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Abstract We present a hiddenMarkov model that describes
variation in an animal’s position associated with vary-
ing levels of activity in action potential spike trains of
individual place cell neurons. The model incorporates a
coarse-graining of position, which we find to be a more
parsimonious description of the system than other models.
We use a sequential Monte Carlo algorithm for Bayesian
inference of model parameters, including the state space
dimension, and we explain how to estimate position from
spike train observations (decoding). We obtain greater accu-
racy over other methods in the conditions of high temporal
resolution and small neuronal sample size. We also present
a novel, model-based approach to the study of replay: the
expression of spike train activity related to behaviour dur-
ing times of motionlessness or sleep, thought to be integral
to the consolidation of long-term memories. We demon-
strate how we can detect the time, information content and
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compression rate of replay events in simulated and real
hippocampal data recorded from rats in two different envi-
ronments, and verify the correlation between the times of
detected replay events and of sharp wave/ripples in the local
field potential.
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1 Introduction

1.1 Background and motivation

This article is concerned with the development of statis-
tical modelling techniques for multiple concurrent spike
trains recorded from behaving rats using implanted micro-
electrodes. We are interested in data sets that include other
variables, for example position in a maze, that may be
correlated with concurrent spike trains. We focus on two
applications relevant to this context: the decoding of posi-
tion information encoded in hippocampal spike trains and
the detection and analysis of spike train replay.

1.1.1 Decoding

Decoding is the task of estimating the information content
transmitted by spike trains: sequences of times of spikes,
or action potentials, recorded from individual neurons and
considered as instantaneous and identical events (Rieke
et al. 1999). Decoding has been used for the study of place
cells: pyramidal cells of the hippocampus that spike selec-
tively in response to the animal’s position O’Keefe and
Dostrovsky (1971), O’Keefe (1976). Individual cells have
been observed to encode collectively entire environments
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in this manner (“population coding” of space, Wilson and
McNaughton (1993)). With large scale, parallel microelec-
trode recordings (Buzsáki 2004) it is possible to accurately
decode the trajectory of an animal around an environment
from population activity, with increasing accuracy as more
cells are sampled (Zhang et al. 1998). In this article, posi-
tion is the variable of interest for encoding and decoding, but
these ideas can be applied more generally to other sensory
or behavioural variables.

1.1.2 Replay

Replay is the reoccurrence of population spiking activity
associated with a specific stimulus (an association made
online: when the stimulus was presented), during times of
unrelated behaviour (offline: times of sleep or motionless-
ness). The phenomenon has been most extensively studied
in the place cells of rodents, in which spike trains encod-
ing the trajectory of the animal are replayed in this manner.
The time of hippocampal replay events has been found to
correlate with the time of local field potential (LFP) events
known as sharp wave/ripples (SWR, Buzsáki et al. (1992)),
by Foster and Wilson (2006), Diba and Buzsáki (2007) and
Davidson et al. (2009) during awake restful behaviour, and
by Kudrimoti et al. (1999) during sleep.

Place cell replay has been demonstrated to occur on a
faster timescale than the encoded trajectory: 20 times faster
for cells of the hippocampus (Nádasdy et al. (1999),Lee and
Wilson (2002)) and 5 to 10 times faster for cells of the cortex
(Ji and Wilson (2006), Euston et al. (2007)). In the hip-
pocampus this compression of spiking activity may be due
to the burst firing of cells induced by SWR events (Csicsvari
et al. (1999)), or the coordination of place cells by the LFP
theta rhythm (O’Keefe and Recce (1993)), but it is not clear
what is responsible for the effect in the cortex (Buhry et al.
(2011)).

Although replay, and in particular preplay - the expres-
sion of offline behavioural sequences prior to the behaviour
(Diba and Buzsáki (2007), Dragoi and Tonegawa (2011))
- have been suggested to play a role in active cognitive
processes (Gupta et al. (2010), Pfeiffer and Foster (2013)),
most of the literature concerned with the role of replay
has focussed on the consolidation hypothesis (O’Neill et al.
(2010), Carr et al. (2011)): that experiences are encoded
online by cell assemblies in the hippocampus, then trans-
mitted to the cortex for long-term storage during offline
replay. This is supported by observations that hippocam-
pal SWR coincide with high frequency oscillations in the
cortex (Siapas and Wilson (1998), Mölle et al. (2006)), by
observations of coordinated activation of cortical cells dur-
ing hippocampal replay (Ji and Wilson (2006), Euston et al.
(2007), Peyrache et al. (2009)), and by slowing of learning
by blocking SWRs (Girardeau et al. (2009), Ego-Stengel

and Wilson (2010)). Furthermore, correlated offline spik-
ing patterns between pairs of cells within and between the
hippocampus and cortex has been observed by Qin et al.
(1360) and Sutherland and McNaughton (2000). However,
it remains to be demonstrated whether the same encoded
information is being replayed within the two regions during
replay events, as implied by the consolidation hypothesis.

1.2 Current approaches to decoding and replay
detection

A simple statistical model used for decoding was described
by Zhang et al. (1998) and compared favourably with non-
parametric methods. This model, which we will refer to as
the Bayesian decoder (BD), has been influential in spike
train analysis in general (Chen (2013)) and replay analy-
sis in particular (e.g. in Davidson et al. (2009), Karlsson
and Frank (2009), Dragoi and Tonegawa (2011), Pfeiffer
and Foster (2013), and Wikenheiser and Redish (2013)). It
consists of a parametric model for the number of spikes
in consecutive time intervals, with position encoded as the
expected spike count in each interval. Parameter values are
estimated from a data set of observed spike trains and posi-
tion using the method of maximum likelihood, and decoding
is achieved by positing a prior distribution for position
and using Bayes’ theorem to derive the posterior distribu-
tion over position given spike train observations. The BD
approach to decoding is used as a performance benchmark
in Section 3.2.

More complex models have attempted to account for the
strong dependence through time of processes such as the tra-
jectory of an animal and its concurrent spike trains in order
to achieve greater accuracy of representation and decod-
ing. In the state space model of Brown et al. (1998), and in
the hidden Markov model (HMM) of Johnson and Redish
(2007), spike counts are conditionally independent observa-
tions given the position, which constitutes a latent process.
That is, a Markovian dependence structure is assumed for
the position process, characterised by a transition matrix and
initial state distribution. The spike train model is identical
to that of BD. We refer to this model as the latent position
(LP) hidden Markov model.

In the application of the HMM presented in Johnson and
Redish (2007), the state space is determined by the set of
positions explored, which may constitute far greater model
complexity than is sufficient to characterise the spike train
observations, thus incurring a greater computational burden
and requiring more data in order to estimate the extra param-
eters. In Chen et al. (2012), an HMM is employed in which
the state space is not identified with the set of positions
(but is interpreted as a “virtual environment”). Parameters
of the Markov chain are estimated from spike train obser-
vations only, rather than direct observations of the hidden
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process as in Johnson and Redish (2007). The number of
states required to sufficiently characterise observations is
determined through a process of model selection. Thus,
Chen et al. (2012) are able to elicit directly from a spike
train ensemble the distinct patterns of activity in place cells
that may encode position, without needing to prespecify the
receptive fields of these cells (the place fields, as would be
necessary in a nonparametric approach), and to infer from
the transition matrix the “topology” of the spatial represen-
tation. More recently, Linderman et al. (2016), have used
Dirichlet process techniques to handle the unknown number
of states in a hidden Markov model.

Replay has previously been detected as the improved cor-
relation of cell pair firing rates post-behaviour by Pavlides
and Winson (1989), Wilson and McNaughton (1994), and
Skaggs and McNaughton (1996), and by using pattern-
matching techniques in spike trains by Nádasdy et al. (1999)
and Louie and Wilson (2001). More recently, statistical
model-based decoding techniques such as BD have allowed
researchers to begin to ask questions about replay directly in
terms of the observable that is supposed to be encoded rather
than purely as a spike train phenomenon: whether replay is
preferentially of trajectories of a certain length, complexity
or location, for example.

As well as specifying criteria for replay detection, other
authors have found it necessary to guard against mistakenly
detecting replay by chance (a type I error in the language
of hypothesis testing). To this end, Davidson et al. (2009),
Dragoi and Tonegawa (2011) and Pfeiffer and Foster (2013)
used informal hypothesis testing to demonstrate positive
discovery at a nominated statistical significance level. These
tests are informal since the distribution of their test statis-
tic under the null hypothesis (of no replay) is unknown,
and hence it is not clear how to calculate a p-value. This
is resolved in these studies by the use of a permutation test
(or “Exact test”, Good (2005)), in which the unknown dis-
tribution is arrived at simply by evaluating the test statistic
under all possible permutations of the test data. Since this
is infeasible for candidate replay events of nontrivial length,
a Monte Carlo version is typically used, in which a random
sample of the test statistic is obtained via shuffling proce-
dures on the test data. This approach comes with its own
uncertainty: the “Monte Carlo p-value” is an approximate
p-value when the sample taken is not exhaustive.

1.3 The contributions of this article

Model relating place cell spike trains to position We
present a new statistical model, the observed position (OP)
model, that offers improved performance for decoding and
for the study of replay over the BD and LP models. Like
Chen et al. (2012) we posit an HMM structure with an
unobserved latent process to characterise the variation in

observed processes. The difference between our model and
that of Chen et al. (2012) is that we represent position as an
observation process in parallel to the spike trains, allowing
us to perform decoding when position data is missing, as in
BD and LP.

Moreover, a particular innovative feature of our model
is that it also uses latent state variables to model the evo-
lution of position, effectively ‘coarse-graining’ physical
locations and corresponding parameters of spiking activity.
The first advantage of this approach is interpretational: in
our model latent variables serve to associate clusters of sta-
tistically similar spiking activity with regions of the physical
environment. The second advantage is that the number of
state-variables does not necessarily scale up with spatial res-
olution of position measurements, but instead is treated as
an unknown and inferred from the data. Thirdly, our model
has a richer dependence structure than the BD and LP mod-
els, since upon marginalizing over the latent state variables
in the OP model, the joint process of positions and spik-
ing activity is non-Markovian, as too is the marginal process
of positions. This compares to independence and Marko-
vian assumptions in the BD and LP models, respectively. In
numerical experiments we find the OP model can achieve
better performance in decoding than the BD and LP models
when we use a high time resolution and when we have spike
trains from a small number of cells.

A Bayesian inference algorithm for parameters and
model size We make use of a sequential Monte Carlo
(SMC) algorithm to perform Bayesian parameter inference,
with a state space transformation suggested by Chopin
(2007) to make the HMM identifiable. This algorithm
makes a numerical approximation (achieving greater accu-
racy with larger SMC sample size) to the exact posterior
distribution over parameters. This is in contrast to the the
variational Bayes method used by Chen et al. (2012), which
only targets approximations to the exact posterior distri-
butions, induced by independence assumptions, and hence
returns approximate parameter estimates. In addition to esti-
mation of parameters, our algorithm also makes simultaneous
inference for the number of latent states of the model.

New methods for the analysis of replay We introduce a
method for detecting replay of specific trajectories on dif-
ferent time scales, building directly on our model based
decoding framework. We are able to compare the times of
replay events for particular trajectories that may vary in
spatial characteristics, duration and compression in time rel-
ative to behaviour. These properties of our methods make
them useful in particular for exploring evidence that the
information content of replay is coordinated between dif-
ferent neuronal populations, such as the hippocampus and
neocortex.
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In studies of replay such as Davidson et al. (2009),
a model is used to decode a trajectory in the sense of
computing a point estimate, which is then tested against cri-
teria that constitute an operational definition of replay. Our
advancement is to recognise in the model a description of
all trajectories that might be encoded captured through the
posterior distribution over positions given spike trains. We
thus make full use of the information contained in the pos-
terior distribution rather than only taking from it a point
estimate. Moreover we do not need to resort to ad-hoc tests
of statistical significance or the kind of shuffling procedures
mentioned above nor do we need to accept any approximate
p-values of uncertain accuracy.

1.4 Structure of the article

Section 2 describes our data (Section 2.1) and our model
(Sections 2.2 and 2.3), explains how we perform inference
for model parameters, hidden states, and missing position
data (decoding) (Section 2.4), and explains the analysis of
replay within our model, including inference for the time
and content of replay (Section 2.5). Also is explained how
we detect SWR events and demonstrate correlation with
replay events using the cross correlogram (Section 2.6) and
the simulation of data (Section 2.7). Section 3 presents
results from applying our model to simulated and real
(experiment-generated) data. Model fitting results which
demonstrate the model’s characterisation of spike train and
position data are presented (Section 3.1), also the results of
decoding position comparing our model against the BD and
LP alternatives (Section 3.2), and our analysis of replay in
simulated and real sleep data (Section 3.3). These results are
discussed, and our methods appraised, in Section 4.

2 Methods

2.1 Description of the experimental data

Our experimental data sets consist of simultaneous record-
ings of a rat’s position and hippocampal spike trains.
Two environments were used: a straight linear track and
a double-ended T-maze (see Jones and Wilson (2005) for
details). In each of these, a rat performed repeated consec-
utive trials of a reinforced learning task. In the linear track
this consists in running from one end to the other, where
food reward is received. In the T-maze the rat runs between
rest sites in the terminal ends of corridors on opposite sides
of the maze. Food reward is received at these sites, but on
one side of the maze only when the correct corridor away
from the “T” junction is chosen, reliably determined by
recent experience.

In both experimental setups, two epochs of different
behavioural conditions were used: a RUN epoch, in which
the animal performed the learning task in the environment,
immediately followed by a REST epoch, in which the ani-
mal remained in a separate dark box, in a state of quiescence
likely including sleep. Spike trains were recorded from up
to 19 hippocampal place cells throughout both epochs, and
position in the environment was recorded using an infrared
camera. Thus, for each environment we have a RUN data
set (of spike trains and position) which we use for model
parameter inference and for decoding analysis, and a REST
data set (of spike trains only) which we use for replay
analysis.

2.2 Modelling

This section describes the OP model: a parametric model for
discretised spike trains and position observations related via
a hidden discrete time Markov chain. The model structure
and parameterisation are explained in Sections 2.2.2 and
2.2.3. Section 2.2.4 addresses the identifiability of model
parameters.

2.2.1 Data discretisation

Our spike train data consists of observations from C distinct
point processes in continuous time. We use a time interval
width δt seconds to partition this data into T time bins, and
we let Yt,n for 1 ≤ n ≤ C and 1 ≤ t ≤ T represent the
number of times neuron n spikes in the t th time bin. We
denote the random vector of spike counts from each neuron
at time t as Yt , and we denote a time vector of variables
between time bins t1 and t2 inclusive as Yt1:t2 . We use the
lowercase, as in yt1:t2 , to represent observed spike counts.

We use Xt , for 1 ≤ t ≤ T , to denote the random dis-
crete position of the animal in time bin t . Our position data
consists of a sequence of two dimensional pixel coordinates
recorded at a frequency of 25Hz. This will exceed any fre-
quency implied by δt we use; therefore we can easily adapt
these data to our discrete time scale of T time bins by taking
the first observation in each bin.

We discretise space so that each Xt is a finite random
variable. The raw two dimensional pixel coordinates are par-
titioned into a square grid; we then mark as inaccessible
all grid squares covering regions outside of the maze. The
remaining squares we label arbitrarily from 1 to M , forming
the domain of Xt .

2.2.2 HMM to relate spike trains to position

We posit a discrete timeMarkov chain with κ states underly-
ing the observation processes, denoted S0:T , with transition
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matrix P = (Pi,j

)
where Pi,j := Pr (St = j | St−1 = i) for

1 ≤ i, j ≤ κ and for all 1 ≤ t ≤ T , and initial state distribu-
tion π = (πi) where πi := Pr (S0 = i) for 1 ≤ i ≤ κ . The
dependence between observation variables and the Markov
chain is depicted in the directed acyclic graph (DAG) of
Fig. 1.

We assume Yt,n and Xt are conditionally independent
of Y1:t−1,n,Yt+1:T ,n, X1:t−1, Xt+1:T , S0:t−1 and St+1:T for
each t , given St , so the joint probability of all model
variables factorises as

p (y1:T , x1:T , s0:T | θ, κ) = πs0

T∏

t=1

p (yt , xt | st , θ, κ) Pst−1,st ,

(1)

in which θ represents the set of all model parameters. We
further assume the conditional independence of Y1:T ,n for
spike trains 1 ≤ n ≤ C and positions X1:T given S1:T , so
the likelihood factorises as

p (yt , xt | st , θ, κ) = p (xt | st , θ, κ)

C∏

n=1

p
(
yt,n | st , θ, κ

)
.

(2)

We note that under these model assumptions, upon marginal-
izing over the state-variables in (1), the bi-variate process
of positions and spike-counts, (X1,Y1), (X2,Y2), . . . is
non-Markovian.

2.2.3 Parametric observation models

Spike trains We model our discrete spike trains Y1:T ,n as
Poisson random variables with piecewise constant means
and with jumps between means on changes of state of the
Markov chain. That is, we posit κ distinct Poisson rates for
each spike train, denoted λi,n for 1 ≤ i ≤ κ and 1 ≤ n ≤ C.
Thus Yt,n | St = s ∼ Poi

(
δtλs,n

)
, and

p
(
Yt,n = yt,n | St = i, θ, κ

) = e−δtλi,n

(
δtλi,n

)yt,n

yt,n! . (3)

Fig. 1 DAG for the LP model, explained in Section 2.2

Position We model Xt using κ distinct categorical distribu-
tions, labelled by St , over the set of outcomes {1, 2, . . . ,M}
that jump in parallel with the spike train processes. Out-
comes of the ith distribution are explained by an underlying
two dimensional Gaussian with mean ξi and covariance
matrixΣi . These are the only free parameters of the position
model.

This is achieved by mapping discrete positions 1 to M

to the Euclidean plane using a transformation that preserves
the topology of the maze, as follows. We define a dis-
tance function d̄ : {1, 2, . . . ,M} × {1, 2, . . . , M} → R

that returns the distance between two positions when access
from one to the other is constrained to traversable maze
regions (i.e. along corridors). This is achieved by measuring
the distance cumulatively through adjacent positions. We
use the transformation fx : {1, 2, . . . , M} → R

2 to map dis-
crete positions x′ to vectors in R2 of length d̄(x, x′); details
are given in Appendix A. The categorical probabilities for
our discrete position model are then

p (Xt = x | St = i, ξi , Σi) = q
(
fξi (x) ; 0, Σi

)

∑M
x′=1 q

(
fξi (x′) ; 0, Σi

) ,

(4)

where

q
(
fξi (x) ; 0, Σi

) = exp
{
fξi (x)ᵀ Σ−1

i fξi (x)
}

, (5)

the unnormalised probability density of the two dimensional
Gaussian distribution with mean 0 and covariance matrixΣi

evaluated at fξi (x).
The purpose of this general approach is that we obtain a

position model that satisfies our intuition for the accessibil-
ity of places from each other in non-convex environments
such as a T-maze. In particular the distribution overXt given
a particular state should be unimodal, having monotonically
decreasing probability with distance from the modal posi-
tion, since positions of similar probability should be local.
This is violated in a concave environment when using the
Euclidean distance in place of d.

By thus constraining the categorical outcome probabili-
ties, we reduce the number of free parameters from M − 1
for each state to simply a modal position ξi and a covariance
matrix Σi for each state. Therefore, unlike in the LP model,
in OP we are free to choose any spatial resolution M (up to
the resolution of raw observations) without causing under-
sampling problems or high computational cost due to the
effect on the state space. No free parameters are introduced
by increasing the spatial resolution.
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2.2.4 Augmented Markov chain for model identifiability

The model described above is not identifiable because there
are subsets of parameters that are exchangeable in prior dis-
tribution and which under arbitrary permutations of the state
label leave the likelihood invariant (Scott 2002). This is the
case for {λ1,n, λ2,n, . . . , λκ,n} for each n and for {ξ1, ξ2, . . . ,
ξκ }. We make use of a reformulation of the model suggested
by Chopin (2007) to make the model identifiable, and which
also readily accommodates inference for κ .

Since state labels are arbitrary, we can relabel states in
order of their appearance in the Markov chain S0:T without
affecting the model structure. This ordering of states in rela-
tion to the data means that permutations of exchangeable
parameters will not leave the likelihood invariant. The rela-
belling is realised via the parameterisation of the Markov
chain with an extension to its state space. For sequential
relabelling, s0 = 1, so we must have π1 = 1 and πi = 0
for 2 ≤ i ≤ κ . We must then keep track of the number of
distinct states emitted up to any time step t . That is, if we
have St = i ≤ K < κ , we must impose the restriction that
St+1 ≤ K + 1, with equality if and only if St+1 has not
been emitted before time t+1. Thus, we let random variable
Kt , taking values in {1, 2, . . . , κ}, be the number of distinct
states emitted up to and including time t .

We can now define the augmented process S̃0:T consti-
tuted by the sequence of random variables S̃t ≡ (St , Kt ),
which have κ̃ = κ(κ+1)

2 distinct outcomes (since values are
constrained by St ≤ Kt ≤ κ). This process is a Markov
chain with transition matrix P̃ = (P̃i,j

)
for 1 ≤ i, j ≤ κ̃ .

If we let i ≡ (s′, k′), j ≡ (s′′, k′′), with s′, s′′, k′, k′′ ∈
{1, 2, . . . , κ}, we have

P̃i,j =
⎧
⎨

⎩

Ps′,s′′ if s′, s′′ ≤ k′′ = k′ ≤ κ,∑κ
s=k′+1 Ps′,s if s′′ = k′′ = k′ + 1 ≤ κ,

0 else.
(6)

The first case of Eq. (6) corresponds to a transition between
two states previously emitted. The second to emitting a new
state: since states are mutually exclusive outcomes of St the
probability of transitioning from some state s′ to any of the
previously unseen states is the sum of the transition proba-
bilities from s′ to each unseen state. The last case covers the
violations of the above constraints.

Observations Xt and Yt are considered conditionally
independent of Kt given St for 1 ≤ t ≤ T , so this reparam-
eterisation does not alter the dependence structure between
state and observation variables of Fig. 1.

2.3 Priors and full conditionals

This section describes prior distributions and full condi-
tional distributions for the model parameters. These are
required for the posterior sampling of parameters as part of

the SMC algorithm for Bayesian parameter inference and
model selection, explained in Appendix C.

We assume a hierarchical model structure with the fol-
lowing factorisation for the prior of θ and κ:

p (θ, κ | φ) = p (θ | κ, φ) p (κ | φ) , (7)

in which φ is the set of all hyperparameters. This allows us
to efficiently sample (θ, κ) by first sampling κ . This task
is facilitated by assuming that model parameters in θ , with
P considered as κ row vectors Pi,·, are conditionally inde-
pendent of each other given κ and φ. This gives us the
factorisation

p (θ | κ, φ) = p (π | κ, φ)

×
κ∏

i=1

p
(
Pi,· |κ, φ

)
p (ξi |κ, φ) p (Σi | κ, φ)

×
C∏

n=1

p
(
λi,n | κ, φ

)
, (8)

and thus we may sample each parameter from its respective
marginal prior independently, conditional on a value for κ .
For each marginal prior we use a distribution conjugate to
the relevant likelihood function, to facilitate sampling using
standard distributions, and we fix all hyperparameters with
constant values that give rise to uninformative priors.

For κ , we assume a discrete uniform prior with parame-
ter κ̄ ∈ φ, a positive integer. That is, κ can take on values
a priori at random between 1 and κ̄ . This expresses a lack
of prior information regarding the model complexity, up to
an upper limit. We must choose κ̄ to be great enough that
all model sizes that may be appropriate to the data are pos-
sible, but we are subject to increasing computational costs
with larger κ̄ . Appropriate values can be arrived at by initial
exploratory runs of the algorithm in Appendix C; besides
this upper limit, we find in practise that the form of the prior
(uniform) has little effect on the posterior.

Priors for each parameter in θ are described in the remain-
der of this section along with a discussion of the corre-
sponding full conditionals, p (ϑ | x1:t , y1:t , s0:t , θ \ ϑ, κ, φ)

for some variable ϑ ∈ θ , restricted to time t . Note we are not
required to sample parameters of the initial state distribution
π because the initial state is fixed at 1 (cf. Section 2.2.4).

Firing rates For the mean firing rates λi,n we take a
Gamma prior Gam(λi,n; α, β), with shape parameter α and
rate parameter β, which is the conjugate prior for these
parameters. Values of α = 1

2 , β = 0 correspond to the
uninformative Jeffreys prior (Gelman et al. (2003), p69).
This prior is improper and cannot be sampled from, so we
use β = 0.01 for a practical alternative that is largely
uninformative.
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The full conditional distribution for λi,n at time step t is
Gam(λi,n; α∗, β∗) with

α∗ =
∑

u≤t :su=i

yt,n + α, (9)

β∗ = δtci,t + β, (10)

where ci,t := ∑t
u=1 •{su = i}; see Appendix B.1 for

derivation.

Position model modes For the position hyperparameter ξi

we use as prior the discrete uniform distribution over posi-
tions 1 to M . Note that we could consider ξi as the mean of
a Gaussian distribution, for which a Gaussian distribution
is the conjugate prior, but for sampling from an uninforma-
tive prior with our discretisation of positions the uniform
distribution is equivalent and simpler.

The full conditional distribution has the same form as the
likelihood, since

p (ξi | x1:t , y1:t , s0:t , θ, κ, φ) ∝ p (x1:t | s0:t , θ, κ, ) p (ξi | φ, κ)

∝ p (x1:t | s0:t , θ, κ, )

∝
∏

u≤t :su=i

p (xu | i, ξi ,Σi) , (11)

and furthermore

p (xu | i, ξi , Σi) ∝ q
(
fξi (xu) ; 0, Σi

)
(12)

by Eq. (4), so the posterior is N
(
fξ∗ (ξi) ; 0, Σ∗) with

ξ∗ = x̄i ∈ arg min
x∈{1,2,...,M}

⎧
⎨

⎩
c−1
i,t

∑

u≤t :su=i

fx (xu)

⎫
⎬

⎭
, (13)

Σ∗ = c−1
i,t Σi, (14)

which is derived in Appendix B.2. Via this construction we
can sample ξi from the categorical distribution with proba-
bilities obtained from N

(
fξ∗ (ξi) ; 0, Σ∗) and normalised as

in Eq. (4).

Position model covariance matrices We use the conjugate
Inverse-Wishart distribution as prior forΣi , with parameters
Ψ and δ. This prior expresses our conception of how states
characterise variability in size and shape of the regions rep-
resented in our model. These regions can be likened to
place fields but for a population of place cells: they emerge
from the collective activity of multiple cells. This interpre-
tation may guide our parameterisation of this prior, since
it is difficult to specify an uninformative prior over covari-
ance matrices. The hyperparameter Ψ is the 2 × 2 positive

definite matrix of sums of squared deviations of positions
transformed by fξi

, a priori, and δ is the degrees of free-
dom of the data from which Ψ was derived. Thus, Ψ can
be set to encode our indifference to orientation or skewness
of regions represented by each state by putting Ψ1,1 = Ψ2,2

and Ψ1,2 = Ψ2,1 = 0. This leaves Ψ1,1 free, to be set
according to our prior conception of how large these regions
typically are. The influence of this hyperparameter on the
prior is weighted by δ; therefore a relatively uninformative
prior is achieved by setting δ small (relative to the number
of time bins in the data set). The full conditional for Σi , also
Inverse-Wishart by the conjugate relationship to the Gaus-
sian likelihood with known mean, has parameters (Gelman
et al. (2003), p87)

Ψ ∗ = Ψ + SSi,t (ξi) (15)

δ∗ = δ + ci,t , (16)

where SSi,t (ξi) is the 2 × 2 matrix of sums of squared
deviations around ξi in the transformed space,

SSi,t (ξi) :=
∑

u≤t :su=i

fξi (xu)
ᵀ fξi (xu) . (17)

Note that in the full conditionals for ξi or Σi , the other
parameter is considered known. In sampling procedures, we
therefore either sample ξi first conditional upon the value of
Σi previously sampled, or vice versa.

Rows of the transition matrix We use the Dirichlet prior
for rows of P; that is, Dir(Pi,·; ω). For an uninformative
prior, we use a vector of κ ones for ω.

The structure we imposed on P (cf. Section 2.2.4) means
the full conditional for a row Pi,· is a Generalised Dirichlet
distribution rather than a standard Dirichlet distribution. At
time step t this is derived as

p
(
Pi,· | x1:t , y1:t , s̃0:t , θ, κ, φ

)

∝ p (s1:t | k1:t , ω) p
(
Pi,· | ω, κ

)

∝
∏

u≤t :su−1=i,
ku=ku−1

p
(
Su = su | Su−1 = i,Pi,·

)

×
∏

u≤t :su−1=i,
ku=ku−1+1

p
(
Su = su | Su−1 = i,Pi,·

)

×p
(
Pi,· | ω, κ

)
. (18)

Note we can ignore s0 because π is constant. The fac-
torisation of p (s1:t | k1:t , ω) in Eq. (18) follows from the
Markov property; the first factor consists of transition prob-
abilities between states previously emitted by the Markov
chain, the second consists of transition probabilities to new
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states. Recall from Eq. (6) that these are treated differently.
Continuing Eq. (18) we have

p
(
Pi,· | x1:t , y1:t , s̃0:t , θ, κ, φ

)

∝
κ∏

j=1

P
Ai,j (t)−Bi,j (t)

i,j

κ∏

j=1

⎛

⎝
κ∑

l=j+1

Pi,l

⎞

⎠

Bi,j (t)

p
(
Pi,· | ω, κ

)

=
κ∏

j=1

P
Ai,j (t)−Bi,j (t)+ωj −1
i,j

⎛

⎝
κ∑

l=j+1

Pi,l

⎞

⎠

Bi,j (t)

, (19)

where A(t) is the matrix of transition counts at time step t ,

Ai,j (t) :=
t∑

u=1

1{su = j, su−1 = i}, (20)

and B(t) is the matrix of first arrival indicator variables at
time step t ,

Bi,j (t) :=
{
1, the first j in s1:t immediately follows i,
0, else,

(21)

for 1 ≤ i, j ≤ κ . The posterior probabilities given by
Eq. (19) correspond to a Generalised Dirichlet distribution
with parameters ζi = Ai,·(t) − Bi,·(t) + ω and γi = Bi,·(t)
(Wong 1998). We can use the algorithm of Wong (1998) to
efficiently sample from this posterior; details are provided
in Appendix B.3.

2.4 Inference with our model

There are four kinds of inference we are interested in and
can perform with our model. The first is inference for model
parameters θ . Details of the Sequential Monte Carlo algo-
rithm we use to estimate posterior distributions are given in
Appendix C. Section 2.4.1 explains how we use the poste-
rior expectation as point estimate for θ . Secondly, for states
S0:T : this is explained in Section 2.4.2, in which is also also
explained how we arrive at an estimate for κ . Thirdly, for
position variables X1:T from spike train observations Y1:T :
decoding position, explained in Section 2.4.3. The fourth
kind of inference is for the occurrence of replay in REST
data. The analysis of replay is treated in Section 2.5.

2.4.1 Parameter estimation

The algorithm of Appendix C results in a sample approxi-
mation to p (θ, κ | x1:T , y1:T , φ), consisting of H samples
{θh, κh}Hh=1 and associated weights {wh}Hh=1. We make a

point estimate θ̂ of θ using the sample posterior mean. For
a particular parameter ϑi associated with state i, we have

ϑ̂i =
∑

h:κh≥i whϑ
h
i∑

h:κh≥i wh

. (22)

This achieves a marginalisation of κ .

2.4.2 State estimation

We use the smoothed posterior distributions over St , Kt to
estimate the state variable at each time step and the number
of states κ . Inference for κ could be performed via Eq. (48)
with an estimate κ̂ taken as the mode; however, as argued
in Chopin (2007) this is an estimate of how many states
would be observed eventually if we took enough observa-
tions and one should use the posterior distribution of KT to
estimate how many distinct states were emitted during the
T time steps. Thus, after fixing θ to our estimates θ̂ , we use
the forward-backward algorithm to compute the smoothed
posterior distributions

p
(
St = i, Kt = k | x1:T , y1:T , θ̂

)
, (23)

for all (i, k) ∈ {1, 2, . . . , κ}2 and for all t ∈ {1, 2, . . . , T }.
We obtain the marginal distribution over Kt by summing
Eq. (23) over all κ̄ values of St , and vice versa for St .
The maximum a posteriori (MAP) estimate at time step t

is the value that maximises the marginal posterior distribu-
tion. We take the MAP estimate of KT for κ̂ , our estimate
of the number of states required to characterise the data.
We can alternatively use the Viterbi algorithm, described
in Scott (2002), which returns the sequence s̃0:T of great-
est posterior probability, i.e. the sequence that maximises

p
(
s̃0:T | x1:T , y1:T , θ̂

)
.

Other methods to model size estimation have been used
in a similar context, e.g. using the deviance information
criterion (DIC) to compare models, or the DIC within a non-
parametric extension of the HMM framework (Chen et al.
2012, 2014). We have no need for this, since the augmented
states used to make the model identifiable already permit
model size inference in the manner explained above.

2.4.3 Position decoding

We can also use our model to estimate (decode) position at
any time from spike train observations. We can compute the

position posterior distributions, p
(
xt | y1:T , θ̂

)
, and hence

obtain the MAP point estimate, as used by other authors in
studies of replay such as Davidson et al. (2009). To do this
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we take advantage of the conditional independence of Xt

from Y1:T given St , which permits

p
(
Xt = x, St = i | y1:T , θ̂

)

= p
(
St = i | y1:T , θ̂

)
p
(
Xt = x | St = i, ξ̂i , Σ̂i

)
.

(24)

On the right hand side of Eq. (24) is the marginal smooth-
ing posterior at time step t using spike train observations
only, and the conditional probability over positions given
state, using the fitted model parameters. We then obtain the
position posterior distribution by marginalising St .

We can instead compute the trajectory x̂1:T of greatest

posterior probability, i.e. that maximises p
(
x1:T | y1:T , θ̂

)
.

For this we use a modified version of the Viterbi algorithm,
explained in Appendix D.

2.5 Model-based replay detection

In an analysis of sleep replay we wish to make three kinds
of inference: the time of replay occurring, the information
content being replayed, and the rate of time compression
relative to the behavioural timescale. The methods described
in this section allow us to achieve each of these.

Our idea is to use the posterior distribution over trajec-
tories given spike train observations as a representation of
what information is encoded at different times. We identify
replay as occurring at a particular time when the poste-
rior probability of a certain trajectory obtains a maximum
above some threshold (see Section 2.5.1). For inference
regarding the information content being replayed, we fix
the trajectories to be used for this posterior evaluation. We
call these template trajectories (Section 2.5.2). For the rate
of temporal compression, we search for replay in tempo-
rally compressed data at many different compression rates
(Section 2.5.3).

Spike train data for replay analysis may be distinct from
the training data (for example when using a REST epoch for
replay analysis) and therefore constitute dynamics and cor-
relations that may not be described accurately by the model
with θ = θ̂ estimated from RUN.Wemust therefore demon-
strate predictive power for our model with parameterisation
θ̂ on the data yREST1:T , for which we use a likelihood-based
method, explained in Section 2.5.4.

2.5.1 Replay score

We define the replay score, Ω , for template trajectory x1:a
at time t , as the ratio of likelihoods

Ω (x1:a, t; y1:T , θ) := p (Xt = x1, . . . , Xt+a−1 = xa | y1:T , θ)

p (Xt = x1, . . . , Xt+a−1 = xa | θ)
.

(25)

An algorithm for computing the numerator of Eq. (25)
is described in Appendix E, and for the denominator in
Appendix F. Then we say that template x1:a is replayed at
time t rep, on the discrete timescale, if

Ω = Ω
(
x1:a, trep; yREST1:T , θ̂

)
> Ω∗ (26)

and

Ω > max
{
Ω
(
x1:a, trep − 1; yREST1:T , θ̂

)
,

Ω
(
x1:a, trep + 1; yREST1:T , θ̂

)}
, (27)

for some threshold Ω∗, where θ̂ are the model parame-
ters estimated from RUN. Since Eq. (25) has the form of
a model likelihood ratio between the model for trajectories
conditional on spike train observations and the model for
trajectories marginal of spike trains, in our applications we
use for Ω∗ values suggested by Kass and Raftery (1995)
for likelihood ratios in Bayesian model comparison. Those
authors provide useful interpretations for this ratio, in par-
ticular that Ω∗ = 20 is the minimum for “strong” evidence
and Ω∗ = 150 for “very strong” evidence.

2.5.2 Templates

We describe a collection of trajectories of the form x1:a to
use in Eq. (25). For the results presented in Section 3.3
we use segments of the RUN trajectory through particular
regions of the environment; for example around a corner or
into a rest site (on the T-maze). We chose segments run-
ning in both directions, i.e. towards and away from the
centre of the environment. Examples of how these template
trajectories might look are given in Fig. 2.

a

b

Fig. 2 Top-down outline of the two environments used in RUN data
(not to scale). Blue arrows represent example template trajectories
used for replay detection. a linear track. b T-maze
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2.5.3 Time compression

By choosing templates that represent trajectories at uncom-
pressed (behavioural) speeds, we are able to use our replay
detection method for studying replay on a rapid (com-
pressed) time scale relative to the behavioural time scale by
adjusting the time discretisation bin width used for the anal-
ysis data. That is, for the detection of replay of a template
x1:a at compression rate c, we compute Ω using Eq. (25) on
compressed spike train data y1:cT obtained by re-binning the
raw spike train data, using the procedure of Section 2.2.1,
with bin width δt = δt/c.

2.5.4 Assessing model fit on analysis data

In order to justify our use of θ̂ in Eq. (25), i.e. our model
fitted to a RUN data set being used for replay detection on
a REST data set, we make an assessment of model fit using
the data likelihood (Gelman et al. 2003), p

(
yREST1:T | θ, κ

)
. In

particular we use the Bayesian information criterion (BIC,
Schwarz 1978)

BIC = −2 logp
(
yREST1:T | θ, κ

)
+ N log T , (28)

where N is the number of free parameters in the model
(N = κ̂

(
κ̂ + C + 3

)
for OP). A lower BIC implies a bet-

ter fit to the data, and includes a penalty for larger models.
We compute the BIC for various parameterisations of the
model: our estimates obtained from training (RUN) data, θ̂ ,
and several alternatives chosen as benchmarks for particular
aspects of model fit. Firstly, the model fitted to the anal-
ysis data itself, i.e. θ is estimated from REST spike train
data using the procedure of Appendix C, ignoring the posi-
tion model. We expect the BIC for θ̂ estimated from RUN
to be greater than this alternative, but if it is close rela-
tive to an inferior benchmark we will have evidence that θ̂

estimated from RUN is well fit to REST. Secondly, as an
inferior benchmark, we compute the BIC for a sample of θ

drawn from the prior (cf. Section 2.3) and the BIC evaluated
with θ set to the prior mean. Thirdly, the model with param-
eterisation θ̂ except for the transition matrix P; instead we
assume that the states St are independent and each dis-
tributed according to the stationary distribution associated
with P. This we use to assess whether the temporal depen-
dence associated with parameters inferred from the training
data is beneficial to the description of the analysis data. If
this alternative has a lower BIC, it suggests the dynamics
described by P, as estimated from the RUN data, do not also
describe the REST data as well as simply assuming indepen-
dence through time. Fourthly, BD, as described by Zhang
et al. (1998) and with parameters estimated from RUN using
maximum likelihood.

2.5.5 Replay detection algorithm

We can now state our replay detection algorithm as follows:

1. Use training data (a RUN epoch) and the procedure of
Appendix C and 2.4.1 to estimate model parameters
as θ̂ .

2. Use the model comparison approach of Section 2.5.4
to verify the fitted model can be used on the analysis
(REST) data.

3. Construct a set of templates
{
x

(r)
1:ar

}R

r=1
.

4. Evaluate Eq. (25) for each template x
(r)
1:ar

and for t =
1, . . . , T − ar + 1.

5. Report t rep as a replay of template r whenever Eqs. (26)
and (27) are satisfied at t rep for x

(r)
1:ar

.

Times of replay events detected using this procedure at
different compression rates are then classified as distinct
events only when the extent of their temporal overlap is less
than 50 %. This is necessary because the time of the event,
as indicated by a local optimum of Ω , is liable to change
between compression rates since slight adjustments to the
placement of the template may improve the score. This rule
is applied also to events detected using different templates:
when two or more detected events overlapped by at least
50 %, the event with greatest Ω was retained and all others
discarded, to prevent multiple discoveries of the same event.

2.6 Correlation of replay with SWR events

We use the cross-correlogram between replay events and
SWR events to demonstrate correlation between these two
processes. SWR events were detected by bandpass filter-
ing LFP between 120Hz and 250Hz, then taking the times
of peak filtered LFP during intervals exceeding 3.5 stan-
dard deviations. In addition, we required that these intervals
were between 30ms and 500ms in duration, between 20μV
and 800μV in amplitude and with a gap between distinct
intervals of at least 50ms.

The correlation between the process consisting of replay
events (rep) and the process of SWR events (rip) at a tem-
poral offset u seconds from any time t is measured by the
second-order product density function for stationary point
processes (Brillinger 1976),

ρrep,rip (u) := lim
h,h′→0

Pr (rep event in (t + u, t + u + h],
rip event in (t, t + h′]) /hh′.

(29)

An unbiased estimator of this is

ρ̂rep,rip (u) = (τT δt)−1 Jrep,rip (u) (30)
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(Brillinger 1976), in which Jrep,rip (u) is the cross correlo-
gram at lag u with bin width τ ,

Jrep,rip (u) := card
{
(i, j) : u − τ/2 < t

rep
i − t

rip
j <u + τ/2,

t
rep
i �= t

rip
j

}
, (31)

where t
rep
i , t

rip
j are times of replay events and SWR events

respectively (thus, for positive intervals t
rep
i − t

rip
j the SWR

event occurs first), and T δt is the observed duration of
the two processes, in seconds. The discretisation parameter
δt of our model and the average duration of SWR events
determine the minimum discernable lag between replay and
SWR events, and thus our choice of τ .

We compare ρ̂rep,rip (u) at various lags u with the theo-
retical value of Eq. (29) for unrelated processes, estimated
byNrep (T δt) Nrip (T δt) / (T δt)2, whereNa (t) is the num-
ber of events of point process a in the interval (0, t].
ρ̂rep,rip (u) being greater than this for lags close to zero sig-
nifies that events of the processes occur at approximately
the same time.

Brillinger (1976) shows that, for T δt → ∞, for each u

separated by τ , the Jrep,rip (u) follow independent Poisson
distributions with parameter T δtτρrep,rip (u). The depen-
dence of the estimator distribution on the parameter being
estimated suggests a variance-stabilising square root trans-
formation. Thus, independently for each u,

√
ρ̂rep,rip (u) is

approximately distributed as N
(√

ρrep,rip (u), (4T δtτ )−1).
We use this fact to construct (1 − α)% confidence inter-
vals around the estimates. We adjust the significance level
α to account for our making multiple comparisons (one at
each lag u) using the Bonferroni correction, which is to
divide α by the number of comparisons made. This is very
conservative as we are only interested in lags close to zero.

2.7 Data simulation

We used simulated data (spike trains and position trajec-
tory) to evaluate our parameter inference algorithm and our
replay detection algorithm. The general simulation method,
in which the parameterisation θ, κ is prespecified and data
randomly simulated from the model with this parameteri-
sation, is explained in Section 2.7.1. Section 2.7.2 explains
how we simulate a set of spike trains in which multi-
ple instances of a trajectory segment are encoded for the
purpose of evaluating our replay detection algorithm.

2.7.1 Simulation of observation processes

For the evaluation of our parameter inference algorithm, we
used a known parameterisation of the model to simulate
spike trains and positions from we which made estimates of

the parameters to compare with the known values. We first
specified a model size κ∗, then used an initial run of the
algorithm of Appendix C with fixed state space dimension
κ∗ on the experiment data to find a set of realistic parame-
ter values θ∗. Then we sampled a sequence s0:T by setting
s0 to 1 (an arbitrary choice), then sampling st from the dis-
crete distribution P∗

st−1,· for t ∈ {1, 2, . . . , T }. Positions
and spike trains were then generated, on the discrete time
scale, by sampling xt from the distribution with probabili-
ties p (Xt = x | S = st , θ

∗), and yt,n from Poi
(
λ∗

st ,n

)
for

n ∈ {1, 2, . . . , C}.

2.7.2 Replay simulation

We assessed our replay detection algorithm of Section 2.5
by applying it to simulated spike train data in which known
replay events were inserted. Our approach was to generate
spike trains that correlate (via our model) with a random
hidden position trajectory punctuated by instances of the
template trajectories discussed in Section 2.5.2.

To achieve this we fixed θ∗, κ∗ as in Section 2.7.1 and
simulated a full trajectory x1:T . Then, for each of several
templates x

(r)
1:ar

, we selected uniformly at random Nr time
bins between 1 and T − ar + 1 as the replay event times,
and at each event time u, we set xu:u+ar−1 ← x

(r)
1:ar

. No
two events were permitted to overlap: we resampled the
later event time whenever this occurred. We then used the
forward-backward algorithm to compute the smoothing pos-
teriors for the state process S1:T using the position trajectory
alone, and used these to compute the posterior mean firing
rate

λ̄n =
κ∗∑

i=1

λi,np
(
St = i | x1:T , θ∗) (32)

for each cell n, at each time step t , then sampled a number
of spikes for cell n in time bin t according to the Poisson
distribution with mean λ̄n.

3 Results

3.1 Parameter and model size estimation

3.1.1 Simulated data

Using the method of Section 2.7.1, we simulated two data
sets, distinguished by the domain used for position vari-
ables: one each corresponding to the linear track environ-
ment and the T-maze. In the simulated linear track data we
used C = 4 and κ∗ = 4, and in the simulated T-maze data
we used C = 10 and κ∗ = 5. This data we supplied to our
model fitting algorithm to obtain estimates θ̂ , κ̂ .
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Table 1 Performance of model fitting algorithm: K-L divergence (in
bits) of estimated model distributions, conditional on state, from target
(simulated) distributions

State Position model Transition matrix row

Estimated (Uniform) Estimated (Uniform)

1 5.39 × 10−2 1.78 8.17 × 10−5 1.95

2 1.54 × 10−2 1.48 4.34 × 10−4 1.75

3 1.16 × 10−1 1.39 4.55 × 10−4 1.77

4 1.57 × 10−1 1.82 5.51 × 10−4 1.95

Divergences of uniform distributions of appropriate size are provided
for comparison. Data set 1: simulated linear track

Using a flat prior over the number of states up to a max-
imum value of 10, our algorithm correctly identified κ∗ in
both data sets, using the modal value of KT as explained
in Section 2.4.2. Increasing the maximum number of states
beyond 10, we found negligible posterior probability for
larger models. In Tables 1 and 2 (corresponding to the linear
track data and the T-maze data respectively) are measures
of accuracy for our estimates of the conditional distribu-
tions over position given state and for rows of the transition
matrix, by means of the Kullback-Leibler (K-L) divergence
from a target distribution to the estimated distribution. The
K-L divergence (cf. Dayan and Abbott (2001), p323) is a
nonsymmetric distance between distributions; it has a mini-
mum of 0, which is obtained if and only if the distributions
are identical. In these tables we compare the K-L divergence
from each target distribution to our estimates, against the K-
L divergence from the target to a uniform distribution on the
same support. The uniform distribution represents an esti-
mate based on no data. We find that the K-L divergences
from the targets to our estimates is one or two orders of
magnitude smaller than those to the uniform distribution for
each position model, and four or more orders of magnitude
smaller for each row of the transition matrix, suggesting
good accuracy for our estimates.

Table 2 Kullback-Leibler divergences (in bits) of estimated model
distributions from true values, as in Table 1

State Position model Transition matrix row

Estimated (Uniform) Estimated (Uniform)

1 3.80 × 10−1 3.18 9.74 × 10−4 2.29

2 1.96 × 10−1 2.17 3.89 × 10−3 2.26

3 2.73 × 10−1 2.02 9.67 × 10−4 2.29

4 2.86 × 10−1 1.83 1.62 × 10−3 2.28

5 1.01 × 10−1 2.55 2.90 × 10−3 2.29

Data set 2: simulated T-maze

We usedH = 1000 particles. Increasing this number was
found not to significantly change the results. In preliminary
runs, we found that it was necessary to scale up H between
linearly and quadratically with the length of the data record
in order to keep the effective sample size (ESS) (Kong et al.
1994), given by

ESS = H

1 + var (w)
(33)

where var (w) is the sample variance of the weights, above
50 %.

3.1.2 Experimental data

We applied the algorithm of Section 2.4 to the linear track
and the T-maze data sets, using the first half of RUN epochs
with a discretisation bin width of δt = 100ms, and found
κ̂ = 7 for the linear track and κ̂ = 8 for the T-maze. For this
we used κ̄ = 10 (after some exploratory runs of the algo-
rithm with greater κ̄ to eliminate larger models and greater
δt for faster computation) and H = 800 particles for the
linear track data and H = 1, 200 particles for the T-maze.
Increasing the number of particles beyond these values was
found not to significantly change the output.

The smoothed posterior distributions over augmented
states Eq. (23) are depicted for each time step in Fig. 3. The
marginal distributions over state St and number of states
observedKt are presented separately. In the former, it can be
seen how intervals of data are very unambiguously labelled
by state: the distribution at each time step is highly concen-
trated. The latter is used to estimate the number of states
required to characterise the data; the interpretation in this
case is that after taking all of the training data into account,
the most probable number of states between 1 and κ̄ is 7.
In these runs the resample-move procedure was found to be
effective in rejuvenating the sample with the ESS, Eq. (33),
typically over 50 %.

Figure 4 depicts, for an interval of T-maze RUN data,
the smoothing posteriors over the hidden states St and how
the changing state corresponds to changing levels of activity
in the spike trains. The middle panel of the figure shows,
for several cells n, the value of log λ̂ŝt ,n, with ŝt the MAP
state at time t , as a piecewise continuous line. By comparing
these jumping spike rates to the spike trains represented by
the raster plot in the bottom panel, one can see how different
states correspond to different levels of cell activity and how
the Markov chain characterises variability in the activity of
all cells simultaneously. All spike rate estimates are plotted
as a heat map in Fig. 5.

Figure 6 depicts the estimated distributions over positions
conditional on state for the T-maze data. Probabilities are
represented by the height of bars and states are distinguished
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Fig. 3 Marginals of the
estimated smoothed posterior
distribution over the state and
number of states of the
augmented model at each time
step, Eq. (23), in the linear track
data with δt = 0.1s

with different colours. These demonstrate how the states of
the Markov chain constitute a coarse-grained representation
of position: broad regions of the environment are associated
with a particular state, characterised by a central position
and covariance structure.

3.2 Position decoding

This section compares the performance of our model with
two other models previously used for decoding: the BD
model, as explained in Zhang et al. (1998), and the LP
HMM. Our implementation of these models is described in
Appendix G. In BD and LP, positions Xt are used as states
(instead of our St variables) with state space of size M , and
in LP (following Johnson and Redish (2007)), a transition
matrix with rows constrained by Gaussian distributions cen-
tered on each position. The spike count in each time bin is
modelled as a Poisson random variable in each model (con-
ditionally on position in BD and LP, conditionally on state
in OP) for fair comparison (a Bernoulli model was used in
Johnson and Redish (2007)). Maximum likelihood is used
for parameter estimation in each model. See Appendix G
for further details about estimation using the BD and LP
models.

For these results we used the second half of RUN data,
i.e. distinct from that used for parameter estimation (cross-
validation), and we used the T-maze data since it presents
more of a challenge for decoding due to its corners and

larger size. We use our fitted model with θ̂ , κ̂ and the
approach to decoding explained in Section 2.4.3.

3.2.1 Decoding comparison: data and performance
measures

We used two measures of performance: median decoding
error and mean marginal posterior probability, and we used
the same data (same spatial resolution) for each model.
The decoding error of estimate x̂t we defined as d̄

(
xt , x̂t

)

(the distance function of Section 2.2.3). We then took the
median of the decoding errors over all t (rather than the
mean since the mean was affected by the heavy tail of the
error distribution for all three methods, as shown in Fig. 7).

The mean smoothed posterior probability of x1:T is

1

T

T∑

t=1

p
(
xt | y1:T , θ̂

)
, (34)

where each term in the sum can be computed with the
algorithm in Appendix E for our model, or with the forward-
backward algorithm for LP. In BD these terms are the single
time step posterior probabilities. For an accurate model,
the observed trajectory will pass through regions of high
posterior probability. Thus, since greater posterior probabil-
ity on particular positions reduces the posterior variance, a
greater value for this measure indicates confidence as well
as accuracy, on average, for the decoding method.
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Fig. 4 Segment of the T-maze RUN data exhibiting the model characterisation of spike trains. a smoothing posterior distribution over hidden
state at each time step. b mean spike rate (in log domain for clarity) conditional on the MAP hidden state for four cells in the sample. c rasters of
observed spike times
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Fig. 5 Mean spike rates, λ̂i,n, in spikes per second for states i = 1, 2, . . . , κ̂ and neurons n = 1, 2, . . . , C. a linear track. b T-maze

3.2.2 Decoding comparison: results

As per Section 2.4.3, we used the Viterbi algorithm to
decode position as the most probable path given all spike
train observations. This is the standard Viterbi algorithm
(Viterbi 1967) for an HMM for LP, and the algorithm of
Appendix D for OP. For BD the Viterbi estimates are sim-
ply the maximum likelihood estimates. A typical interval
of the test data is plotted in Fig. 7, top left, showing each
set of decoded estimates alongside observations. The BD
estimates have a tendency to jump erratically, whereas the
estimates obtained with the HMMs are smoother. Also vis-
ible in this figure, towards the end of the interval, is the
tendency for the LP estimates to become trapped around one
erroneous estimate. This is particularly a problem for small
δt when it results in massive decoding errors.

For each method we computed the performance measures
described in Section 3.2.1 using models fitted under differ-
ent values of the parameters δt and C. For each value of
C less than the total number of cells available, Cmax, we
had a choice of population subset to use; we computed the
measures on each subset in a sample of 100 selected at ran-

dom, or

(
Cmax

C

)
if

(
Cmax

C

)
< 100. Each model was re-fit

(i.e. SMC parameter inference of θ including κ for OP) for
each value of δt considered; for each value of C it was only
necessary to ignore neuron labels not in the sample.

These results are presented in Fig. 7, bottom row. In the
bottom left figure is shown how the decoding performance
of OP, as quantified by the median error, does not deterio-
rate drastically with increasing temporal resolution over the
range of values of δt considered (2s, 1s, 0.5s, 0.25s and
0.1s), unlike LP and BD. The ability of these latter mod-
els to decode accurately is severely impaired for δt ≤ 0.5s.
The median error of decoding and mean posterior probabil-
ity for varyingC are plotted in the bottom centre and bottom
right plots, respectively. For these results we fixed δt = 1s.
The error bars in these plots indicate one standard deviation
either side of the mean for the cell subsets corresponding to
each C. We see that in both measures the decoding perfor-
mance of OP does not degrade much until C is reduced to
about 6 cells, but the performance of LP and BD is badly
affected by decreasing C. The mean posterior probability of
OP is generally lower than for the other models because the
posterior variance over positions is generally greater; this
is because we do not model positions individually but via
a small number of conditional distributions with inherent
uncertainty (cf. the position model in Section 2.2.3).

The distribution of decoding errors using estimates
obtained with each model, and with δt = 1s and C = 19, is
plotted in Fig. 7, top right. This shows that all three meth-
ods suffered from long range errors, but OP did not suffer
the very worst errors and had a greater proportion of short
range errors than LP and BD. These long range errors are
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Fig. 7 Comparison of position decoding performance under our
model (OP), the HMM of Johnson and Redish (2007) (LP) and the
model used in Zhang et al. (1998) (BD). a Viterbi estimates of position
under each model alongside the observed trajectory (blue) in a segment
of the T-maze RUN data; δt = 1s, C = 19. b empirical distributions
of decoding errors (distance between estimated and observed position;
units are spatial discretisation bins, which have length ∼ 5cm) for the
second half of the T-maze RUN data for the three methods; δt = 1s,

C = 19. cMedian decoding error found in same data for a range of val-
ues of the temporal bin width δt . dMedian decoding error found when
subsets of the cell sample were used in decoding. Error bars indicate
1 standard deviation either side of the mean for the subsets used. e for
the same subsets of cells, the mean of the probabilities of the observed
position at each time step under the smoothing posteriors computed
with each model

caused by a tendency, in each model, to decode particular
positions during times of low firing rates; this is discussed
further in Section 4.2.

3.3 Replay analysis results

3.3.1 Simulated data

To assess the performance of our replay detection method on
simulated data, we considered replay detection as a binary
classification problem where each time bin is to be clas-
sified as participating in a replay event or not. First we
simulated a REST data set consisting only of spike trains,
with 40 known replay events (20 from each of 2 short tem-
plates) using the method explained in Section 2.7.2. Then,
using θ̂ , κ̂ estimated on the simulated RUN data set (dis-
cussed in Section 3.1.1), we applied our replay detection
algorithm of Section 2.5 with a range of values for Ω∗, and
computed the receiver operating characteristic (ROC) curve
parameterised by Ω∗.

Since the ROC curve does not take the rate of false nega-
tive classifications into consideration, we also looked at the
Jaccard index (Pang-Ning et al. (2006), p74) as an alterna-
tive classification measure at each Ω∗ considered. Let T P

and FP be respectively the number of true and false positive
classifications and let FN be the number of false negative
classifications, then the Jaccard index is

J
(
Ω∗) = T P

T P + FP + FN
. (35)

The maximum value of 1 can only be attained when FN =
0, i.e. when no true replay time bins have been misclassi-
fied. Thus, the Jaccard index complements the ROC curve
by taking into consideration any failure of the algorithm to
detect a replay event.

The ROC curve and Jaccard index for the replay detec-
tion of one template in each of the simulated data sets are
presented in Fig. 8. In both data sets the false positive rate
is low (< 5 %) for Ω∗ > 1, with good true positive rates
(> 70 %) for a wide range of Ω∗, and is still about 60 %
for the conservative Ω∗ = 150. The Jaccard index reaches a
peak for positiveΩ∗ in this range and only starts to decrease
beyond Ω∗ = 150. Also in Fig. 8 are plotted the corre-
sponding profiles of Ω (as a logarithm, for clarity) and the
times of simulated and detected replay for a particular value
of Ω∗. It can be seen how the times of replay detection (red
stem markers) refer to the times of maxima of Ω above the
threshold. In both data sets most of the replay events are
discovered (97.5 % in the linear track, 75 % in the T-maze)
with a small number of false positive errors.

We also conducted experiments to investigate the fre-
quency of false-positives in the case of mis-specified tem-
plates, meaning the evaluation of Ω for templates which
were not either of those used in the generation of the data, .
In this situation, there is never a ‘true positive’, so the ROC
curve is not an appropriate way to display performance.
Instead, in Figure 9, we simply plot the rate of false posi-
tives against the threshold parameterΩ∗. The result here are
for the T-maze. From this curve, we can see that the rate of
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Fig. 8 Evaluation of replay discovery in simulated data. a black trace
is replay score for a template (on the simulated linear track), plotted at
the midpoint of the template as it is moved across the data. The red line
indicates a threshold of Ω∗ = 20. Red stems indicate times of replay
discovery (when a local maximum of the replay score exceeds Ω∗);
black stems indicate times of replay events simulated using the method

described in Section 2.7.2. b and c respectively the Jaccard index curve
and ROC curve for discovery of replay of the template considered as
binary classification. In each plot the curve is parameterised by Ω∗;
the red segment corresponds to Ω∗ >= 1. d-f similar plots but for a
particular template in the simulated T-maze data set

false positives drops rapidly to zero as Ω∗ increases, indi-
cating that the method correctly recognizes the template in
question is not consistent with the data. Similar results were
obtained for the liner maze (not shown).

3.3.2 Replay in experimental data

We applied the algorithm of Section 2.5 to our experimental
REST data sets using θ̂ estimated from RUN data. First we
used the model comparison approach described in Section
2.5.4 to verify that the model with parameter values θ̂ was
a good fit to the REST data in both data sets. As shown in
Fig. 10, the BIC on the REST data for our model with θ̂

estimated from RUN data (OP, RUN, green square) is close
to the benchmark parameterisation - the model fitted to the
REST data directly (OP, REST, gold diamond) - relative to
the model with θ sampled from the prior and the prior mean
(black cross). We draw reassurance from this that the model
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Fig. 9 False-positive rate against Ω∗ in the case of mis-specified
templates

with parameterisation θ̂ learned from RUN is a good fit to
the REST data used for the replay analysis.

This is further supported by OP (RUN) having a lower
BIC than the similar model parameterisation with indepen-
dent rather than Markovian dynamics (Section 2.5.4), also
shown in Fig. 10. Thus, the dynamics from RUN, as char-
acterised by P̂, persist in REST and are described well by
P̂. We also compare the BIC on REST data of OP (RUN)
with that of BD, fit to RUN. We find that the former is
much lower, both with and without Markovian dynamics,
implying that with its smaller state space, our model is a
more parsimonious characterisation of the data. Moreover,
this reassures us that a model including a characterisation of
awake behaviour-related dynamics is appropriate for use on
REST data, which has been a concern for authors such as
Davidson et al. (2009) who opted against such models for
this reason.

In order to demonstrate more explicitly how our replay
detection works, in Fig. 11 is depicted an example of a
detected replay event of a template in the T-maze data.
This template comprises a path around the forced turn and
into a rest area. The images depict the smoothed posterior
distributions over position (with greyscale shade indicating
probability mass), marginally for the two spatial dimen-
sions, at each time step in an interval around the event. The
top row of the figure shows the replay event at three con-
secutive compression rates c, with the central panel showing
the event detected with peak Ω at compression rate c = 4.
Also plotted is the template trajectory, in blue, and a raster
of spike times for all cells that spiked during the interval.
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Fig. 10 Bayesian information criteria (BIC) for model fit assessment
on the REST data, used for replay analysis. The green square repre-
sents our model (OP) with parameter values fitted to RUN data. This
we compare against: parameterisations of the OP sampled from the
prior for θ (error bars indicate the 5th and 95th percentiles of the

sample) and the expectation of the BIC over the prior, the Bayesian
decoder fitted to RUN, the OP fitted to RUN but with its Markov chain
dynamics replaced with a time invariant distribution over states, and
the OP fitted directly to the REST data. a linear track data, b T-maze
data

Regions of high posterior probability follow the template,
and greater Ω corresponds to a closer fit of the template to
the position posteriors. Below and to the left of the figure
is plotted an example of the same template being matched
against an interval of uncompressed RUN data, nowwith the
observed trajectory depicted in blue. We see a similar tra-
jectory of peak posterior probability tracking the observed

trajectory, which gives us confirmation (by eye) that the
episode detected in REST matches an encoded RUN expe-
rience. We also see in this interval of RUN a similar pattern
of spike trains from the same cells as in the replay event.

Details of our replay analysis are summarised in Table 3.
Using a threshold of Ω∗ = 20, we found 326 and 1,398
events in the linear track and T-maze data sets respectively.

Fig. 11 Example of a replay event discovered in experimental data.
Each subfigure depicts a time interval around a discovered replay
event. In the top two panels are plotted, at each time step, the smooth-
ing posteriors over position (obtained using Eq. (24)), marginalised
to the vertical and horizontal position coordinates, with a greyscale
shade indicating probability. A blue line indicates the template trajec-
tory. The bottom panels depict a subset of the concurrent spike trains

as a raster of spike times: only cells that spiked during the interval
are represented. a-c the same replay event as discovered in the T-maze
REST data at compression rates 3, 4 and 5; the peak replay score was
observed for this event at a compression rate of 4. d a similar inter-
val around a discovery of the same template in the T-maze RUN data.
Here the blue line describes the observed trajectory



356 J Comput Neurosci (2016) 41:339–366

Table 3 Summary of REST data sets used for replay analysis and results

Data set δt (s) C T RUN T REST κ κ̂ #Templates Mean template
duration (s)

#Replay events #SWR events Mean SWR
duration (s)

Sim. linear track 0.1 4 10,000 10,000 4 4 2 4.80 39 (of 40) n/a n/a

Sim. T-maze 0.1 10 10,000 10,000 5 5 2 2.50 30 (of 40) n/a n/a

Linear Track 0.1 13 9,879 9,708 n/a 7 23 4.26 326 261 0.07

T-maze 0.1 19 22,569 39,943 n/a 8 309 2.54 1,398 1,492 0.07

3.4 Correlation of replay events with hippocampal
SWRs

We used the methods described in Section 2.6 to iden-
tify SWR events in the LFP recorded during REST for
each data set (summarised in Table 3). We computed the
cross correlogram for the times of SWR events and replay
events, using a bin width of τ = 0.25s, appropriate to
the δt used and the average duration of SWR events. As
explained in Section 2.6, this is an unbiased estimator of
the second-order product density function, ρrep,rip (u). Val-
ues of

√
ρ̂rep,rip (u) are plotted in Fig. 12, between −5s

and 5s. An approximate 0.178 % confidence interval, which

includes a Bonferroni correction for multiple comparisons,
is plotted around the value for ρrep,rip (u) under the assump-
tion of no correlation, to highlight deviations from it as
peaks or troughs outside of the interval. The interval is wider
for the linear track results because there fewer events were
detected (likely due to shorter recordings, i.e. smaller T ).

We observe a significant peak around zero for both the
linear track and T-maze data sets (Fig. 12, left column), from
which we conclude that the times of replay events and SWR
events coincide. The peak around zero extends into posi-
tive lags more than negative lags, signifying that the SWR
events occur first (cf. Eq. (31)) as would be expected if
replay occurs during ripples. Regarding peaks away from
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Fig. 12 Estimates of the cross-product density
√

ρrep,rip (u) from
times of SWR events to times of detected replay events at lags u around
0, obtained from the cross correlogram, Jrep,rip (u). Estimates have
been square root transformed for variance stabilisation, as in Brillinger
(1976). Solid red lines indicate

√
ρrepρrip , the value expected for two

independent processes. Dashed red lines indicate approximate confi-
dence limits constructed using a significance level of α = 0.178 %,
which includes the Bonferroni correction for comparing the estimate
at each lag. a-c linear track, d-f T-maze. a and d, all REST data used;
b and e first half of data; c and f, second half of data
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zero we must consider that estimates of ρrep,rip (u) become
less reliable as the lag |u| increases (Brillinger 1976). The
results presented in Fig. 12 were based on the replay events
detected using a threshold of Ω∗ = 20. Using the more
conservative threshold of Ω∗ = 150 we draw the same con-
clusions, except in the case of the linear track data for which
we did not have enough events to demonstrate a significant
correlation.

We defined the second-order product density function for
stationary processes. In order to guard against deviations
from stationarity affecting our results, we performed the
same analyses on events detected in subsections of REST.
These are plotted in Fig. 12, middle and right. We find that
the correlation between the processes persists at this finer
scale in the T-maze data. No significant correlation is found
in the second half of the linear track data, but the correla-
tion does exist in the first half, so the correlation does persist
across different scales in at least part of the data.

Figure 13 shows how detected replay events match with
SWR events at different levels of replay threshold Ω∗. We
identified coincidence of replay with an SWR when the
extent of a (temporally compressed) replay event overlapped
with an SWR by at least 50 %. The proportion of events
coincident with an SWR (in-SWR events) was about half of
all events over every value of Ω∗ considered. To account
for chance coincidences, at every value of Ω∗, we shuffled
replay event times uniformly at random and recalculated the
number of coincidences. The mean of 500 shuffles, and one
standard deviation either side of the mean, is also shown in
Fig. 13. The observed coincidence rates are far greater than
the shuffled sample at each value of Ω∗, which, in light
of the known association of replay with SWRs, attests to
the accuracy of our methods. That the rate of coincidences
is approximately constant with respect to Ω∗ suggests that
the rate of false positives is low. This is because false pos-
itives are equally likely to be made outside of SWRs as
inside, and the time inside SWRs is a small proportion of the
REST data; thus if there are many false positives, as Ω∗ is

increased and false positives are eliminated, the coincidence
rate should increase.

4 Discussion

4.1 Improvements afforded by our model

In developing our model, we recognised the advantages
of the statistical modelling approach to spike train analy-
sis: that sources of variation in observation variables are
explicitly accounted for, enabling one to quantify the prob-
ability of outcomes and make predictions. Furthermore, we
recognised the advantage of including dynamics via the
HMM framework, as undertaken by Brown et al. (1998) and
used for replay analysis in Johnson and Redish (2007), for
the accurate characterisation of data with clear dependence
through time.

By removing position observations from the hidden pro-
cess - the approach of LP - out to an observed process paral-
lel to the spike trains (cf. Fig. 1), we achieve two important
improvements. Firstly, we elicit from the data itself struc-
ture around the trajectory of the animal and how this relates
to the spike trains, within the constraints imposed by our
model distributions. This structure is described by the num-
ber, location and shape of broad regions of the environment
that are, to the extent permitted by the data, the smallest
regions discernable by variation in the spike trains. We bring
to this inference no prior knowledge, using uninformative
priors as far as possible, including our inference for the
number of states, thus allowing the data to “speak for itself”.

Secondly, the disassociation of discrete positions from
states of the model, which reduces the number of parameters
to the small set necessary for our coarse-grained represen-
tation of space. This parsimony is confirmed by the lower
BIC for OP than BD (cf. Fig. 10). This makes it easier to
make robust estimates of the parameters with limited data,
and, by performing inference for the number of states and

Fig. 13 Relation of replay threshold Ω∗ to number of replay events
detected and number coincident with SWR events. The blue line is the
number of events detected using the approach summarised in Section
2.5.5, the green line is the number of events that coincide with SWRs
(at least 50 % temporal overlap), and the red line is the mean number of

coincidences of replay events after they have been shuffled 500 times
(dashed line indicates one standard deviation either side of mean). Val-
ues of Ω∗ at 200 points evenly distributed between Ω∗ = 10 and
Ω∗ = 300 were used. a linear track data, b T-maze data
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for the position model parameters, we are able to explore the
neuronal ensemble’s representation of space via the num-
ber, size and shape of these regions; this is demonstrated
in Fig. 6. Further opportunities are provided for study-
ing the brain’s representation of space by performing these
inferences under different experimental conditions, such as
different stages of the animal’s training or familiarity with
the environment.

4.2 Decoding performance of the model

There are two important consequences for our model of the
decoding analysis presented in Section 3.2. Firstly that the
catastrophic rate of decoding error we observe with BD and
LP at high temporal resolution does not occur with OP. This
means we are able to use a greater resolution at the param-
eter estimation stage and thereby capture variations in the
spike count that occur on a more precise time scale.

The reason for this benefit seems to be OP’s coarse-
graining of position to a small number of minimally dis-
cernable regions. The problem seen in BD and LP has to
do with an unwanted feature of these kinds of model: that
it implies some positions are encoded by the absence of
spikes. Zhang et al. (1998) noted decoding errors in the form
of large jumps or discontinuities in decoded trajectories,
mostly occurring when the animal was still and firing rates
were low. It appears from their Fig. 3 that these erroneous
decoded estimates were of a small number of particular
positions. This has also been our experience using these
methods, in particular at high time resolution, as exhibited
by the jumps in decoded trajectory in the top left plot of
Fig. 7. We have also observed trajectories decoded using
LP getting trapped in particular locations at high time res-
olution (δt < 1s). In both BD and LP, particular positions
maximise the likelihood (conditional probability of spike
train observations given position) for low spike counts, and
so will maximise, or at least strengthen, the posterior distri-
bution over these positions, and hence they will be decoded
with methods based on the likelihood.

In OP, however, a particular state will maximise the like-
lihood for low spike count observations, but these periods
are brief relative to the jump rate of the Markov chain due
to the relatively small number of states, and so these obser-
vations will not have such an overpowering effect on the
posterior. Thus, the consequence of positions encoding inac-
tivity are avoided in OP by its association of broad regions,
rather than discrete positions, with states of the model,
and by eliciting the details of these regions from the data
itself.

The second advantage conferred by OP as demonstrated
by our decoding results is that we can achieve good results
with a small number of cells (little degradation in decod-
ing performance for a sample of 6 or 7 cells compared with

19 cells). This makes our model a good choice for decod-
ing with limited data, as may be the case when we wish to
record from a particularly idiosyncratic or sparse population
of neurons, when recordings are of poor quality and can-
not be easily clustered, or when less advanced equipment is
available.

More than simply as a tool for inferring the information
content encoded in spike trains, decoding using the poste-
rior distribution (including Viterbi estimates) can be seen as
a posterior predictive validation of the model (Gelman et al.
(2003), p188); that is, as a means for veryifying the statis-
tical model’s characterisation of the encoding of position in
spike trains. The decoding results thus support our model as
being useful for the study of replay, and, since our method
for replay detection is based on the same principle as the
decoding algorithm - that of using the posterior distribution
over position to infer the information content of spike trains
- the advantages demonstrated for our model in decoding
also apply to replay detection.

The decoding results presented here demonstrate a rela-
tive performance benefit of OP over BD and LP. The results
presented in Fig. 7 do not compare well with other studies
focussing on decoding, e.g. Brown et al. (1998), but these
tend to make use of additional information that our model
would also accommodate. For example, we could include
additional covariates alongside spike trains and position,
such as phase of the theta rhythm (as do Brown et al.
1998). Also, whilst we used all of (the first half of) a RUN
epoch for parameter inference, we could use prior knowl-
edge that the activity of place cells depends on behavioural
state, in particular they have more robust spatial selectivity
during movement and replay non-local information during
pauses in exploration, by using only the subset of RUN data
in which the animal was in motion for model fitting (e.g.
Pfeiffer and Foster 2013).

Decoding performance could be improved by partition-
ing training data by behavioural state, and only using the
subset of data in which the animal was in motion, because of
the presence of awake replay during pauses in exploration.
The effect of awake replay, if included in training data,
would be that spike train activity is associated with multi-
ple positions: the “local” spike activity and the ”nonlocal”
activity. This would in particular have an adverse effect on
the parameters of BD and LP (the spike rate map, Eq. (69))
because it relates specific activity to specific positions; the
effect on OP would be less severe since its states are asso-
ciated with global spike train patterns. States of OP are not
identified with positions, as in BD and LP, so the interpre-
tation of nonlocal activity in OP is more consistent than in
those other models; thus, the observation of certain states at
particular times, e.g. in the smoothed posteriors exhibited in
Fig. 3, could identify different behavioural states or awake
replay, a possible avenue for future work.
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4.3 The SMC algorithm

Other solutions to the identifiability problem in HMMs
have been proposed, but these come with their own issues.
As discussed in Scott (2002), these often involve imposing
structure on the prior distribution of exchangeable parame-
ters, or otherwise breaking the symmetry in the model. This
kind of solution is difficult to justify when there is no a
priori reason to bias parameters away from each other or
impose constraints on, for example, the ordering of parame-
ters such as mean firing rates, and inferences may be influ-
enced by the choice of constraint. The solution presented
in Chopin (2007) and used here does not require any such
constraints, permits a fully Bayesian approach to param-
eter inference with uninformative priors and facilitates a
Bayesian approach to model selection that accomplishes the
task of eliciting from the data itself the required complex-
ity for the spatial representation. Inference for parameters is
subject to sampling error, but targets the true values, unlike
in the methods of Chen et al. (2012), and we can achieve
an arbitrary degree of accuracy by increasing the particle
sample size, constrained only by computer resources.

Inference for model size κ permits our model to achieve
the parsimony discussed in Section 4.1. Our model par-
titions the observation processes into piecewise stationary
intervals (i.e. homogeneous Poisson processes for spike
trains) labelled by state of the hidden Markov chain; thus
inference for κ targets the most efficient such partition into
stationary intervals permitted by data. This is also con-
strained by the time discretisation, since, under smaller
values of δt , more rapid spike train dynamics become acces-
sible and must be accounted for. In Section 3.2 we compared
different decoding approaches under different discretisa-
tions of the data; in this we did observe that our estimate for
the number of states, κ̂ , increased with decreasing δt : κ̂ = 6
was found for δt = 2s; κ̂ = 8 was found for δt = 0.1s for
the T-maze data set. In future work we may generalise the
model to continuous time, with the intention of capturing
spike train dynamics on all time scales.

There are several algorithmic parameters required to be
set in the SMC algorithm, including the number of parti-
cles, the ESS threshold for resampling and the minimum
size of a subpopulation to be maintained in resampling.
Whilst increasing the number of particles decreases the
Monte Carlo approximation error, and increasing the fre-
quency of resample-move steps helps avoid inferior modes
of the likelihood surface, both of these increase computa-
tional demand. There is thus a balance to be struck between
precision of parameter estimates and computation time. The
latter is also impacted by resolution parameter δt ; for values
δt < 0.1s, computation time becomes excessive for useful
parameterisations of the SMC algorithm. This is because,
as discussed above, more states are exhibited in data with

smaller δt , and computation time scales quadratically with
κ . For greater precision, the generalisation of the model
to continuous time, i.e. a Markov jump process, for which
efficient MCMC inference procedures exist (e.g. Rao and
Teh 2013). Computation time is most sensitive to κ; other
parameters, such as C or T , have linear (or better) time
complexity.

4.4 Use of the BIC for model comparison on REST data

We chose to use a likelihood-based technique for model
comparison, the BIC, to verify that the model fitted to RUN
data was a good fit for the REST data. It was important for
our application of replay detection using an evaluation of the
posterior as in Eq. (25) that we assess the fit of a particular
parameterisation of the model - the posterior mean estimate
θ̂ , in particular - rather than the model fit marginal of model
parameters as is typically done in a Bayesian model com-
parison, for example with the deviance information criterion
(DIC, cf. Gelman et al. (2003), p183) and the Bayes fac-
tor (Kass and Raftery 1995). Furthermore, our task was not
merely to demonstrate the general out-of-sample predictive
power of our model, as is achieved with the DIC, but pre-
dictive power specifically on the REST data. The BIC is
useful for this because it can be computed using the REST
data likelihood. The BIC also permits comparisons between
non-nested models, for example between OP and BD, and
its inclusion of a penalty for model complexity provides a
stronger test for OP against the time-independent alternative
(which has no transition matrix).

4.5 Replay detection results

The numbers of replay events detected (Table 3) exceed
those reported in other replay studies, meaning our meth-
ods provide more examples to study, increasing the power
of analyses such as detecting cross correlation between
events. For example, Ji and Wilson (2006) found about 39
candidate events (not restricted to those in SWRs) per ses-
sion, Lee and Wilson (2002) found 57 events (based on
triplet sequences of cell activation) between three rats, and
Nádasdy et al. (1999) found up to 40 events (repeats of spike
sequences) per session. These studies use spike sequence
detection, which relies on precise spike timing and suffers
low power (see, e.g. Naud et al. 2011), which our model-
based approach does not on account of the generality of
using posterior distributions over position given spikes to
detect post-behaviour representations of activity. We also
obtain more events than other model-based approaches,
such as Davidson et al. (2009), who found on the order
of 100 replay events per session. This can be attributed
to our use of conditional distributions over position (cf.
the replay score, Section 2.5.1) to explicitly account for
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variation over possibly-encoded trajectories; we therefore
do not have to make the kind of restrictions these authors
make on replay information content, such as to trajectories
of constant velocity, to guard against spurious detection.

4.6 Replay detection methods

The motivation for our approach to replay detection was to
take further the model-based, decoding approach used prof-
itably in other studies, and by so doing overcome the princi-
ple challenges associated with replay detection and enable a
more extensive analysis of the phenomenon. Whereas stud-
ies such as Johnson and Redish (2007) have used the time
marginal posterior distributions of position given spikes,
discussed in Section 2.4.3, we use the posterior distribution
over trajectories: sequences of position random variables
considered jointly (cf. Eq. (25)). The neuronal representa-
tions we wish to identify in replay detection are dynamic:
their temporal dependence structure is essential. It is there-
fore important for the detection of replay with a model of
the relevant processes that one starts from the most general
characterisation permitted, so one does not make any inap-
propriate assumptions (of independence, for example) that
make the model itself appear inadequate. Indeed, we saw by
comparison of the BIC in Fig. 10 that the model with tempo-
ral dependence between latent states was a better fit to spike
train data than the same model with temporal independence.

In our method, the risk of mistaking chance observations
for true replay is accounted for by the marginal distribution
over trajectories, e.g. p (Xt = x1, . . . , Xt+a−1 = xa | θ) for
a template of length a at offset t ; cf. Eq. (25). Setting a pos-
itive threshold for Ω protects against trajectories that may
be probable a posteriori due to a bias in the model favour-
ing those trajectories; we must have Ω > Ω∗ only when
a trajectory is decoded above “chance” as represented by
the marginal distribution. We do not need to resort to ad-
hoc tests of statistical significance or the kind of shuffling
procedures mentioned above, which have an element of sub-
jective judgement in their design, nor do we need to accept
any approximate p-values of uncertain accuracy.

4.7 Appraisal of the template matching approach

For the results presented in Section 3.3.2 we used segments
of an observed trajectory (i.e. from RUN data) as templates
for replay detection. However, the decision of which seg-
ments to use was arbitrary, and was guided only by our
interest in particular regions of the environment. This means
we are unable to determine the true start and end times
of a replay event, which also precludes us from drawing
conclusions regarding the relationship between replay event
duration and time compression rate. One possible approach
to dealing with this issue is to develop a continuous time

model in which the compression rate is instantiated as an
unknown parameter to be inferred from data, which controls
the overall rate of transitions between different latent states.
Such an approach is likely to be more computationally
demanding, however.

It may be possible to combine our replay analysis meth-
ods with the decoding algorithm to make a more com-
prehensive study of what is being replayed and at what
compression that does not depend on our choice of tem-
plates, for instance by eliciting replayed trajectories directly
from the data such as segments of the Viterbi path during
REST.

Nevertheless, our template approach is very flexible and
allows to control for the information content of replay. For
example, we could limit our analysis to replay around an
important maze feature, such as the choice T-junction in
the T-maze. We could also use templates that represent
trajectories in distinct environments (in particular, a differ-
ent environment from the one the rat is in, (e.g. Gupta et
al.2010), or environments not yet visited (i.e. “preplay”,
Dragoi and Tonegawa 2011).

5 Conclusion

We have presented a dynamic statistical model relating mul-
tiple parallel spike trains to concurrent position observations
that explains the data in terms of discrete levels of spiking
activity and broad regions of an environment, correspond-
ing to distinct states of a Markov chain. We have seen an
improvement in decoding performance over other models
which seem to be consequences of our use of states distinct
from individual positions. In this way our model improves
upon those of Brown et al. (1998) and Zhang et al. (1998),
used in most recent studies of replay, in which positions are
identified with states of the model. The approach taken to
model fitting achieves Bayesian inference for parameters,
overcoming the model identifiability problem suffered by
HMMs with a likelihood invariant to permutations of the
state, while also performing Bayesian inference for model size.

We have also presented a new model-based method for
the analysis of replay in spike trains, and demonstrated how
this can be employed with our model to discover replayed
representations of position trajectories of arbitrary length
and content. We have argued that consideration of the model
likelihood, and how it compares with certain benchmarks,
is an appropriate way to demonstrate a model as being
an appropriate characterisation of data distinct from that
used for parameter inference. Once this is established, our
method for identifying replay is to compare the posterior
probability of a specified trajectory segment given the spike
trains intended for analysis with the marginal probability
of the trajectory segment, and identify times at which the
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posterior probability obtains large maxima. Post hoc tests of
significance are not required since variability in trajectories
is captured by our model.

The methods presented here are well-suited to the study
of replay even in problematic data conditions such as small
neuronal sample size. With further scope for development,
in particular in respect to the way we construct template tra-
jectories for detection, we propose to use these methods to
explore the open questions about the phenomenon of replay,
such as the role of time compression, the details of replay
episodes of varying temporal and spatial characteristics and
how these relate to the experiences or cognitive demands of
the animal, and the coordination of replay events between
different parts of the brain.
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Appendix A: Convex space position
transformation and distance metric d̄

To compute the distance d̄(x′, x′′) for each x′, x′′ ∈
{1, 2, . . . , M}, we consider the discretised environment as
a graph with discrete positions constituting the nodes and
an edge connects every pair of nodes for which the corre-
sponding positions are adjacent horizontally, vertically or
diagonally. Edges are weighted by the distance between the
centroids of the corresponding positions. Then d̄

(
x′, x′′) is

the sum of the weights of the edges that form the short-
est path from x′ to x′′. The shortest paths between every
pair of nodes on the graph can be computed efficiently
using the Floyd-Warshall algorithm or Johnson’s algorithm
(Leiserson et al. 2001).

Our transformation fx : {1, 2, . . . , M} → R
2, with locus

x ∈ {1, 2, . . . ,M}, effects a change of basis for spatial
coordinates relative to x. It is defined by

fx
(
x′) := d̄

(
x, x′)

d (x, x′)
(
x′ − x

)
, (36)

where d
(
x, x′) is the Euclidean distance between x and x′.

Appendix B: Posterior parameter sampling
distributions

B.1: Spike train model parameters

We consider the posterior distribution at time step t for
parameter λi,n. We have

p
(
λi,n | x1:t , y1:t , s0:t , θ, κ, φ

)

∝ p (y1:t | s0:t , θ) p
(
λi,n | φ, κ

)

∝
⎛

⎝
∏

u≤t :su=i

exp
{−δtλi,n

}

yu,n!
(
δtλi,n

)yu,n

⎞

⎠ λα−1
i,n exp

{−λi,nβ
}

∝
⎛

⎝
∏

u≤t :su=i

exp
{−δtλi,n

}
λ

yu,n

i,n

⎞

⎠ λα−1
i,n exp

{−λi,nβ
}

= exp
{− (δtci,t + β

)
λi,n

}
λ

∑
u≤t :su=i yu,n+α−1

i,n ,

which is, up to a normalising constant, the pdf of
Gam
(
λi,n; α∗, β∗) with shape, rate parameterisation.

B.2: Position model parameters

We first state some properties of the transformation fx . We
have

fx′
(
x′′) = −fx′′

(
x′) and (37)

fx′
(
x′′) = fx′

(
x′′′)+ fx′′′

(
x′′) . (38)

Both are properties of vectors in R
2. From Eqs. (11) and

(12) we have

p (ξi | x1:t , y1:t , s0:t , θ, κ, φ)

∝ exp

⎧
⎨

⎩

∑

u≤t :su=i

fξi (xu)
ᵀ Σ−1

i fξi (xu)

⎫
⎬

⎭

= exp

⎧
⎨

⎩

∑

u≤t :su=i

(
fξ∗ (xu) − fξ∗ (ξi )

)ᵀ
Σ−1

i

(
fξ∗ (xu) − fξ∗ (ξi )

)
⎫
⎬

⎭
,

(39)

in which ᵀ denotes the transpose operator. The exponent
expands as

ci,t fξ∗ (ξi)
ᵀ Σ−1

i fξ∗ (ξi)

−2ci,t fξ∗ (ξi)Σ−1
i c−1

i,t

∑

u≤t :su=i

fξ∗ (xu)

+
∑

u≤t :su=i

fξ∗ (xu)
ᵀ Σ−1

i fξ∗ (xu) . (40)
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Now we obtain the form of the Gaussian posterior by
completing the square. The exponent becomes

ci,t

⎛

⎝c−1
i,t

∑

u≤t :su=i

fξ∗ (xu) − fξ∗ (ξi)

⎞

⎠

ᵀ

×Σ−1
i

⎛

⎝c−1
i,t

∑

u≤t :su=i

fξ∗ (xu) − fξ∗ (ξi)

⎞

⎠

+
∑

u≤t :su=i

fξ∗ (xu)
ᵀ Σ−1

i fξ∗ (xu)

−ci,t

⎛

⎝c−1
i,t

∑

u≤t :su=i

fξ∗ (xu)

⎞

⎠

ᵀ

×Σ−1
i

⎛

⎝c−1
i,t

∑

u≤t :su=i

fξ∗ (xu)

⎞

⎠ , (41)

but the last two terms do not depend on ξi and so the
posterior is, up to a normalising constant,

exp

{

ci,t

(

c−1
i,t

∑

u≤t :su=i

fξ∗ (xu) − fξ∗ (ξi)

)ᵀ

× Σ−1
i

(

c−1
i,t

∑

u≤t :su=i

fξ∗ (xu) − fξ∗ (ξi)

)}

= exp
{
ci,t

(
fξ∗ (ξi)

)ᵀ
Σ−1

i

(
fξ∗ (ξi)

)}
, (42)

if we choose ξ∗ = x̄i , where x̄i satisfies
c−1
i,t

∑
u≤t :su=i fx̄i (xu) = 0. In practise there may not be

a solution due to the discretisation of space, so we take a
value for x̄i that minimises this expression as per Eq. (13).

B.3: Rows of the transition matrix

We use the algorithm of Wong (1998) to sample Pi,· from
the Generalised Dirichlet distribution with parameter vec-
tors ζi, γi . The Generalised Dirichlet distribution can be
constructed as a product of Beta distributions with parame-
ters ζi,j , ηi,j for 1 ≤ j ≤ κ , from which the γi parameters
can be derived as:

γi,κ = ηi,κ − 1,

γi,j = ηi,j − ζi,j+1 − ηi,j+1 for j = κ − 1, . . . , 1 (43)

(for details see Wong 1998). Therefore, if we set

ηi,κ = γi,κ (t) + 1,

ηi,j = γi,j (t)+ζi,j+1+ ηi,j+1 forj = κ−1, . . . ,1, (44)

we retrieve the parameters of the underlying Beta distribu-
tions, and we can use the following procedure to sample
Pi,·:

– sample Pi,1 ∼ Beta
(
ζi,1, ηi,1

)

– set σ ← Pi,1

– for j from 2 to κ:

– sample Pi,j ∼ Beta
(
ζi,j , ηi,j

)

– then Pi,j ← Pi,j (1 − σ)

– set σ ← σ + Pi,j

Appendix C: Sequential Monte Carlo (SMC)
algorithm for Bayesian parameter inference

This section describes the SMC algorithm of Chopin (2007)
to sample from the sequence of posterior distributions
p (θ, κ | x1:t , y1:t , φ), where 1 ≤ t ≤ T .

– Initialisation: Use Eq. (7) to sample κ , and θ con-
ditional on sampled values of κ , H times, obtaining
{θh, κh}Hh=1. We refer to the set of all particles that
sample the same value of κ as the subpopulation corre-
sponding to κ . Initialise the particle weights as

wh ← 1

H
for h = 1, 2, . . . , H. (45)

– Loop: At each time step t from 1 to T , perform all or
some of the following tasks as necessary:

(1) Update weights: Set

wh ← whp
(
xt , yt | x1:t−1, y1:t−1, θ

hκh
)

(46)

for h = 1, 2, . . . , H . The weight update factor is the
ratio of data likelihoods at subsequent time steps:

p
(
xt , yt | x1:t−1, y1:t−1, θ

h, κh
)

= p
(
x1:t , y1:t | θh, κh

)

p
(
x1:t−1, y1:t−1 | θh, κh

)

(47)

(using p
(
x1, y1 | θh, κh

)
at t = 1). The data likeli-

hood at t can be computed by marginalising S̃t from
the forward function at t , p

(
S̃t , x1:t , y1:t | θh, κh

)
,

computed using the forward recursions, explained in
Scott (2002).

(2) Check for sample degeneracy: evaluate the ESS (33)
using the sample variance of the weights. If ESS

exceeds a threshold ESS∗, skip (3) and (4) and pro-
ceed to the next time step. Chopin (2007) suggests a
threshold of ESS∗ = H

2 .
(3) Resample with positive discrimination and reset

weights: resample particles according to their weights
(using, for example, the residual resampling approach
of Liu and Chen 1998). This should be done in con-
junction with the “positive discrimination” scheme
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of Chopin (2007), to make it more likely we retain
some particles in each subpopulation after resampling.
Compute the sample approximation to the marginal
(partial) posterior over κ:

p̂κ ′,t := p
(
κ = κ ′ | x1:t , y1:t , φ

) =
∑

h:κh=κ ′ wh
∑H

h=1 wh

(48)

for each 1 ≤ κ ′ ≤ κ̄ . If p̂κ ′,tH falls below a tolerance
level H ∗, resample H ∗ times from the subpopula-
tion corresponding κ ′. For these resampled particles,
set

wh ← p̂κ ′,tH

H ∗ < 1. (49)

We thus give discriminated particles lower importance,
compensating for the biasing effect of their preferen-
tial retention. Chopin (2007) suggests to use H ∗ =
H
10 .

After resampling within all subpopulations requir-
ing positive discrimination, resample the remaining
particles maintaining a sample size of H and set their
weights to 1, then normalise all weights.

(4) “Move” particles using a single sweep of Gibbs
sampling: for each 1 ≤ h ≤ H , sample s̃h

0:t accord-
ing to the distribution p

(
s̃0:t | x1:t , y1:t , θh, κh

)

using the stochastic backward recursions (described
in Scott 2002), then sample θh according to the
posterior p

(
θt | sh

0:t , x1:t , y1:t , θh, κh
)

described in
Section 2.3.

By our use of conjugate priors, we are only required to
compute the statistics A(t),B(t), ci,t , SS (i, t, ξi) and x̄i for
1 ≤ i ≤ κ , then to sample from standard distributions.
We perform sampling from the Gamma, Inverse-Wishart,
and Beta distributions using built-in functions of software
package MATLAB.

Appendix D: Viterbi-like algorithm for decoding
position

Here is described a recursive algorithm to find

x̂1:T = argmax
x1:T

p (x1:T , y1:T , θ) = argmax
x1:T

p (x1:T | y1:T , θ) .

(50)

First, define

Vt (v, j) := max
x1:t−1

{p (St = j,X1:t−1 = x1:t−1, Xt = v, y1:t , θ)} .

(51)

Now notice that

Vt (v, j) = max
x1:t−1

{
κ∑

i=1

p (St = j | St−1 = i, θ)

×p (St−1 = i, X1:t−2 = x1:t−2, Xt−1 = xt−1, y1:t−1 | θ)

}

×p (yt | St = j, θ) p (Xt = v | St = j, θ) , (52)

by the conditional independence structure and since the
last two terms do not depend on x1:t−1. This suggests the
recursions

Vt (v, j) = max
u

{
κ∑

i=1

p (St =j | St−1 = i, θ) Vt−1 (u, i)

}

×p (yt | St = j, θ) p (Xt = v | St = j, θ) ,

(53)

for t from 2 to T , with initialisation

V1 (v, j) =
κ∑

i=1

p (S1 = j | S0 = i) p (S0 = i | θ)

×p (y1 | S1=j, θ) p (X1=v | S1=j, θ) . (54)

Once these have been computed for each v ∈ {1, 2, . . . ,M}
and each j ∈ {1, 2, . . . , κ} we can use the recursions

x̂t = argmax
v

κ∑

j=1
p
(
Xt+1 = x̂t+1 | St+1 = j, θ

)

×
κ∑

i=1
p (St+1= j | St = i, θ) Vt (v, i) (55)

for t from T − 1 to 1, with initialisation

x̂T = argmax
v

κ∑

j=1

VT (v, j) . (56)

Appendix E: Algorithm for computing
the posterior probability of a trajectory

Here is described an efficient recursive algorithm for com-
puting the posterior probability of a position trajectory x1:a
of length a at any offset t ; that is

p (Xt = x1, Xt+1 = x2, . . . , Xt+a−1 = xa | y1:T , θ) (57)

for any t ∈ {1, 2, . . . , T − a + 1}.
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We begin by performing the forward and backward recur-
sions; then the algorithm has two stages. First we compute
the intermediary quantities

p (St+a−1 = i, Xt = x1, Xt+1 = x2, . . . , Xt+a−1 = xa, y1:t+a−1 | θ)

(58)

for each i ∈ {1, 2, . . . , κ} using the forward accumulation
steps

p (St+u−1 = j, Xt = x1, . . . , Xt+u−1 = xu, y1:t+u−1 | θ)

= p (X = xu | S = j, θ) p (yt+u−1 | St+u−1 = j, θ)

×
κ∑

i=1

p (St+u−1 = j | St+u−2 = i, θ)

×p (St+u−2= i, Xt =x1, . . . , Xt+u−2=xu−1, y1:t+u−2 | θ)

(59)

for u from 2 to a with initialisation

p (St = j, Xt = x1, y1:t | θ)

= p (X = x1 | S = j, θ) p (St = j, y1:t | θ) , (60)

where p (St = j, y1:t | θ) is the t th forward function evalu-
ated at state j . Then we perform the second stage:

p (Xt = x1, Xt+1 = x2, . . . , Xt+a−1 = xa | y1:T , θ)

∝
κ∑

j=1

p(St+a−1 = i, Xt = x1, Xt+1 = x2, . . . ,

Xt+a−1 = xa, y1:t+a−1 | θ)

×p (yt+a:T | St+a−1 = j, θ) , (61)

inwhichp (yt+a:T | St+a−1 = j, θ) is the (T − t − a + 1)th
backward function evaluated at state j , and with normalis-
ing constant

p (y1:T | θ) =
κ∑

j=1

p (ST = j, y1:T | θ) . (62)

For computing the above over all possible t , the time
and memory requirements are proportional to those of the
forward-backward algorithm.

Appendix F: Algorithm for computing
the marginal probability of a trajectory

Here is described a recursive algorithm for computing the
marginal probability of a position trajectory x1:a of length a

at any offset t ,

p (Xt = x1, Xt+1 = x2, . . . , Xt+a−1 = xa | θ) (63)

for any t ∈ {1, 2, . . . , T − a + 1}. Using the model con-
ditional distribution over positions given state and the state
transition matrix, we recursively compute the quantities

p (St+u−1= j, Xt =x1, Xt+1=x2, . . . , Xt+u−1=xu | θ)

=
κ∑

i=1

Pi,jp (Xt+u−1 = xu | St+u−1 = j, θ)

×p(St+u−2 = i, Xt = x1, Xt+1 = x2, . . . ,

Xt+u−2 = xu−1 | θ) (64)

for each j ∈ {1, 2, . . . , κ} and for u from 2 to a. We assume
(as discussed in Section 2.4.3) that by t the Markov chain
has reached its equilibrium distribution ν so that we can
initialise the algorithm with

p (St = j, Xt = x1 | θ) = νjp (Xt = x1 | St = j, θ) (65)

for each j ∈ {1, 2, . . . , κ}. After performing the above
recursions, we obtain the desired quantity with:

p (Xt = x1, Xt+1 = x2, . . . , Xt+a−1 = xa | θ)

=
κ∑

i=1

p(St+a−1 = i, Xt = x1, Xt+1 = x2, . . . ,

Xt+a−1 = xa | θ). (66)

Appendix G: Implementation of models BD and LP

Model BD assumes conditional independence of spike
trains given position, and assumes positions are iid. The
spike count in each time bin is distributed as Poisson, condi-
tionally on position, and each position is a categorical ran-
dom variable. The complete model likelihood factorises as

p
(
y1:T , x1:T | λX, πX

)
=

T∏

t=1

p
(
yt | xt , λ

X
)
p
(
xt | πX

)
,

(67)

in which λX is a matrix of mean spike rates for each neuron
and each position, and πX is the vector of categorical posi-
tion outcome probabilities. Decoding is perfomed using the
posterior distribution over position given spikes, using fitted
values of parameters, i.e.

p
(
Xt = x | yt , λ̂

X, π̂X
)

∝ p
(
yt | Xt = x, λ̂X, π̂X

)

p
(
Xt = x | λ̂X, π̂X

)
. (68)
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Parameters are inferred using maximum likelihood. MLE
estimates using training data x1:T , y1:T are

λ̂x,n =
∑

t :xt=x yt,n

δt
∑T

t=1 • {xt = x} , (69)

π̂X
x = CX

T (x)

T
, (70)

for n = 1, 2, . . . , C, x = 1, 2, . . . , M. (71)

(see, e.g. Zhang et al. (1998), in which the former is named
the “spatial occupancy map”). We note that Zhang et al.
(1998) performed smoothing of firing rates using a Gaus-
sian kernel, which can have a significant impact on decoding
performance when little data is available. In our experiments
this smoothing was found not to make a significant different
to decoding performance, and so we compared against the
BD method with no smoothing as a default setting.

LP differs from BD in assuming position variables X1:T
have the Markov property, rather than being iid; that is,
Xi ⊥ Xt :i−2 | Xt−1 for t = 2, 3, . . . , T . The complete
model likelihood is thus

p
(
y1:T , x1:T | λX, πX, Q

)
= p

(
y1 | x1, λ

X
)
p
(
x1 |πX

)

×
T∏

t=2

p
(
yt | xt , λ

X
)

p (xt | xt−1, Q) , (72)

with parameters λX, πX the same as in BD and transition
matrix Q. Rows of Q - the probabilities of transitioning to
each position in the maze (destination) conditional on the
position at the previous time step (source) - are normalised
densities of a 1-D Gaussian centered on the source with
zero mean and standard deviation σX

x for each source x.
That is, Euclidean distance d (Xt , Xt−1 = x), conditional
on Xt−1 = x, is distributed as

d (Xt , Xt−1=x)∼N
(
0; σX

x

)
, i =1, 2, . . . , T , x =1, 2, . . . , M.

(73)

Then, elements of each row Qx,· of the transition matrix
are assigned probability densities from this Gaussian and
normalised so that the row sum is 1. The MLE estimates are
given by

σ̂ X
x =

√√√√
∑

t>1:xt−1=x d (xt−1, xt )
2

∑T
t=2 • {xt = x} , x = 1, 2, . . . ,M.

(74)

MAP decoding is achieved in LP using the forward (for fil-
tered estimates) or forward-backward algorithm (smoothed

estimates) (see Scott 2002); the most probable sequence of
positions given spike trains (Viterbi path) can be obtained
using the standard Viterbi algorithm (Viterbi 1967).
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