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Much quantitative behavioural social science involves the 
analysis of contingency tables, many of them multivariate in 
structure with large numbers of cells. A great deal of that 
work is also exploratory in character: although there are gen-
eral expectations regarding the relationship of one variable 
with another, there are rarely firm hypotheses, particularly 
regarding interactions or equivalent subgroups of people. 
Thus, in any analysis of such tables, it is desirable to explore 
the relationships in some depth. That is too often not the 
case, however: many studies fit binomial or multinomial 
regression models, but these are specified with the main 
effects only. Interactions are very frequently unexplored. 
Hypotheses (some of them implicit only) are tested through 
such regression models, but they fail to address the potential 
full richness of patterns and differences across the cells of a 
multi-way contingency table.

Several authors have pressed for the exploration of interac-
tion effects. Elwert and Winship (2010), for example, argue that

Most social scientists would probably agree that the 
assumption of constant effects that is embedded in main-effect 

only regression models is theoretically implausible. Instead, 
they would maintain that regression effects … vary across 
individuals between groups, over time and across space. In other 
words, social scientists doubt constant effects and believe in 
effect heterogeneity. (p. 328)

Similarly, Gelman (2008) has argued that

… interactions are important, but we should look for them where 
they make sense … (p. 1)

Few social scientists have followed up that argument, 
however, and the basic textbooks do not encourage it. For 
example, interactions are mentioned only four times in the 
index to the second edition of Agresti’s (2002) text Categorical 
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2 Methodological Innovations

Data Analysis, and the main concern with each of the entries 
is to test whether there are any statistically significant interac-
tions rather than to identify and interpret their intensity, that 
is, the size and nature of the effects. There are many more 
mentions of interactions in the second edition of his An 
Introduction to Categorical Data Analysis (Agresti, 2007): it 
includes a section titled ‘Allowing interaction’ and interaction 
terms are included in a number of the worked examples 
throughout the book (most of which involve relatively small 
tables with few categories for each of the variables). 
Nevertheless, there is little focus on what the interaction 
terms show let alone an emphasis on their potential impor-
tance relative to the main effects.

At this point, a note of caution is needed. There are diffi-
culties with unbridled exploration for interaction effects, a 
point noted by Elwert and Winship (2010) who continue 
their argument by pointing out that

… sample sizes in the social sciences are often too small to 
investigate effect heterogeneity by including interaction terms 
between the treatment and more than a few common effect 
modifiers (such as sex, race, education, income, or place of 
residence). (p. 328)

A key concern, even with large and complex data sets, is 
that their decomposition can rapidly reach the point where 
some of the table’s cells have only small counts. This situ-
ation can be likened to the ‘Texas sharp shooter’ problem of 
drawing the target on the barn door after the shots have 
been fired (see Nuzzo (2015) among others). More for-
mally, in the modelling context, this involves the formula-
tion of a hypothesis only after data have already been 
analysed – introducing the problems of induction, multiple 
hypothesis testing and finding chance results that are not 
generalisable due to not having specific hypotheses to hand 
before analysing the data. Nevertheless, as argued here, 
exploratory analysis of a complex table can have very ben-
eficial and illuminating results.
If the analysis incorporates a clear hypothesis regarding an 
interaction effect, this can generally be built into a logistic 
regression analysis without taking up too many additional 
degrees of freedom, but in exploratory studies that may not 
be feasible – probably one reason why Gelman (2011) argued 
that treatment interactions

… should be estimated using multilevel models. If you try to 
estimate complex interactions using significance tests or 
classical interval estimation, you’ll probably just be wasting 
your time. (p. 1)

That is the basis for the procedure introduced here, which 
is explicitly exploratory in its nature: once the variables for 
analysis have been selected – presumably based on either 
theory, or other empirical findings, or ‘researcher’s hunch’ – 
it imposes no pre-fixed, often restrictive, structure on the 
analysis but simply ‘lets the data speak for themselves’ 

(Gould, 1981), thereby maximising the potential for discov-
ering substantial, and significant, findings.

There are, however, other problems involved in the search 
for interaction effects using logistic multinomial regression 
to explore multivariate contingency tables with several out-
come variables (see Brambor et al., 2006; Mood, 2010). For 
example, several papers (Ai and Norton, 2003; Greene, 
2010; Karaca-Mandic et al., 2012; Norton et al., 2004) have 
pointed to difficulties in the interpretation of interaction 
effects in such models, including (1) although the coefficient 
in the regression model may be zero, this does not mean it 
will be zero for every observation – whether there is an inter-
action effect has to be evaluated separately for every obser-
vation, which leads to (2) the statistical significance of an 
interaction effect cannot be evaluated by a single t-test 
because it can vary across the observations; (3) the interac-
tion effect is conditional on the full set of predictor variables 
(as Brambor et al., 2006, showed); and (4) the sign on the 
interaction effect can vary depending on the covariates 
included in the model. Furthermore, as Agresti (2007) notes, 
‘Interpretations are more complicated when a model con-
tains three-factor terms’ (p. 218) – that is, the analysis is 
seeking interaction effects where there are three ‘independ-
ent’ variables (e.g. the effects of sex, age and education on 
voting choice, as used here).

The coefficients in a logistic regression model are ratios 
of ratios. If the effect of sex on voting either Conservative or 
Labour is being studied, for example, the regression coeffi-
cient would indicate the probability of a male rather than a 
female voting Labour rather than Conservative. This is fairly 
straightforward to interpret – together with its associated 
odds ratio – but if there is a third ‘independent’ variable, 
class perhaps, then the model must also include not only the 
three-way interactions (the ratio of young, middle-class 
females to that for young, middle-class males voting Labour 
rather than Conservative, say) but also the underpinning 
three two-way interactions (sex and age, sex and class, age 
and class): the output is extremely difficult to interpret – 
other than merely whether the observed coefficient is statisti-
cally significantly different from zero (either positive or 
negative). In this context and using standard approaches, one 
can understand Agresti’s limited interpretation of results 
from models with many interactions discussed earlier, but 
that of course is what is wanted when a large contingency 
table is being explored.

To circumvent these problems, this article introduces an 
alternative, explicitly exploratory, procedure, set in a multi-
level modelling framework. The key aspect of this approach 
is that it examines detailed differences across subgroups but 
in such a way that there is an ex ante prior expectation that 
each of multiple subgroups does not differ from what is hap-
pening generally across all subgroups. There is thus an 
anchoring of the results to the null hypothesis of no effect. 
This prior expectation is only overturned where there is reli-
able statistical evidence to the contrary. This approach has 
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been developed out of the statistical geographical analysis of 
mortality data where small counts (of death) are the norm 
when the data refer to relatively small geographical areas, 
with many to be examined for ‘hotspots’ (areas with espe-
cially high or low rates), and there is a need to identify these 
without unduly alarming the public with false positives of 
high risk.1 Full details of the approach’s statistical properties 
have been published elsewhere (Jones et al., 2015), using a 
very different example. This article provides an overview of 
the procedure, and illustrates its use with a relatively small 
multivariate contingency table (four variables and 288 cells), 
but one that nevertheless illustrates Elwert and Winship’s 
(2010) point regarding sample sizes.

A multi-level random-effects model 
approach to multivariate contingency 
tables

The approach introduced here develops from the literature on 
disease mapping where rates are often based on relatively 
small numbers of observations and so are inherently unstable 
– a small change in either or both of the numerator and 
denominator can substantially alter the rate (Clayton and 
Kaldor, 1987; Jones and Kirby, 1980). Any modelling of 
such rates must take into account the stochastic variation 
associated with small counts in some of the table’s cells by 
stabilising the incidence rates (Manda and Leyland, 2006).

For each cell in the contingency table, we have an 
observed value. We can also calculate an expected value 
from a null hypothesis – the standard in much statistical 
hypothesis testing – that there are no differences across the 
cells in the rate being considered: thus, if we are looking at 
the propensity of individuals in the United Kingdom to vote 
either Conservative or Labour by sex and by age, if across 
the entire sample 45% vote Conservative, we would expect 
the same percentage in each age-sex group (e.g. both males 
aged under 25 and females aged over 65). We can then derive 
an observed relative rate for each cell, as the observed num-
ber divided by the expected: a ratio of 1.0 would indicate no 
deviation from the null hypothesis; rates above and below 
1.0 would indicate cells with more or less persons than 
expected in them respectively if each subgroup voted the 
same way as all subgroups. Thus, by setting up the expected 
values in this way, we are identifying rates for voting – our 
outcome variable – in relation to age and sex as explanatory 
variables; if there were no differential effects of demography 
on voting, all the rates would be 1.0.

But how many more or less: are the differences from  
1.0 likely to have occurred by chance or are they, in the 
standard statistical terminology, significantly different 
from 1.0 at some predetermined probability level? To 
address this question, we formulate a saturated (in the 
sense of a parameter for each and every cell of the table) 
Poisson regression model

O Poissoni i~ π( )

π β β β
i

x x xe i i n ni= + + +( )1 1 2 2 

Log oge i e i i i n niL E x x xπ β β β( ) = + + + +( ) 1 1 2 2 

Var Oi i i|π π( ) =

In this, Oi  is the observed count for each cell of the table 
which is indexed by the subscript i; the table has n cells (i.e. 
n = 12 if we have two sexes, three age groups and two options 
for voting). As is common with count data, these are assumed 
to come from an underlying Poisson distribution with a mean 
of π. This mean rate is non-linearly related to the set of pre-
dictors that defines the cells of the table as an exponential 
relationship with the n cells represented by a set of 1/0 
dummy indicator variables. This exponential relationship is 
transformed to a linear model by taking the natural logarithm 
(the log link). Loge iE( )  is known as the offset (McCullagh 
and Nelder, 1989) which has its parameter constrained to 1. 
The effect of this is that the model analyses differences not in 
the log of the counts but rather the log relative rate taking 
account of Ei , the expected values. The β  terms, once 
exponentiated, give the relative rate for each cell. The final 
line of the specification (as is the norm in Poisson models) 
states that the variance of the observed counts conditional on 
the underlying rate is equal to the underlying rate. Importantly, 
the standard errors as well as the coefficients can be esti-
mated in this generalised linear model taking account of the 
Poisson stochastic nature of the underlying counts.

With the number of model parameters equal to the num-
ber of cells, this saturated model is not only unwieldy – espe-
cially in the case of a large table with many cells – but also 
little is gained as the exponentiated estimates are the same as 
the simple ratios of the observed to expected values in each 
cell; there is no pooling of information (Gelman and Hill, 
2006) and each cell’s value is separately estimated – and 
there will be problems of fitting the model where the 
observed count is zero. Hence, instead we fit a random-
effects two-level null or empty Poisson model

O Poissonij ij~ π( )
π β
ij

u
e j= +( )0

Log Loge ij e ij jE uπ β( ) = + +( ) 0

u Nj u~ ,0 2σ( )
Var Oij ij ij|π π( ) =

where individuals, i, are placed in the n cells, j, with an over-
all intercept, β0  (with no other predictors in the fixed part of 
the model), and u j  are an allowed-to-vary differential for 
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each type of person – the vote by age by sex combinations. If 
this differential is positive, the cell has a higher rate of voting 
for that party than expected; if negative, a lower rate. 
Assuming that these differentials come from a normal distri-
bution, they are summarised by the variance term σu

2 , which 
summarises the differences between all cells and is based on 
information for all the different subgroups. Because the 
overall sums of the observed and expected values are the 
same, the intercept can be expected to be zero, which 
becomes 1.0 when exponentiated: this is the all-group aver-
age and the differentials show the relative rates for each of 
the table’s n cells. This level-2 variance allows for and esti-
mates the degree of over-dispersion between different types 
of people after taking account of the expected stochastic 
Poisson variation of the counts. Thus, the higher level vari-
ance summarises the ‘true’ differences between cells over 
and above those expected from a random variation due to the 
absolute size of the counts.

In the saturated fixed-effects model, normally specified 
by having a dummy variable for each cell in a regression 
framework, each cell’s value is separately calculated – only 
information from that cell is used to estimate the size of the 
effect – whereas in a random-effects model, as specified 
here, the estimates are precision-weighted, so that if they are 
based on small counts, the estimated rates are shrunk back 
towards the overall rate of 1.0 (that for the intercept) of the 
null hypothesis of no effect. The more unreliable the rate (i.e. 
the smaller the number of observations on which it is based), 
the closer it will be to 1.0 (Jones and Bullen, 1994). This is 
equivalent to the Bayesian pooling of information (Beck and 
Katz, 2007; Jones and Spiegelhalter, 2011), and represents a 
data-driven adaptive procedure for handling the uncertainty 
associated with sparse data (Gelman, 2014). Furthermore, 
the estimated rates for each cell have associated Bayesian 
credible intervals (CIs), and here we have used the 95% 
intervals to summarise the degree of uncertainty around the 
estimates. We call an effect ‘significant’ if the 95% CIs do 
not include the value of 1, so that the weight of the evidence 
is for a distinctively high or low rate.2 If the CIs on the expo-
nentiated scale include the value 1, we do not have strong 
evidence that the rate for such a cell differs from that for the 
overall relationship; there is no credible evidence for a par-
ticular age-sex combination to have a preference for a par-
ticular political party. The exponentiated estimates provide a 
natural interpretation of effect size so that 2 represents a dou-
bling of the rate of vote for that group. This is much easier to 
interpret than the contortions required by the multinomial 
logit model.

Another important advantage of this random-effects 
shrinkage approach is in relation to multiple comparisons, 
which is at the heart of the induction problem of standard 
exploratory procedures. If you do enough testing, the chances 
of finding significant results increase rapidly. However, as 
demonstrated by Gelman et al. (2012), it is much more effi-
cient to shift estimates towards each other rather than try to 

inflate the usual confidence intervals through a Bonferroni 
correction to control the overall error rate. Thus, shrinkage 
automatically makes for more appropriately conservative 
comparisons while not reducing the power to detect true dif-
ferences. The final advantage is dealing with zero counts. 
With raw rates, if the numerator of a cell is zero, then the 
associated rate can only be zero. Moreover, if you calculate a 
saturated fixed-effects model with such a count, the estimate 
will fail to converge and you will get impossible, uninterpret-
able values (accompanied and signalled by exceptionally 
large standard errors).3 But this does not happen in the ran-
dom-effects approach; what does happen depends on the 
expected value. A zero based on an expected value of 1 
means a quite different thing from a zero based on an 
expected value of 100 – for the former, it is uncertain whether 
the rate is really zero; for the latter, we can be quite confident 
in this inference. The random-effects estimate shrinks more 
towards the overall rate for the former than for the latter.

The models are run using Markov Chain Monte Carlo 
(MCMC) estimation (Jones and Subramanian, 2014) within 
the standard multi-level modelling software (MLwiN), and 
we have checked that the models have been run for sufficient 
time (a discarded burn-in of 5000 simulations followed by a 
monitoring phase of 500,000) to ensure convergence and to 
obtain reliable 95% CIs. We have used default priors to 
impose as little information as we can on the estimates so 
that the results are data-driven.

The approach illustrated: voting at the 
2015 British general election

To illustrate the argument, we use the example of voting at 
the 2015 UK general election, by age, sex and educational 
qualifications, using data from the post-election wave of the 
British Election Study (BES) Internet panel survey.4 Most 
studies have found that age and sex are related to party 
choice. Educational qualifications are used here as a proxy 
for social class – in part because of incomplete data on other 
possible measures (such as occupation and individual or 
family income); those with higher level qualifications in 
general are in higher status occupations and have higher 
incomes. It is generally accepted that social class has become 
a less important influence on voting choice in recent decades 
(see Whiteley et al., 2013), but it remains relevant (as the 
results presented here show). In any case, the goal of the pre-
sent analysis is not to contribute substantially to appreciation 
of British voting patterns but rather to illustrate the advan-
tages of the method proposed for uncovering substantively 
interesting and well-supported patterns that might not other-
wise be found. Respondents were placed into four groups: 
those with no qualifications, those whose qualifications were 
only those associated with the official school-leaving age (in 
England formerly termed ‘O levels’ and now General 
Certificate of Secondary Education (GCSE)), those with 
post-school-leaving-age qualifications below the status of 
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university degrees and diplomas, and those with degrees or 
diplomas.

For the analysis, we have excluded all respondents living 
in Scotland and Wales, where voters had a different set of 
outcome choices – the respective nationalist parties (the 
Scottish National Party (SNP) and Plaid Cymru) contested 
all seats there in 2015. (Northern Ireland is not included in 
the BES.) For England alone, therefore, we study those who 
voted for one of the five parties which contested virtually all 
of the seats,5 plus those who reported that they did not vote.6 
The small number of BES respondents who voted for another 
party are excluded. This gives a sample size of 20,966 and a 
multivariate contingency table comprising six vote choices, 
two sexes, six age groups and four qualification categories 
– a total of 288 cells, giving an average of 73 respondents per 
cell. Nevertheless, many of the cells contained small num-
bers of respondents, as shown in Figure 1; the distribution is 
highly skewed (the median number of observations per cell 
was 44) – hence the value of the modelling approach adopted 
here that pools information to produce weighted estimates of 
rates in cells with small observed and/or expected values. To 
be clear, the expected value is derived for each age by sex by 
qualification group if the overall national rates of vote choice 
applied.

The baseline

To provide a baseline for the application of our proposed 
method, we conducted multinomial logistic regression anal-
yses with voting choice as the dependent variable, as would 
be the norm in studies of such contingency tables. Five mod-
els were run: the first three incorporated each of the ‘inde-
pendent’ variables separately, the fourth included both age 

and sex and the fifth all three. The results – giving the regres-
sion coefficients and their standard errors, with significant 
differences from zero shown in bold – are presented in Table 
1. The reference category for the dependent variable is vot-
ing Conservative, so each coefficient shows the probability 
of voting for another party rather than Conservative for the 
chosen group relative to its comparator. Thus, in Model 1, 
the first significant coefficient of −0.103 indicates on the 
logit scale that males were significantly less likely than 
females to vote Labour rather than Conservative.

The overwhelming conclusion to be drawn from Table 1 
is that all three independent variables are significantly related 
to voting choice – both separately and together. For example, 
males were less likely than females either to vote Labour 
rather than Conservative or to abstain rather than vote 
Conservative, and more likely to vote for either the Liberal 
Democrats or UK Independence Party (UKIP); there was 
no significant difference between males and females in 
their propensity to vote for the Green party. In general, 
younger people were more likely to vote Labour, Liberal 
Democrat or (especially) Green, or not to vote, rather than 
vote Conservative, compared to those aged 66 and over: 
those aged under 36 were significantly less likely to vote for 
UKIP rather than Conservative than those in the oldest age 
group, whereas those aged between 46 and 65 were more 
likely. There were also statistically significant and, given the 
varying size of the coefficients, substantial differences in 
voting by class. Those with no qualifications were more 
likely than those with degrees either to vote UKIP or to 
abstain rather than vote Conservative, for example.

For many studies, Table 1 would be the conclusion: sig-
nificant patterns had been identified – very much in line with 
previous work and expectations. But two elements of that 
table raise questions. The first is the low level of ‘explana-
tion’ provided by all the models: even Model 5, with all three 
independent variables included, accounts for less than 10% 
of the variation in voting choice – which leaves a great deal 
‘unexplained’. That may well be because we have an under-
specified model which excludes a large number of extra vari-
ables that other studies have shown to be related to voting 
choice (Whiteley et al., 2013). The second is the change in 
some of the coefficients – notably between Models 1–3 and 
5. This is particularly the case with the age variables. Those 
for voting Labour rather than Conservative are substantially 
different between Models 2 and 5; those for voting Liberal 
Democrat rather than Conservative even more so – indeed, 
two that were highly significant in Model 2 are insignificant 
in Model 5. This suggests a degree of collinearity between 
age and qualifications, which may be confounding the ‘true’ 
relationships in the final model: members of some age groups 
may be more likely to vote Liberal Democrat in some classes 
than others.

These two issues together suggest that there may be inter-
actions – that there are, for example, not only differences in 
voting by age and by sex separately but also by age and sex 

Figure 1. Histogram of the number of observations in each 
of the 288 cells of the sex by age by qualifications by vote 
contingency table.
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together. But an attempt to fit a Model 6 – introducing all of 
the possible two- and three-way interactions among the vari-
ables – failed because of singularities in the Hessian matrix 

resulting from the large number of cells with zero or near-
zero values. It was not possible, therefore, to compare the 
outcome of our multi-level modelling (discussed later) with 

Table 1. Multinomial logistic regression models of voting in England in 2015, by sex, age and educational qualifications.

Labour LibDem UKIP Green DNV

Model 1
Sex (comparator: Female)
 Male −0.103 (0.031) 0.129 (0.047) 0.195 (0.046) −0.102 (0.066) −0.212 (0.48)
Nagelkerke’s R2 0.003
Chi-square 78.129
Model 2
Age, years (comparator: 66+)
 18–25 0.632 (0.060) 0.395 (0.085) −0.482 (0.100) 2.279 (0.148) 1.825 (0.102)
 26–35 0.555 (0.056) 0.285 (0.079) −0.321 (0.085) 1.628 (0.151) 1.617 (0.099)
 36–45 0.593 (0.057) 0.199 (0.083) 0.045 (0.081) 1.407 (0.157) 1.187 (0.106)
 46–55 0.548 (0.055) 0.143 (0.080) 0.371 (0.072) 0.983 (0.161) 0.980 (0.105)
 56–65 0.309 (0.053) −0.002 (0.077) 0.245 (0.069) 0.599 (0.163) 0.664 (0.105)
Nagelkerke’s R2 0.053
Chi-square 1272.788
Model 3
Qualifications (comparator: Degree)
 None 0.408 (0.063) −0.664 (0.115) 0.996 (0.085) −0.905 (0.184) 0.762 (0.090)
 Leaving 0.105 (0.038) −0.882 (0.063) 0.740 (0.056) −0.877 (0.093) 0.477 (0.059)
 Leaving+ 0.102 (0.041) −0.201 (0.058) 0.254 (0.065) −0.021 (0.077) 0.405 (0.063)
Nagelkerke’s R2 0.035
Chi-square 837.434
Model 4
Sex (comparator: Female)
 Male −0.110 (0.032) 0.123 (0.047) 0.200 (0.046) −0.122 (0.066) −0.226 (0.048)
Age, years (comparator: 66+)
 18–25 0.632 (0.060) 0.394 (0.085) −0.483 (0.100) 2.280 (0.148) 1.826 (0.102)
 26–35 0.554 (0.056) 0.286 (0.079) −0.319 (0.085) 1.627 (0.151) 1.615 (0.099)
 36–45 0.593 (0.057) 0.200 (0.083) 0.046 (0.081) 1.406 (0.157) 1.187 (0.106)
 46–55 0.550 (0.055) 0.141 (0.080) 0.368 (0.072) 0.985 (0.161) 0.983 (0.105)
 56–65 0.303 (0.053) 0.004 (0.077) 0.255 (0.069) 0.593 (0.163) 0.652 (0.105)
Nagelkerke’s R2 0.057
Chi-square 1354.807
Model 5
Sex (comparator: Female)
 Male −0.102 (0.032) 0.098 (0.047) 0.226 (0.046) −0.135 (0.067) −0.202 (0.049)
Age, years (comparator: 66+)
 18–25 0.761 (0.062) 0.215 (0.088) −0.228 (0.103) 2.148 (0.152) 2.209 (0.107)
 26–35 0.681 (0.057) 0.101 (0.081) −0.065 (0.088) 1.497 (0.154) 1.983 (0.103)
 36–45 0.699 (0.058) 0.082 (0.085) 0.221 (0.083) 1.331 (0.159) 1.455 (0.108)
 46–55 0.622 (0.055) 0.111 (0.081) 0.449 (0.074) 0.976 (0.162) 1.131 (0.107)
 56–65 0.337 (0.053) −0.023 (0.077) 0.300 (0.070) 0.576 (0.163) 0.729 (0.106)
Qualifications (comparator: Degree)
 None 0.651 (0.066) −0.600 (0.108) 0.987 (0.088) −0.294 (0.189) 1.434 (0.097)
 Leaving 0.193 (0.040) −0.739 (0.064) 0.679 (0.057) −0.564 (0.096) 0.831 (0.062)
 Leaving+ 0.084 (0.042) −0.204 (0.059) 0.293 (0.066) −0.135 (0.079) 0.342 (0.065)
Nagelkerke’s R2 0.091
Chi-square 2208.197

UKIP: UK Independence Party; DNV: Did Not Vote.
Statistically significant coefficients at the 0.05 probability level or better are shown in bold.
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that of a multinomial regression incorporating the full set of 
possible influences on voting patterns – such as differences 
between age-sex groups within those with the same qualifi-
cations.7 Furthermore, even if a Model 6 could be fitted, all 
of the one-way ratios together with the two-way and three-
way interaction ratios have to be taken into account when 
determining the size of any significant differentials; interpre-
tation is far from straightforward. Hence, the value of the 
approach adopted here, which generates a modelled rate, 
with CIs, for each cell – that is, for each of the six voting 
options, including Conservative, which is a comparator only 
in the multinomial regression model and for which there is 
no direct indicator of where its support is strongest and 
weakest. The method introduced here avoids those difficul-
ties by providing a single coefficient for each cell of the n-
way table being analysed, with an indication of whether it is 
significantly different from the null effect of 1.0 on the expo-
nentiated scale; the output from the multi-level modelling is 
more readily interpretable.

Unpacking the table

Rather than explore the interactions through the multinomial 
logistic regression framework, therefore, we have analysed the 
6 × 2 × 6 × 4 contingency table using the method introduced 

above. The output from this is 288 modelled rates, each with 
its Bayesian CIs, and these rates are shown in Tables 2 to 7 – 
one each for the voting choices. Table 8 and Figure 2 provide 
summaries of the number of significant rates – that is, those 
that are reliably different from 1.0, according to their CIs, for 
each category in each of the independent variables and for 
each of the voting choices.

The expectation from the results of the multinomial 
regression analyses in Table 1, where virtually all of the coef-
ficients are statistically significantly different from zero 
across all voting choices, is that Tables 2 to 7 should be 
replete with modelled rates that are also significantly differ-
ent from 1.0 – that is, that there are significantly more or less 
individual respondents in each of the 288 cells of the multi-
variate contingency tables than expected. But only a minor-
ity (134) of the modelled rates is significantly different from 
zero. In part, this might not be unexpected because whereas 
the multinomial logistic regression results reflect the choice 
of a comparator among the categories in the independent 
variables, the approach outlined here does not – it reports 
modelled rates for every category. Thus, for example, Table 2 
shows rates in the third qualifications category – those with 
qualifications beyond those obtained at the normal school-
leaving age – among females that are significantly greater 
than 1.0 in the two oldest age groups and significantly less 

Table 2. The modelled values (with their CIs) for the rates of voting Conservative by sex, age and educational qualifications.

Class Age (years) Sex Low CI Rate High CI Sex Low CI Rate High CI

None 18–25 M 0.45 0.89 1.77 F 0.32 0.62 1.20
None 26–35 M 0.41 0.74 1.33 F 0.32 0.56 0.68
None 36–45 M 0.36 0.63 1.12 F 0.36 0.59 0.99
None 46–55 M 0.39 0.61 0.94 F 0.59 0.85 1.21
None 56–65 M 0.66 0.82 1.03 F 0.68 0.85 1.06
None 66+ M 0.89 1.08 1.30 F 1.08 1.30 1.57
Leaving 18–25 M 0.40 0.63 1.00 F 0.31 0.46 0.69
Leaving 26–35 M 0.67 0.91 1.21 F 0.60 0.79 1.02
Leaving 36–45 M 0.86 1.04 1.21 F 0.84 1.00 1.18
Leaving 46–55 M 0.75 0.88 1.02 F 0.90 1.04 1.19
Leaving 56–65 M 0.89 1.02 1.16 F 1.13 1.28 1.44
Leaving 66+ M 1.22 1.38 1.57 F 1.44 1.64 1.85
Leaving+ 18–25 M 0.74 0.90 1.08 F 0.58 0.70 0.84
Leaving+ 26–35 M 0.77 0.98 1.25 F 0.60 0.76 0.96
Leaving+ 36–45 M 0.87 1.07 1.31 F 0.77 0.94 1.14
Leaving+ 46–55 M 0.85 1.07 1.32 F 0.87 1.03 1.23
Leaving+ 56–65 M 1.00 1.02 1.23 F 1.17 1.34 1.53
Leaving+ 66+ M 1.25 1.19 1.42 F 1.35 1.56 1.80
Degree 18–25 M 0.73 0.88 1.07 F 0.68 0.80 0.95
Degree 26–35 M 1.04 1.19 1.37 F 0.75 0.87 1.00
Degree 36–45 M 0.93 1.07 1.23 F 0.73 0.85 0.99
Degree 46–55 M 0.95 1.08 1.23 F 0.90 1.05 1.22
Degree 56–65 M 1.03 1.16 1.30 F 1.04 1.18 1.34
Degree 66+ M 1.27 1.42 1.59 F 1.10 1.28 1.49

CI: credible interval.
Rates significantly larger or smaller than 1.0 are shown in bold.
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than 1.0 in the two youngest, but do not significantly differ 
from 1.0 in the two middle-age groups (36–45 and 46–55): 
the significant differences are not, as the multinomial model 
would have it, between one comparator group – the oldest – 
and all others, but have a U-shaped form.

Each of the six tables (Tables 2 to 7) has a very different 
pattern of significantly different rates. With voting UKIP 
(Table 5), for example, Table 1’s multinomial regressions 
suggested that males were more likely to support that party 
than females, that young voters were less likely to support 
it than their older contemporaries and that those with either 
no or few qualifications were more likely to support it than 
were those with degrees. Young, female degree-holders 
were thus least likely to be UKIP voters. The bottom block 
of modelled rates largely validates this expectation. For 
males, there are only three modelled rates significantly less 
than 1.0, whereas for females, there are five: for males, too, 
those aged over 45 were more likely to vote UKIP than 
expected – and significantly more so in the case of the old-
est age group – whereas for females, all of the modelled 
rates were less than 1.0. Old, male degree-holders were 
more likely to vote UKIP than expected, whereas that was 
not the case with females.

Other cells in that table identify substantial, and in many 
cases statistically significantly different from 1.0, 

rates indicating differences that are not apparent from the 
multinomial regression. In both of the first two qualifications 
classes (those with either no or few qualifications), for exam-
ple, older males were very much more likely to vote UKIP 
than females at all ages above 45. Among the highest quali-
fied, on the other hand, males deviated less from the average 
rate than females; for males aged 18–25, the modelled rate 
was 0.58, whereas for females, it was 0.30.8

The other tables also reveal patterns that the multinomial 
regression suppresses. In voting Labour, for example, there 
are only four modelled rates significantly different from 1.0 
for males, but 13 for females. Whereas female voters in the 
higher two classes were much more likely to vote Labour 
than expected – except for those in the oldest age groups – 
compared to those 10 significant rates greater than 1.0, there 
was only one for males. Again, the fact that there were sub-
stantial differences between males and females, according to 
their age, in their propensity to vote Labour is not revealed 
by the multinomial regression. Strong support for both the 
Liberal Democrats and Greens is generally associated with 
the young and the better qualified – patterns shown in Table 
1 and largely confirmed in Tables 4 and 6. Nevertheless, 
important differences emerge: female voters aged 26–45 in 
the third qualifications class were much more likely than 
comparable males to vote Green, for example, and there 

Table 3. The modelled values (with their CIs) for the rates of voting Labour by sex, age and educational qualifications.

Class Age (years) Sex Low CI Rate High CI Sex Low CI Rate High CI

None 18–25 M 0.61 1.18 2.27 F 0.73 1.27 2.21
None 26–35 M 0.43 0.77 1.41 F 0.82 1.27 1.97
None 36–45 M 0.95 1.48 2.31 F 0.58 0.80 1.42
None 46–55 M 0.82 1.15 1.63 F 1.03 1.39 1.88
None 56–65 M 0.87 1.07 1.31 F 0.93 1.14 1.39
None 66+ M 0.80 0.98 1.21 F 0.88 1.09 1.34
Leaving 18–25 M 0.66 0.99 1.47 F 0.83 1.10 1.49
Leaving 26–35 M 0.84 1.10 1.46 F 0.86 1.10 1.39
Leaving 36–45 M 0.82 1.01 1.23 F 1.02 1.21 1.42
Leaving 46–55 M 1.01 1.15 1.32 F 1.00 1.15 1.32
Leaving 56–65 M 0.86 0.99 1.14 F 0.80 0.92 1.05
Leaving 66+ M 0.76 0.89 1.05 F 0.60 0.72 0.86
Leaving+ 18–25 M 0.86 1.03 1.24 F 1.16 1.34 1.55
Leaving+ 26–35 M 0.96 1.20 1.52 F 1.06 1.28 1.54
Leaving+ 36–45 M 0.89 1.10 1.36 F 1.04 1.25 1.50
Leaving+ 46–55 M 0.87 1.06 1.28 F 1.00 1.19 1.41
Leaving+ 56–65 M 0.82 1.00 1.20 F 0.84 0.98 1.14
Leaving+ 66+ M 0.55 0.72 0.95 F 0.67 0.82 1.00
Degree 18–25 M 0.91 1.09 1.31 F 1.13 1.31 1.51
Degree 26–35 M 0.87 1.01 1.18 F 1.15 1.30 1.59
Degree 36–45 M 0.91 1.06 1.22 F 1.23 1.40 1.43
Degree 46–55 M 1.00 1.14 1.30 F 1.08 1.24 1.30
Degree 56–65 M 0.90 1.02 1.16 F 1.01 1.15 1.12
Degree 66+ M 0.70 0.81 0.94 F 0.78 0.94 1.31

CI: credible interval.
Rates significantly larger or smaller than 1.0 are shown in bold.
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were significantly few degree-holding males in the oldest 
age group, but not females, supporting that party.

Many of the clearest differences are in the pattern of 
abstentions (Table 7). In general, young people, females and 
those with no or few qualifications were most likely to 
abstain (Table 1), but again the disaggregated approach pro-
moted here adds detail to that general pattern. Among degree-
holders, for example, significantly more young females than 
expected abstained, but that was not also the case among 
males in the comparable age groups.

The results of the multinomial logistic regressions pro-
vide no direct evidence regarding the pattern of voting 
Conservative – the chosen comparator among the dependent 
variables; this can only be inferred from the reported coeffi-
cients, or calculated from the associated odds ratios. With the 
method outlined here, however, the pattern of Conservative 
voting is part of the output (Table 2). As is the case with vot-
ing Labour (Table 3: see above), there are more statistically 
significant modelled rates for females (13) than for males 
(7). Furthermore, there appears to be greater polarisation in 
voting Conservative by age among females than males. In 
the first three qualification categories, for example, the dif-
ference between the modelled rate for females among the 
youngest and oldest age groups is greater than the compara-
ble figure for males: among those with school-leaving 

qualifications, the modelled rate for those aged 18–25 is 0.46 
for females and 0.63 for males (the former is also statistically 
significant), whereas the rates for those aged over 65 are 1.64 
for females and 1.38 for males – a gap of 2.18 for females but 
only 0.75 for males.

Table 8 provides an overall summary of the number of sta-
tistically significant modelled rates in the preceding six tables. 
For each party and for non-voting, the total number of rates 
that could be significantly different from 1.0 is 48, but for 
only one of the six choices – not voting – is that the case in 
more than half. Voting Labour has only 16 significant rates – 
just one-third of the potential total; in general, the number of 
people voting Labour by age, sex and qualifications com-
bined rarely differed from what would have been the case if 
voting was uniformly distributed across both sexes and all 
age groups and classes. Turning to the independent variables, 
there were more modelled rates statistically significantly dif-
ferent from 1.0 for females than males, more for the older and 
the younger than the middle-age groups, and many more for 
the highly qualified than for those with no qualifications.

Figure 2 provides an alternative summary procedure, 
from which the major patterns revealed by the significant 
modelled rates are readily appreciated. The clear age differ-
ence among females in their tendency to support either the 
Conservatives or Labour stands out, for example; younger 

Table 4. The modelled values (with their CIs) for the rates of voting Liberal Democrat by sex, age and educational qualifications.

Class Age (years) Sex Low CI Rate High CI Sex Low CI Rate High CI

None 18–25 M 0.37 0.84 1.92 F 0.48 1.04 2.23
None 26–35 M 0.46 0.96 2.03 F 0.41 0.82 1.67
None 36–45 M 0.37 0.77 1.62 F 0.49 0.95 1.83
None 46–55 M 0.24 0.49 0.98 F 0.27 0.52 1.02
None 56–65 M 0.36 0.56 0.89 F 0.43 0.67 1.03
None 66+ M 0.61 0.89 1.39 F 0.33 0.53 0.86
Leaving 18–25 M 0.30 0.59 1.19 F 0.26 0.49 0.92
Leaving 26–35 M 0.28 0.52 0.95 F 0.39 0.64 1.06
Leaving 36–45 M 0.27 0.44 0.71 F 0.45 0.65 0.95
Leaving 46–55 M 0.53 0.71 0.96 F 0.46 0.63 0.87
Leaving 56–65 M 0.52 0.70 0.93 F 0.64 0.82 1.05
Leaving 66+ M 0.52 0.71 0.97 F 0.77 1.01 1.33
Leaving+ 18–25 M 0.98 1.31 1.75 F 0.55 0.77 1.06
Leaving+ 26–35 M 0.71 1.08 1.64 F 0.64 0.93 1.35
Leaving+ 36–45 M 0.61 0.91 1.35 F 0.44 0.67 1.01
Leaving+ 46–55 M 0.93 1.27 1.73 F 0.84 1.14 1.54
Leaving+ 56–65 M 0.87 1.19 1.64 F 0.94 1.21 1.56
Leaving+ 66+ M 0.63 0.95 1.43 F 0.92 1.31 1.65
Degree 18–25 M 1.27 1.66 2.18 F 0.87 1.14 1.49
Degree 26–35 M 1.08 1.37 1.74 F 1.20 1.47 1.79
Degree 36–45 M 1.30 1.80 1.99 F 1.15 1.43 1.79
Degree 46–55 M 1.16 1.66 1.75 F 0.88 1.13 1.47
Degree 56–65 M 1.11 1.37 1.63 F 1.11 1.37 1.68
Degree 66+ M 1.18 1.61 1.75 F 1.42 1.80 1.29

CI: credible interval.
Rates significantly larger or smaller than 1.0 are shown in bold.
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Table 5. The modelled values (with their CIs) for the rates of voting UKIP by sex, age and educational qualifications.

Class Age (years) Sex Low CI Rate High CI Sex Low CI Rate High CI

None 18–25 M 0.42 0.91 2.01 F 0.37 0.79 1.67
None 26–35 M 0.70 1.34 2.56 F 0.64 1.16 2.11
None 36–45 M 0.49 0.95 1.84 F 0.89 1.48 2.48
None 46–55 M 1.53 2.23 3.25 F 0.46 0.77 1.31
None 56–65 M 1.72 2.14 2.67 F 1.30 1.67 2.14
None 66+ M 1.50 1.89 2.37 F 1.21 1.57 2.05
Leaving 18–25 M 0.65 1.10 1.86 F 0.47 0.75 1.21
Leaving 26–35 M 0.63 0.96 1.47 F 0.54 0.80 1.18
Leaving 36–45 M 1.29 1.63 2.07 F 0.92 1.17 1.50
Leaving 46–55 M 1.63 1.91 2.23 F 1.22 1.46 1.75
Leaving 56–65 M 1.77 2.05 2.38 F 1.26 1.48 1.74
Leaving 66+ M 1.39 1.66 1.98 F 0.98 1.21 1.50
Leaving+ 18–25 M 0.45 0.63 0.88 F 0.28 0.39 0.56
Leaving+ 26–35 M 0.49 0.73 1.11 F 0.49 0.69 0.99
Leaving+ 36–45 M 0.75 1.03 1.42 F 0.67 0.91 1.24
Leaving+ 46–55 M 0.97 1.26 1.64 F 0.80 1.03 1.34
Leaving+ 56–65 M 0.96 1.24 1.60 F 0.71 0.90 1.14
Leaving+ 66+ M 1.12 1.49 1.99 F 0.76 0.99 1.29
Degree 18–25 M 0.41 0.58 0.82 F 0.20 0.30 0.44
Degree 26–35 M 0.35 0.48 0.65 F 0.26 0.35 0.48
Degree 36–45 M 0.53 0.68 0.88 F 0.39 0.51 0.68
Degree 46–55 M 0.88 1.06 1.29 F 0.53 0.69 0.90
Degree 56–65 M 0.97 1.14 1.36 F 0.54 0.69 0.87
Degree 66+ M 1.02 1.22 1.45 F 0.64 0.84 1.09

CI: credible interval; UKIP: UK Independence Party.
Rates significantly larger or smaller than 1.0 are shown in bold.

Table 6. The modelled values (with their CIs) for the rates of voting Green by sex, age and educational qualifications.

Class Age (years) Sex Low CI Rate High CI Sex Low CI Rate High CI

None 18–25 M 0.38 0.88 2.07 F 0.43 0.97 2.17
None 26–35 M 0.42 0.92 2.04 F 0.38 0.81 1.75
None 36–45 M 0.40 0.87 1.88 F 0.42 0.88 1.81
None 46–55 M 0.32 0.65 1.33 F 0.46 0.89 1.69
None 56–65 M 0.29 0.51 0.88 F 0.41 0.68 1.13
None 66+ M 0.31 0.53 0.91 F 0.31 0.53 0.93
Leaving 18–25 M 0.60 1.15 2.20 F 0.80 1.35 2.26
Leaving 26–35 M 0.53 0.94 1.66 F 0.43 0.73 1.27
Leaving 36–45 M 0.47 0.74 1.18 F 0.36 0.58 0.92
Leaving 46–55 M 0.35 0.52 0.77 F 0.40 0.58 0.86
Leaving 56–65 M 0.33 0.49 0.73 F 0.37 0.53 0.77
Leaving 66+ M 0.23 0.36 0.58 F 0.36 0.55 0.84
Leaving+ 18–25 M 1.96 2.55 3.32 F 2.13 2.67 3.35
Leaving+ 26–35 M 0.44 0.76 1.31 F 1.01 1.46 2.11
Leaving+ 36–45 M 0.66 1.04 1.62 F 1.03 1.48 2.11
Leaving+ 46–55 M 0.54 0.84 1.30 F 0.52 0.79 1.19
Leaving+ 56–65 M 0.62 0.93 1.41 F 0.47 0.69 1.00
Leaving+ 66+ M 0.31 0.54 0.95 F 0.28 0.46 0.76
Degree 18–25 M 1.59 2.11 2.83 F 2.25 2.80 3.48
Degree 26–35 M 1.31 1.70 2.21 F 1.51 1.88 2.33
Degree 36–45 M 1.25 1.61 2.07 F 1.28 1.64 2.10
Degree 46–55 M 0.83 1.09 1.44 F 1.04 1.38 1.83
Degree 56–65 M 0.85 1.10 1.41 F 0.98 1.26 1.64
Degree 66+ M 0.35 0.51 0.74 F 0.69 0.99 1.43

CI: credible interval.
Rates significantly larger or smaller than 1.0 are shown in bold.
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Table 7. The modelled values (with their CIs) for the rates of non-voting by sex, age and educational qualifications.

Class Age (years) Sex Low CI Rate High CI Sex Low CI Rate High CI

None 18–25 M 0.63 1.39 3.07 F 0.89 1.80 3.63
None 26–35 M 1.06 2.04 3.90 F 1.19 2.10 3.71
None 36–45 M 0.85 1.61 3.07 F 1.45 2.40 3.97
None 46–55 M 1.02 1.67 2.72 F 1.22 1.91 2.99
None 56–65 M 1.02 1.40 1.93 F 1.07 1.46 2.01
None 66+ M 0.52 0.78 1.16 F 0.32 0.52 0.85
Leaving 18–25 M 1.92 2.96 4.55 F 3.10 4.13 5.51
Leaving 26–35 M 1.62 2.30 3.28 F 2.43 3.16 4.11
Leaving 36–45 M 1.11 1.49 2.01 F 1.21 1.56 2.02
Leaving 46–55 M 0.87 1.11 1.41 F 0.94 1.19 1.51
Leaving 56–65 M 0.75 0.96 1.23 F 0.73 0.92 1.17
Leaving 66+ M 0.45 0.62 0.85 F 0.34 0.49 0.71
Leaving+ 18–25 M 0.98 1.31 1.76 F 1.54 1.91 2.36
Leaving+ 26–35 M 1.13 1.61 2.31 F 1.50 1.96 2.57
Leaving+ 36–45 M 0.84 1.20 1.71 F 0.99 1.34 1.83
Leaving+ 46–55 M 0.69 0.97 1.38 F 0.75 1.02 1.39
Leaving+ 56–65 M 0.44 0.66 0.99 F 0.63 0.84 1.13
Leaving+ 66+ M 0.38 0.62 1.00 F 0.43 0.62 0.91
Degree 18–25 M 0.86 1.18 1.60 F 1.05 1.34 1.72
Degree 26–35 M 0.81 1.05 1.37 F 1.07 1.31 1.62
Degree 36–45 M 0.68 0.90 1.17 F 0.72 0.94 1.22
Degree 46–55 M 0.40 0.55 0.74 F 0.71 0.93 1.23
Degree 56–65 M 0.46 0.61 0.80 F 0.49 0.65 0.86
Degree 66+ M 0.43 0.57 0.76 F 0.35 0.52 0.76

CI: credible interval.
Rates significantly larger or smaller than 1.0 are shown in bold.

Table 8. A summary of the number of statistically significant modelled rates for each of the three sets of independent variables.

C L LD UKIP G DNV Σ

Male 7 4 13 13 11 13 61
Female 13 13 8 11 13 16 73
18–25 years 3 2 2 4 4 4 19
26–35 years 3 2 3 3 3 7 21
36–45 years 1 3 4 3 4 4 19
46–55 years 1 5 4 4 3 3 20
56–65 years 5 1 4 5 3 5 23
66+ years 7 3 4 5 7 6 32
None 2 0 3 5 3 9 22
Leaving 4 4 8 6 7 8 37
Leaving+ 7 5 0 4 6 5 27
Degree 7 7 10 9 8 7 48
Total 20 16 21 24 24 29 134

C: Conservative; L: Labour; LD: Liberal Democrat; UKIP: UK Independence Party; G: Green; DNV: Did Not Vote.

females, especially those in the higher qualifications  
categories, are much more likely to vote Labour than 
Conservative (a difference that does not also apply to males), 
whereas older females, across all educational classes, are 
much more likely – like males – to vote Conservative. 
Among males, those with degrees were more likely than 
expected to vote Liberal Democrat, whatever their age, 

whereas those in the oldest age groups were more likely than 
expected to vote UKIP, whatever their qualifications. These 
differences between the sexes are not reproduced in either 
the pattern of voting Green or of abstaining, however, again 
stressing the importance of exploring the interactions: male–
female voting patterns differed by age and educational class 
in some parts of the contingency tables but not others.
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Figure 2. Diagrammatic depiction of the modelled voting outcomes. Cell values significantly larger than 1.0 are shown in dark shading; 
those significantly less than 1.0 are shown in light shading. (A + sign indicates a modelled rate of between 1.0 and 2.0; ++ indicates 
2.0–3.0; +++ indicates 3.0–4.0; and ++++ 4.0<. A - sign indicates a modelled rate between 0.75–1.00; – indicates 0.50–0.75; – indicates 
0.25–0.50; and —- indicates <0.25.
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Exploring for significant interactions in a large contin-
gency table produces a large volume of output, therefore – as 
Tables 2 to 7 illustrate. But the core of the exploration can 
readily be revealed by summary devices such as Table 8 and 
Figure 2. They point clearly to where the substantial interac-
tions are, providing the foundation for further analysis and 
hypothesis-formulation. The precision-weighted effect sizes 
once the credible rates have been winnowed from the unreli-
able can be examined in detail to see both the overall patterns 
and interesting departures.

A hybrid model including fixed effects

The model we have so far fitted allows for the maximum dif-
ferences in the random part. We now consider a hybrid model 
in which we additionally include estimated fixed effects for 
Vote (i.e. the six categories used previously – either support 
for one of the five parties or abstention) in interaction with 
Class, Age and Sex. This hybrid is a two-level random-
effects Poisson model in which there are a set of fixed effects 
( β1  to βm ) in addition to the intercept ( β0 ) of the empty 
model

O Poissonij ij~ π( )
π β β β β
ij

u
e m j= + + + + +( )0 1 2 

Log oge ij e ij m jL E uπ β β β β( ) = + + + + + +( ) 0 1 2 

u Nj u~ ,0 2σ( )
Var Oij ij ij|π π( ) =

The Level 2 variance (σu
2 ) now summarises the differ-

ences that remain after taking account of the included fixed-
parts terms. It is hybrid in that cell differences are specified 
in both the fixed and random parts of the model. It is thus 
more complex than the earlier null random-effects model 
with only the intercept in the fixed part of the model but does 
not reach the full complexity of the saturated model as a term 
for each cell was not needed. Importantly and unlike the mul-
tinomial model, we are able to keep all six voting outcomes, 
and this continues to make for easier interpretation of the 
size of the effects.

We formulated this model in the light of the findings sum-
marised in Table 8 and Figure 2 and by examining residuals 
from a sequence of models with more complex fixed parts. 
That is, we included interactions on the basis of the detailed 
exploratory analysis we had undertaken, and we did this 
sequentially adding terms and looking for improvements in 
the model. This is judged in three ways. First, the smaller the 
residual variance (σu

2 ), the more effectively the fixed-part 
interactions have captured the underlying patterns between 
cells. Second, we used the Deviance Information Criterion 

(DIC; Jones and Subramanian, 2014) as a measure of model 
fit which is penalised for model complexity, where complex-
ity is defined to include both the fixed and random terms.9 
Third, we performed a multivariate Wald test of whether all 
of the included fixed-part terms differ from zero. The results 
are in Table 9, showing that all three methods are comple-
mentary in that the model with the lowest DIC is accompa-
nied by the smallest residual between-group variance and the 
largest Chi-square value from the Wald test. It is also very 
clear that the interactions bring important improvements and 
are needed to capture fully all of the patterns in the multivari-
ate contingency table.

The final model has 60 terms in the fixed part (represent-
ing Vote by Class + Vote by Age + Vote by Sex) that captures 
much of the variation and is a clear improvement on simpler 
models. The modelled fixed-part results are shown graphi-
cally (without CIs for clarity) in Figures 3 to 5; all three 
graphs have the same vertical scale so that the size of effects 
can be readily appreciated.

Figure 3 shows the estimated vote rate for each party in 
terms of the modelled rate for the educational classes when 
age and sex are kept constant at their average values. Three 
clear separate patterns stand out, each involving two of the 
six outcomes. Regarding both voting for either the Liberal 
Democrats or the Greens, there is a strong upward trend: 
holding age and sex constant, the likelihood of voters choos-
ing one of those two parties increases according to their qual-
ifications. Running in the opposite direction, the likelihood 
of somebody either voting UKIP or abstaining falls as quali-
fication levels increase. Finally, for most qualification levels, 
voting either Conservative or Labour is invariant, with ratios 
close to 1.0; only among those with no qualifications is there 
any marked difference – they are more likely to vote Labour 
than Conservative.

Figure 4 shows the differences in average rates by age 
group, holding sex and qualification levels constant. Here, 
the dominant pattern is the decline – from rates of c.2.0 
among those aged 18–25 to 0.56 for those aged over 65 – in 
the likelihood of not voting and also of voting for the Green 
party: the young were much more likely than expected to 
vote Green and also to abstain, with the inverse for the oldest 
age group. The likelihood of voting for both the Conservatives 
and UKIP increased with age; voting Labour declined among 
older people – once age and qualifications had been taken 
into account. Finally, Figure 5 shows that – compared to 
variations by age and qualifications – there were smaller dif-
ferences between males and females in their propensity to 
vote for one of the parties, or to abstain. Males were less 
likely than females either to support two of the parties 
(Labour and Green) or to abstain; they were slightly more 
likely to vote either Conservative or Liberal Democrat and 
– by far the clearest difference shown – much more likely to 
vote UKIP.

By fitting these hybrid models, therefore, in which two of 
the three explanatory variables are held constant to display 
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the average differences in the third, we have clarified the 
main patterns in voting by age, sex and class identified by the 
modelled rates. Inspection of the plotted residuals from this 
final model – not shown here – found that unaccounted dif-
ferences were small and identified no other systematic regu-
larities that might be indicative of other relationships that 
could be captured by further interactions in the fixed part. 
Indeed, the residual variance of the most complex supported 
model is only some 3% of the original variance.

Conclusion

This article has introduced an innovative modelling proce-
dure for investigating differences in rates across all of the 

cells in a multivariate contingency table. Whereas standard 
procedures for analysing such tables – binomial and multino-
mial logistic regression – model the ratios of ratios, produc-
ing coefficients that are not directly interpretable, although 
their statistical significance can be assessed, the approach 
presented here provides greater clarity in its output. It mod-
els the rates in each cell separately but as part of an overall 
distribution, giving a clear statement of whether the rate 
there differs significantly from what would be the case under 
a null model, if each cell had the same proportion of its indi-
vidual members in a particular category of the response out-
come as the entire sample. Crucially, if the evidence for 
distinctive rates is unreliable, the rates are automatically 
shrunk back to a null value of no effect – we are protected 
from over-interpretation. But at the same time, reliable rates 

Table 9. A summary of a set of models of increasing complexity in the fixed part.

Terms in fixed part Number 
of terms

DIC Between-group 
variance

Wald Chi-square Wald p-value

Constant RI model 1 2095.562 0.210 7.181 0.007
Vote 6 2086.986 0.210 21.476 0.002
Vote by Sex 12 2087.937 0.206 30.752 0.002
Vote by Class 24 2071.830 0.124 180.899 0.000
Vote by Age 36 2081.163 0.101 245.984 0.000
Vote by Sex + Vote by Class 30 2073.007 0.117 204.074 0.000
Vote by Sex + Vote by Age 42 2081.644 0.095 270.192 0.000
Vote by Age + Vote by Class 54 2002.082 0.015 1109.508 0.000
Vote by Age + Vote by Class  
+ Vote by Sex 60 1977.189 0.007 1477.601 0.000

DIC: Deviance Information Criterion; R1: Random intercept.

Figure 3. The modelled rates of voting for each of the five 
parties, or of not voting, by qualification levels, holding age and 
sex constant.

Figure 4. The modelled rates of voting for each of the five 
parties, or of not voting, by age, holding qualification levels and 
sex constant.
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for even fine-grained tables can remain distinctive and point 
us to quite nuanced and detailed findings which we would 
not otherwise uncover.

The value of this approach has been illustrated using a 
relatively large (in terms of cells) multivariate table – though 
much smaller than are implicitly used in comparable tables 
in similar studies (as in Clarke et al., 2004, 2009; Whiteley 
et al., 2013) – regarding voting choices at the 2015 British 
general election. Although not designed to make a substan-
tive contribution to British electoral studies, the results 
clearly illustrate the greater detail that the proposed approach 
provides relative to traditional procedures. It also draws 
attention to Elwert and Winship’s (2010) comment regarding 
the size of many social science surveys: that analysed here 
contained over 20,000 respondents, but many of the 288 cells 
in the four-way multivariate contingency table analysed had 
only a small number of observations. A method such as that 
used here which can compensate to some extent for that spar-
sity offers a substantial improvement over other procedures.

As emphasised at the outset of this article, much analysis 
in contemporary behavioural social science is, at best, quasi-
exploratory; it tests general hypotheses regarding relation-
ships rather than strong hypotheses regarding the direction 
and intensity of any such relationships, but – as Gelman and 
others have argued – rarely explores all of the potential rela-
tionships in such data sets because it ignores any interaction 
effects among the variables being considered. Furthermore, 
the methods generally deployed in such exploratory work – 
such as multinomial logistic regression – are limited in their 
applicability, as illustrated here, because the sparsity of val-
ues in many cells of the multi-way contingency tables typi-
cally analysed means that the full models incorporating all 

possible interaction effects cannot be fitted; and where there 
are no specific hypotheses indicating which interaction 
effects may be significant, the modelling cannot be limited to 
them alone. Hence the potential exploratory value of the 
multi-level-modelling-based approach introduced here. It is 
firmly based in Bayesian statistics, using a random-effects 
shrinkage approach, and generates modelled values for every 
cell of the multi-way table, each with its own CIs. Those 
modelled rates are readily interpretable and, as demonstrated 
in the case study deployed here, can be used to uncover dif-
ferences within as well as between groups (the latter being 
all that a standard logistic multinomial regression without 
interactions can uncover); they explore the complexity of 
variation across the internal cells of a multi-way table rather 
than concentrating attention, as is so often the case, on its 
marginal totals alone.

Gelman argued that the exploratory search for interaction 
effects – characteristic of so much behavioural social science 
– should take advantage of the power of multi-level model-
ling. This article has applied and illustrated that contention. 
Its findings suggest that the approach – applicable within 
publicly available software – has wide application in the 
exploratory analysis of large multi-way tables across those 
disciplines.10 Other means of identifying patterns within 
large multi-way contingency tables may well be suggested. 
This article has clearly set out one such novel procedure and 
identified its advantages over that widely used to analyse 
data sets such as that deployed here to illustrate the method 
and interpret its outputs. Its use allows patterns within data 
sets to be uncovered more effectively and thus offers a poten-
tial way forward in the appreciation of heterogeneity identi-
fied by a number of commentators as a substantial problem 
for quantitative social science.
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Notes

 1. The major inquiry into the Sellafield nuclear reprocessing 
plant was based on four childhood leukaemia deaths compared 
to an expected number of 0.25 if national rates applied (Jones 
and Moon, 1987).

 2. Frequentist confidence intervals apply to the data and allow an 
inference about what would happen in repeated samples; thus, you 

Figure 5. The modelled rates of voting for each of the five 
parties, or of not voting, by sex, holding qualification levels and 
age constant.
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would expect 95% of the intervals of repeated samples to include 
the population parameter. Bayesian credible intervals (CIs) are more 
natural and apply to the parameter and not the data, giving a 
95% probability that the parameter falls between the lower and 
upper values given the span of the uncertainty. Thus, Bayesian 
CIs actually can be used in a way that frequentist confidence 
intervals are, though but actually should not be, which is why 
we have appropriated the term ‘significant’ for cells which have 
good empirical support that they are distinctively high or low.

 3. For an example of a government report which ignored these 
warnings, see the discussion and re-analysis in Johnston et al. 
(2015).

 4. On the British Election Study (BES), see http://www.britishe-
lectionstudy.com/news-category/2015-general-election/

 5. The Conservative, Labour and Liberal Democrat parties con-
tested all but one of the 533 seats (the exception was that held 
by the incumbent Speaker of the House of Commons); UK 
Independence Party (UKIP) contested all 533 and the Green 
party 517.

 6. The number who reported that they did not vote (9.3% of the 
total) is much smaller than the ‘actual’ figure (33.9%), reflect-
ing both the difficulty of contacting abstainers in an Internet 
survey plus mis-reporting. It is not particularly relevant to the 
current study, which focuses on relative numbers.

 7. It may not be the case in all studies that a multinomial model 
incorporating all of the n-way interactions cannot be fitted, but 
with a large multi-way contingency table that is very likely, as 
the example here, with an n of 20,996 observations illustrates; 
many scientifically collected social surveys are much smaller 
than this.

 8. The two pairs of CIs hardly overlap, suggesting that this differ-
ence between males and females is not only substantial but is 
well supported empirically – a clear result given the relatively 
small cell sizes (18 and 25 respectively).

 9. If two models differ in their Deviance Information Criterion 
(DIC) by 10, the model with the higher DIC has virtually no 
support and can be omitted from further consideration. More 
complex models with three-way interactions did not lead to 
such an improvement in the DIC. The degrees of freedom 
consumed in the fit – the measure of model complexity – are 
estimated within the Markov Chain Monte Carlo (MCMC) 
procedure; in effect, these will be whole integer values for the 
fixed effects but will be shrunken in the model’s random part, 
as the random terms belong to a Normal distribution with an 
overall variance term.

10. A syntax for applying this method is currently being prepared; 
those interested in an immediate application should contact the 
authors.
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