (s)ds. A similar
procedure yields the same estimate 4% and thenHX(j)(ZLq7t)H(1_5)R..R+ < Ma~'572. By using
7

the obtained estimates andll], one gets the second cf2). O

Quantitative part.We define nowa?) := (d;, e;, R;), with @, := (0,0, R.). Statement of Lemma.1
modifies as follows

Lemma 6.2. Suppose that for somjec N, there existgi) with zll(j) > (uy); forl = 1,2, 3, satisfying

|F9wan)|, . <ee (44)
7
forall (p,q,t) € Qr, x RT. Then, under the condition
ﬁ <1 (45)
waf%zd? -2

it is possible to determiné}”” € [(ﬁ*)l,ﬁgj)) for | = 1,2, 3 such that £4) is satisfied byF'7+1) as
defined in 40).

The proof of this Lemma and of the rest of the Theorem is ditbogvardmutatis mutandisWe only
mention that condition32) is replaced by, < 358 7e27~12awR2, implying

Ry < min{(3°27 P72 2waM ), RY}
i.e. Ry ~ a* asa — 0 as announced after the statement of TE.
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