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NORMAL FORMS À LA MOSER FOR APERIODICALLY TIME-DEPENDENT
HAMILTONIANS IN THE VICINITY OF A HYPERBOLIC EQUILIBRIUM.

ALESSANDRO FORTUNATI AND STEPHEN WIGGINS

ABSTRACT. The classical theorem of Moser, on the existence of a normalform in the neighbourhood
of a hyperbolic equilibrium, is extended to a class of real-analytic Hamiltonians with aperiodically time-
dependent perturbations. A stronger result is obtained in the case in which the perturbing function exhibits
a time decay.

1. INTRODUCTION

The classical theorem of Moser, proven in [Mos56], establishes the existence of a (convergent) nor-
mal form in a neighbourhood of a hyperbolic equilibrium of anarea preserving map, either autonomous
or periodically dependent on time. A result contained in [CG94], extends this result to the the flow of
a priori unstable system in a neighbourhood of a partially hyperbolic torus, including in this way the
quasiperiodic case. A concise description of the latter case can be found in [Gal97].
The aim of this paper is to show the existence of a normal form for Hamiltonians in the form (1), i.e.
real-analytic and non-autonomous perturbations of a hyperbolic equilibrium, for which the time depen-
dence is not required to be periodic or quasiperiodic i.e.aperiodic.
In the same spirit of the aperiodic version of the Kolmogorovtheorem of [FW14a], which we use as a
guideline (see also [Giob]), the proof consists on the extension of the KAM approach of[CG94] and
[Gal97]. Even in the original problem of Moser, despite the absenceof “genuine” small divisors1, the
well known property ofsuperconvergenceof the KAM schemes, turns out to be of crucial importance in
order to compensate the accumulation of “artificial” divisors generated by the Cauchy estimates. This
feature is profitably used also in our case.
The treatment of the class of time-dependent homological equations, naturally arising in the normaliza-
tion algorithm, has been improved with respect to [FW14a]. Basically, the canonical transformation on
which the single step of the mentioned algorithm is based, has the property to leave the time unchanged2.
Hence, this can be interpreted as a family of canonical maps for which the time plays the role of “param-
eter”. This allows to weaken the analyticity hypothesis forthe time dependence leading to a remarkable
simplification of the quantitative estimates.
The proof is carried out by using the formalism of the Lie series method developed by Giorgilli et al.
(see e.g. [Gio03] and references therein).

2. PRELIMINARIES AND STATEMENT OF THE RESULT

Let us consider the following Hamiltonian

H(p, q, η, t) = ωpq + η + F (p, q, t), (1)

whereω ∈ (0, 1], (p, q, η) ∈ [−r, r]2×R =: D with r > 0 andt ∈ R+ := [0,∞). As usual, Hamiltonian
(1) is equivalent to the non-autonomous HamiltonianH(p, q, t) = ωpq + F (p, q, t) (which represents

2010Mathematics Subject Classification.Primary: 37J40. Secondary: 70H09.
Key words and phrases.Hamiltonian systems, Moser normal form, Aperiodic time dependence.
This research was supported by ONR Grant No. N00014-01-1-0769 and MINECO: ICMAT Severo Ochoa project SEV-

2011-0087.
1This is a common feature with the “non-purely hyperbolic” case treated in [Gioa].
2This class of transformations was initially considered in [GZ92].
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2 ALESSANDRO FORTUNATI AND STEPHEN WIGGINS

our original problem), by defining asη the conjugate variable tot.
The functionF will be supposed to be real-analytic inp andq and such that, denoted asfα(t) its Taylor
coefficients, one hasfα(t) = 0 for all3 |α| ≤ 2, and allt ∈ R+. Namely, the Taylor expansion ofF
starts from the terms of degree3.
The standard framework for the analysis, features the complexification of the domainD as follows.
LetR ∈ (0, 1/2] and define

QR := {(p, q) ∈ C
2 : |p|, |q| ≤ R}, SR := {η ∈ C : |ℑη| ≤ R},

then setDR := QR × SR. The perturbationF will be supposed continuous onQR and holomorphic in
the interior for allt ∈ R+ (thenH is onDR) for someR. It will be sufficient to suppose that the real and
imaginary parts of the complex valued functionsfα(t) belong toC1(R+) for all α.
Given a functionG : QR × R+ → C, we consider theTaylor norm

‖G(p, q, t)‖R :=
∑

α

|gα(t)|+R
|α|, (2)

where| · |+ := supt∈R+ | · |. Clearly |G|R := supQR
|G|+ ≤ ‖G‖R. We briefly recall the following

standard result (which motivates the above described assumptions onF ): if a functionG is continuous
on QR and holomorphic in the interior, for allt ∈ R+, one has|gα(t)|+ ≤ |G|R R−|α|. In particular,
‖G‖R′ < +∞ for all R′ < R.
In the described setting the main result can be stated as follows

Theorem 2.1 (Aperiodic Moser ’56). Suppose that1 + ‖F (p, q, t)‖R =: MF < ∞. Then there exist
R∗, R0 with 0 < R∗ < R0 ≤ R4 and a family of canonical changesM : DR∗

→ DR0 , analytic onDR∗

for all t ∈ R+, casting the Hamiltonian (1) in the time-dependent Moser normal form

H(∞)(p(∞), q(∞), η(∞), t) = J (∞)(x(∞), t) + η(∞), (3)

wherex := pq, J (∞)(0, t) = 0 and∂xJ (∞)(0, t) = ω for all t ∈ R+.

Exactly as in the classical Moser theorem, the quantityx(∞) is a first integral, hence the flow associ-
ated to Hamiltonian (3) can be reduced to quadratures. In particular, one has

p(∞)(t) = p(∞)(0) exp(−A(x(∞)(0), t)), q(∞)(t) = q(∞)(0) exp(A(x(∞)(0), t)),

whereA(x, t) :=
∫ t
0 ∂xJ

(∞)(x, s)ds.
The use of an additional ingredient leads to an even strongerresult. GivenG : QR ×R+ → C we define
as the “time-dependent” Taylor norm ofG, the quantity‖G‖R;R+ :=

∑

α |gα(t)|R
|α|, i.e. (2) in which

| · |+ is replaced with| · |. Now we introduce the next

Hypothesis 2.2. (Slow decay) Suppose that there existMF ∈ [1,+∞) anda > 0 such that

‖F (p, q, t)‖R;R+ ≤ MF e
−at, (4)

for all (p, q, t) ∈ QR × R+.

In this way we are able to prove the following

Theorem 2.3 (Strong Aperiodic Moser ’56). Under Hypothesis2.2it is possible to determine0 < R̂∗ <

R̂0 ≤ R4 and a family of canonical transformationsMS , analytic onDR̂∗
for all t ∈ R+, for which the

Hamiltonian (1) is transformed into thestrong Moser normal form

Ĥ(∞)(p̂(∞), q̂(∞), η̂(∞), t) = ωx̂(∞) + η̂(∞). (5)

3It will be understood throughout the paperα ∈ N
2, denoting|α| := α1 + α2.
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The Hypothesis2.2, already used in [FW14a], turns out to be necessary in order to ensure the existence
of certain improper integrals, which appear when dealing with time-dependent homological equations.
As in the latter paper, this particular rate of decay is assumed only for simplicity of discussion. Similarly,
we stress that no lower bounds are imposed ona (except zero), in this way the time decay can be arbi-
trarily slow. The natural side-effect is that the estimateson the convergence radius of the normal form
worsen asa is smaller and smaller.
It should be stressed that, in both cases, the choice ofω in the interval(0, 1] is discussed as the “inter-
esting” case. On the other hand, it is clear that the contribution of the time perturbation is smaller asω
increases4. That is why, the caseω ≥ 1 can be treated with the same tools leading, in general, to easier
estimates.
The proof of Theorem2.1 is (traditionally) achieved in two steps. In the first one (Sec. 3), a suitable
normalization algorithm is constructed and discussed at a formal level. In the second part (Sec.5) the
problem of its convergence is addressed, after having stated some tools of a technical nature (Sec.4).
Proof of Theorem2.3 is just avariazione sul tema. The necessary modifications are outlined in Sec.6.

3. THE FORMAL PERTURBATIVE SETTING

The formal perturbative algorithm has the typical inductive structure. To start, we shall suppose that
Hamiltonian (1) can be written at thej−th stage of the normalization process as

H(j)(p, q, η, t) = J̃ (j)(x, t) + η + F̃ (j)(p, q, t), (6)

with F̃ (j) at least of degree3 in p, q. It is immediate to realize that (1) is in the form (6) so that we can
setH(0) := H. Our aim is to construct a class of canonical transformationsMj , parametrised byt, such
thatH(j+1) := H(j) ◦Mj is still of the form (6). Roughly, the transformationsMj will be determined
in such a way the “mixed” terms, i.e. of the formpα1qα2 with α1 6= α2 contained in the perturbation, are
“gradually” removed asj increases, while the terms of the form(pq)n are progressively stored iñJ (j).
This effect will be quantified in the next section, showing that the size of the “residual” perturbation is
asymptotic to zero, asj → ∞. Hence one sets

M := lim
j→∞

Mj ◦Mj−1 ◦ . . . ◦M0, (7)

so that, at least formally,H(∞) = H ◦M.
First of all we write

F̃ (j)(p, q, t) =
∑

|α|≥3
α1 6=α2

f̃ (j)
α (t)pα1qα2 +

∑

k≥2

f̃ j
k(pq)

k =: F (j)(p, q, t) + ∆(j)(x, t), (8)

wherek := (k, k), then settingJ (j)(x, t) := J̃ (j)(x, t) + ∆(j)(x, t), in such a way

H(j)(p, q, t) = J (j)(x, t) + η + F (j)(p, q, t), (9)

whereF (j) contains only “mixed” terms.
Now we consider the action onH(j) of the transformationMj , which is defined by the the Lie series
operatorexp(Lχ(j)) = Id+Lχ(j) +

∑

s≥2(1/s!)L
s
χ(j) . We recall thatLGF = {F,G} = FqGp +

FtGη − FpGq − FηGt, whileχ(j) = χ(j)(p, q, t) is the (unknown) generating function. Supposing that
it is possible to determine it in such a way

Lχ(j)(J (j)(x, t) + η) + F (j)(p, q, t) = 0, (10)

4Namely, letµ := O(ω−1) and set̂ω := µω = O(1). Via a time rescalingt = µτ , problem (1) is equivalent to the “slowly
time-dependent” Hamiltonian̂H = ω̂pq + µη + µF (q, u, µτ ).
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one has that, by setting̃J (j+1) := J (j), and

F̃ (j+1) :=
∑

s≥1

1

s!
Ls
χ(j)F

(j) +
∑

s≥2

1

s!
Ls
χ(j)(J

(j) + η), (11)

the transformed HamiltonianH(j+1) := exp(Lχ(j))H(j) has exactly the form (6).
Note that by (10) and (11)

F̃ (j+1) =
∑

s≥1

1

s!
Ls
χ(j)

[

F (j) +
1

s+ 1
Lχ(j)(J (j) + η)

]

=
∑

s≥1

s

(s+ 1)!
Ls
χ(j)F

(j). (12)

Definingg(j)(x, t) := ∂xJ
(j)(x, t) one has that equation (10) reads as

[g(j)(x, t)ð + ∂t]χ
(j)(p, q, t) = F (j)(p, q, t), (13)

having denotedð := q∂q − p∂p. Taking into account of the expansionF (j) =:
∑

|α|≥3
α1 6=α2

f
(j)
α (t)pα1qα2 ,

the solution of equation (13) reads as

χ(j)(p, q, t) =
∑

α

Fα(x, t)p
α1qα2 , F (j)

α (x, t) := e−λA(j)(x,t)

[

F
(j)
α,0(x) +

∫ t

0
eλA

(j)(x,s)f (j)
α (s)ds

]

.

(14)
whereA(j)(x, t) :=

∫ t
0 g

(j)(x, s)ds, λ := α2 − α1 ≥ 1 by hypothesis onF (j) andF (j)
α,0(x) are functions

to be determined. Clearly, we shall setF
(j)
α,0(x) ≡ 0 for all α such thatα1 = α2 and such thatf (j)

α (s) ≡ 0

in such a wayF (j)
α (x, t) are identically zero for those values.

It is evident that as|α| ≥ 3 for by hypothesis onF (j), the generating functionχ(j) will be at least of
degree3. This implies that, by (12), F̃ (j+1) will be at least of degree4, in particular it will not contain
terms of degree2. By hypothesis onF ≡ F (0) and by induction, this is true for allj, implying that
g(j)(0, t) = ω for all t ≥ 0, i.e. g(j) has a strictly positive real part (by hypothesis onω), in a suitable
neighbourhood of the origin and more precisely via a suitable choice ofR0. This will play a crucial role
in our later arguments. The formal part is complete.

Remark 3.1. It is immediate to recognize the similarity between equation (13) and those found in
[FW14a] and [FW14b]. The main difference is the presence of the functiong(j)(x, t) which requires
a careful analysis about its variation on time, as anticipated above.

4. SOME PRELIMINARY RESULTS

4.1. Bounds on the solutions of the homological equation. First of all let us recall the following
elementary equality, valid for allλ ∈ [0, 1), which will be repeatedly used in the follow

∑

α

λ|α| =
∑

l≥0

(l + 1)λl = (1− λ)−2. (15)

Then we state the next

Proposition 4.1. Suppose the existence of a positive constantM (j) such that
∥

∥

∥
F (j)(p, q, t)

∥

∥

∥

Rj

≤ M (j), (16)
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and that, for all(x, t) ∈ QRj
× R+ one has

ℜg(j)(x, t) ≥ ω/2, (17a)

|g(j)(x, t)| ≤ (3/2)ω. (17b)

Then for allδ ∈ (0, 1) the solution of (13) satisfies

∥

∥

∥
χ(j)(p, q, t)

∥

∥

∥

(1−δ)Rj

,
∥

∥

∥
∂tχ

(j)(p, q, t)
∥

∥

∥

(1−δ)Rj

≤
4M (j)

ωδ2
. (18)

Remark 4.2. Note that hypothesis (17a) is essential as it is easy to findg(j)(x, t) satisfying (17b) for
which the solution of (14) is unbounded onR+.

The proof goes along the lines of a similar result contained in [FW14a], with the remarkable simplifi-
cation due to the fact that nowt is purely real. The very minor drawback with respect to the “analytic”
case treated in [FW14a], is that, in this case, the estimate of the time derivative does not follow directly
from a Cauchy estimate.

Proof. Recall that by hypothesis onF one has|f (j)
α (s)|+ ≤ M (j)R

−|α|
j . If α is such thatλ > 0, we shall

setF (j)
α,0(x) ≡ 0. By (17a), we have thatℜ(A(j)(x, t)−A(j)(x, s)) ≥ ω(t− s)/2 onQRj

, yielding

|F (j)
α (x, t)| ≤ M (j)R

−|α|
j e−

λωt
2

∫ t

0
e−

λωs
2 ds ≤

2M (j)

λω
R

−|α|
j . (19)

In the caseλ < 0, setλ → −λwith λ > 0, then we shall chooseF (j)
α,0(x) := −

∫

R+ exp(−λA(j)(x, s))fα(s)ds.

It is immediate to check that|F (j)
α,0| < +∞ as, in particular,ℜ(A(j)(s)) > ωs/2 by hypothesis. In such

a way we get

|F (j)
α (x, t)| ≤ M (j)R

−|α|
j e

λωt
2

∫ +∞

t
e−

λωs
2 ds ≤

2M (j)

λω
R

−|α|
j . (20)

Hence, by definition (2) and by (19) and (20), for all λ ∈ Z \ {0}

∥

∥

∥
χ(j)(p, q, t)

∥

∥

∥

(1−δ)Rj

≤
2M (j)

|λ|ω

∑

α

(1− δ)|α|
(15)
≤

2M (j)

ωδ2
, (21)

which implies the first part of (18).
The second part of (18) is straightforward from (14), bounds (16), (19), (20), and hypothesis (17b) then
proceeding as in (21). �

4.2. An estimate on the Lie operator. This is a standard result in the works of A. Giorgilli et al., see
e.g. [Gioa]. The statement recalled below, is adapted to the notational setting at hand

Lemma 4.3. Suppose that‖χ‖(1−δ)R and‖G‖(1−δ)R are bounded for someδ ∈ (0, 1/2). Then

∥

∥Ls
χG
∥

∥

(1−2δ)R
≤ s!(e2δ−2 ‖χ‖(1−δ)R)

s ‖G‖(1−δ)R , ∀s ≥ 1. (22)

We shall also consider the case of bounded‖G‖R, for which (22) clearly holds with the obvious
replacement. It is evident that a sufficient condition for the convergence of the Lie operatorexp(Lχ) is
thate2δ−2 ‖χ‖(1−δ)R ≤ 1/2.
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5. QUANTITATIVE ESTIMATES

5.1. The iterative lemma. Let us consider a sequence{u(j)}j∈N ∈ [0, 1]5 with u(0) to be determined,
whereu(j) := (dj , εj , Rj , m̃j , M̃j). Letu∗ := (0, 0, R∗, m̃∗, M̃∗) with ω/2 ≤ m̃∗ < M̃∗ ≤ (3/2)ω and
R∗ > 0 to be determined as well. Our aim is now to prove the next

Lemma 5.1. Suppose that for somej ∈ N, there existsu(j) with u
(j)
l > (u∗)l for l = 1, . . . , 4 and

M̃j < M̃∗, satisfying
∥

∥

∥
F̃ (j)(p, q, t)

∥

∥

∥

Rj

≤ εj , (23)

ℜg̃(j)(x, t) ≥ m̃j, (24)

|g̃(j)(x, t)| ≤ M̃j. (25)

for all (x, t) ∈ QRj
× R+. Then, under the condition

4e2εj
ωR2

∗d
6
j

≤
1

2
, (26)

it is possible to determineu(j+1)
l ∈ [(u∗)l, u

(j)
l ) for l = 1, . . . , 4 and M̃j+1 ∈ (M̃j , M̃∗] such that

conditions (23), (24) and (25) are satisfied bỹF (j+1) and g̃(j+1) as defined in Sec3.

The validity of (24) and (25) (compare with (17a) and (17b)) with the above mentioned bounds onm̃∗

and onM̃∗, is clearly related to the possibility of using Prop4.1for all j .

Proof. First of all, immediately from (8) and (23), it follows
∥

∥F (j)
∥

∥

Rj
≤ εj . On the other hand, recall

g(j)(x, t) = g̃(j)(x, t) + ∂x∆
(j)(x, t), where∂x∆(j)(x, t) ≡

∑

k≥2 kf
(j)
k (t)xk−1, which implies

∥

∥

∥
∂x∆

(j)(x, t)
∥

∥

∥

(1−2dj )Rj

≤ εj [(1− 2dj)Rj]
−2
∑

k≥2

k(1− 2dj)
2k ≤ εj(R∗dj)

−2,

hence onQ(1−2dj )Rj
× R+

ℜg(j)(x, t)
(24)
≥ m̃j − εj(R∗dj)

−2 =: mj. (27)

The last quantity is well defined as a consequence of the (stronger) condition (26), beingm̃j > m̃∗ ≥

ω/2. Similarly, |g(j)(x, t)| ≤ M̃j + εj(R∗dj)
−2 =: Mj .

From Lemma4.3with δ = dj , (12), (18) and (23), under theconvergence conditionguaranteed by (26)
we get

∥

∥

∥
F (j+1)(p, q, t)

∥

∥

∥

(1−2dj )Rj

≤ εj
∑

s≥1

(

4e2εj
ωd4j

)s

≤
8e2ε2j
ωd4j

. (28)

Hence we shall set

εj+1 := 8e2ω−1ε2jR
−2
∗ d−6

j , Rj+1 := (1− 2dj)Rj , m̃j+1 := mj, M̃j+1 := Mj, (29)

in order to obtain the validity of (23), (24) and (25) at thej + 1-th step. The first of (29) is the well
known “heart” of the quadratic method.

�
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5.2. Determination of the bounding sequences. Our aim is now to construct the sequenceu(j) for all
j under the constraints (29) and show thatlimj→∞ u(j) = u∗. The last step will be the determination of
u0, completed in the next section. The procedure is analogous to [FW14a]. We start by choosing, for all
j ≥ 1

εj := ε0(j + 1)−12. (30)

By substituting the latter into the first of (29) we get4e2εj/(ωR2
∗d

6
j ) = 2−1[(j + 1)/(j + 2)]12 ≤ 1/2,

hence condition (26) holds for allj ≥ 0. Similarly we get

dj =

(

8e2ε0
R2

∗ω

)

1
6 (j + 2)2

(j + 1)4
. (31)

By supposing
ε0 ≤ 368−7π−12e−2ωR2

∗, (32)

it is easy to see that
∑

j≥0

dj ≤ 4
[

8e2ε0(R∗ω)
−1
]
1
6
∑

j≥0

(j + 1)−2 ≤ 1/4. (33)

which implies, in particular,dj ≤ 1/4 for all j ≥ 0 (essential for the correct definition ofRj+1).
Condition (32) will be obtained via a suitable choice ofR0 that will be addressed in Sec.5.3.
By (30), (31), then by (32),

(R∗)
−2
∑

j≥0

εjd
−2
j ≤ [8−1ε20ω(R

2
∗e)

−2]
1
3 (π2/6) < ω/4.

Hence, comparing (27) with (29), limj→∞ m̃j+1 = m̃j − εj(R∗dj)
−2 ≥ m̃0 − (ω/4). This implies that

it is sufficient to set̃m0 = (3/4)ω andm̃∗ := ω/2. Similarly we havelimj→∞ M̃j ≤ M̃∗ := (3/2)ω if
M̃0 := (5/4)ω is chosen.
As forR∗ we haveRj := R0

∏j−1
l=0 (1− 2dl). By writing log

∏

l(1− 2dl) =
∑

l log(1− 2dl) and using
(31) under condition (26), we obtain5 limj→∞Rj ≥ R0/2 =: R∗. By replacing this value in (31) and
(32), we see thatε0 andd0 are determined onceR0 will be chosen.

5.3. Transformation of variables and convergence of the scheme. For all j ≥ 0 the transformation
Mj : DRj+1 → DRj

acts on the variables as follows(p(j), q(j), η(j)) = Lχ(j)(p(j+1), q(j+1), ηj+1),

while t is unchanged (asχ(j) does not depend onη). Hence, by Lemma4.3, then by the first of (18) and
condition (26), we get

|p(j+1) − p(j)| ≤
∑

s≥1

(1/s!)
∥

∥

∥
Lχ(j)p(j+1)

∥

∥

∥

(1−2dj)Rj

≤ R3
0d

2
j/4, (34)

analogously one obtains
|q(j+1) − q(j)| ≤ R3

0d
2
j/4. (35)

As for η, writeLs
χ(j)η

(j+1) = −Ls−1
χ(j)∂tχ

(j) then, similarly, by the second of (18)

|η(j+1) − η(j)| ≤
4εj
ωd2j

∑

s≥1

(s − 1)!

s!

(

4e2εj
ωd4j

)s−1

≤
d2j
e2

∑

s≥1

(

4e2εj
ωd4j

)s (26)
≤

R2
0

4e2
d4j . (36)

Our aim is now to determine the final value ofR0, by proceeding as follows. AsF is supposed to be
analytic onDR, supposeR0 ≤ R4 ≤ 1/16. We have|fα|+ ≤ MFR

−|α| ≤ MFR
−|α|/4
0 , hence (use

(15))
‖F (p, q, t)‖R0

≤ MF

∑

|α|≥3

R
|α|/4
0 ≤ 4MFR

9/4
0 =: ε0.

5use inequalitylog(1− x) ≥ −2x log 2 (valid for all x ∈ [0, 1/2]).
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By substituting the latter into (32) one gets

R0 ≤ min{(362−25π−12e−2ωM−1
F )4, R4}. (37)

Finally recall thatJ̃ (0) = ωx that is g̃(0) = ω. Hence, in order to guarantee that the choice ofm̃0

and ofM̃0 of Sec. 5.2 is well defined, we need to show that
∥

∥∂x∆
(0)
∥

∥

R0
≤ ω/4. Recall that∆(0) =

∑

k≥2 fkx
k, hence we get (use again the analyticity ofF on DR),

∥

∥∂x∆
(0)
∥

∥

R0
≤ MF

∑

k≥2 kR
k
0 ≤

8MFR
2
0. It is immediate to realize that the latter is smaller thanω/4, for all ω ∈ (0, 1], under the

condition (37). This completes the choice ofu(0).
In conclusion, by using (31) in (34), (35) and (36) we get,

max







∑

j≥0

|p(j+1) − p(j)|,
∑

j≥0

|q(j+1) − q(j)|,
∑

j≥0

|η(j+1) − η(j)|







≤ R0/4

(we usedR0 < 1 < e2/ω, trivially from (37)). Hence, by the Weierstraß theorem, the limit (7) converges
to a transformation,M : DR∗

→ DR0 , which is analytic for allt ∈ R+. Hence(p(∞), q(∞), η(∞)), de-
note the canonical variables onDR∗

(and(p(0), q(0), η(0)) := (p, q, η) those onDR0) and the Hamiltonian
H(∞), formally defined after (7), is an analytic function onDR∗

as well, and is in the desired Moser nor-
mal form.

6. AN OUTLINE OF THE PROOF OFTHEOREM 2.3

In this section we describe the necessary modifications in the proof of Thm. 2.1 in order to get its
“strong” version. However, we stress that the crucial pointis the following: if we suppose the existence
of the integral

∫

R+ f
(j)
α (t)dt (guaranteed by the exponential decay ofF (j)), then (14) exists onR+ also

for λ = 0 i.e. the r.h.s. of the homological equation can contain alsoterms withα1 = α2.

Formal scheme.The definition ofJ̃ (j) and ofF̃ (j) is not necessary, we suppose thatH(j) is directly of
the form

H(j) = ωpq + η + F (j)(p, q, t). (38)

The initial Hamiltonian is exactly of the form above, so we can setH(0) := H. Suppose thatχ(j) is
chosen in a way to satisfy the homological equation

Lχ(j)(ωpq + η) + F (j) = 0, (39)

it is sufficient to define

F (j+1) :=
∑

s≥1

s

(s+ 1)!
Lχ(j)F (j), (40)

in order to haveH(j+1) of the form (38). By expandingχ(j) =
∑

α cα(t)p
α1qα2 andF (j) as well6, we

get this time, for allα

ċ(j)α (t) + λ̂c(j)α (t) = f (j)
α (t), (41)

with λ̂ := ω(α1 − α2) purely real.

6Note that in this case the Taylor expansion ofF (j) will contain also terms withα1 = α2.
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Bounds on the homological equation.The easy structure of eq. (41) simplifies remarkably the proof of
the equivalent of Prop.4.1, which states, in this case, as follows

Proposition 6.1. Suppose that there existsM (j) > 0 such that
∥

∥F (j)(p, q, t)
∥

∥

Rj ,R+ ≤ M (j) exp(−at).

Then for allδ ∈ (0, 1) the solution of (41) satisfies
∥

∥

∥
χ(j)(p, q, t)

∥

∥

∥

(1−δ)Rj ;R+
,
∥

∥

∥
∂tχ

(j)(p, q, t)
∥

∥

∥

(1−δ)Rj ;R+
≤ 4M (j)a−1δ−3. (42)

Proof. (Sketch) Ifα is such that̂λ > 0 then choosec(j)α (0) = 0. In this way7

|c(j)α (t)| ≤ M (j)R
−|α|
j

∫ t

0
eλ̂(s−t)e−asds ≤ M (j)a−1R

−|α|
j . (43)

If λ̂ ≤ 0 set λ̂ → −λ̂ with λ̂ ≥ 0 and choosec(j)α (0) := −
∫ +∞
0 exp(−λ̂s)f

(j)
α (s)ds. A similar

procedure yields the same estimate as (43) and then
∥

∥χ(j)(p, q, t)
∥

∥

(1−δ)Rj ;R+ ≤ Ma−1δ−2. By using
the obtained estimates and (41), one gets the second of (42). �

Quantitative part.We define noŵu(j) := (dj , εj , Rj), with û∗ := (0, 0, R̂∗). Statement of Lemma5.1
modifies as follows

Lemma 6.2. Suppose that for somej ∈ N, there existŝu(j) with û
(j)
l > (û∗)l for l = 1, 2, 3, satisfying

∥

∥

∥
F̃ (j)(p, q, t)

∥

∥

∥

Rj ;R+
≤ εje

−at, (44)

for all (p, q, t) ∈ QRj
× R+. Then, under the condition

4e2εj

ωaR̂2
∗d

6
j

≤
1

2
, (45)

it is possible to determinêu(j+1)
l ∈ [(û∗)l, û

(j)
l ) for l = 1, 2, 3 such that (44) is satisfied byF (j+1) as

defined in (40).

The proof of this Lemma and of the rest of the Theorem is straightforwardmutatis mutandis. We only
mention that condition (32) is replaced byε0 ≤ 368−7e−2π−12aωR̂2

∗, implying

R̂0 ≤ min{(362−25π−12e−2ωaM−1
F )4, R̂4}

i.e. R̂0 ∼ a4 asa → 0 as announced after the statement of Thm.2.3.
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