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This work presents a shape parameterisation method based on multi-resolution subdivision curves
and investigates its application to aerodynamic optimisation. Subdivision curves are defined as the
limit curve of a recursive application of a subdivision rule, which provides an intrinsically hierar-
chical set of control polygons that can be used to provide surface control at varying levels of fidelity.
In this work they are used to construct a hierarchical set of aerofoil parameterisations that can be
changed throughout an optimisation procedure. This enables an optimisation to be initialised with
a small number of design variables, and then periodically increased in resolution throughout. This
brings the benefits of a low dimensional design space (high convergence rate, increased robustness,
low cost finite-difference gradients) while still allowing the final results to be from a high-dimensional
design space. In this work two approaches to subdivision aerofoil parameterisation are investigated.
A multi-level refinement technique the periodically refines the parameterisation globally and an adap-
tive refinement scheme that refines (and coarsens) the parameterisation based on adjoint surface sen-
sitivities. Both of these approaches are tested on a variety of optimisation problems and for each
problem a range of single-level subdivision schemes (equivalent to cubic B-splines) are also used as
a control group. For all the optimisation cases the multi-level and adaptive schemes converge to
solutions comparable or better than the single-level methods, generally providing a significant com-
putational advantage, and in many cases allowing a solution to be found when the single-level method
would otherwise finish prematurely in a local optimum.

I. Introduction and Background
With optimisation becoming more common in aerodynamic design, a significant effort is being made to improve both
its effectiveness and its efficiency1,2. Within an optimisation procedure the choice of shape parameterisation con-
trols the relationship between the optimisation design variables and the aerodynamic surface itself. Consequently the
choice of shape parameterisation method can have a significant impact on the effectiveness and efficiency of the overall
procedure3. Many different methods have been used within an aerodynamic optimisation framework, from standard
geometric curve definitions such as B-Splines4 or NURBS5 to aerospace-specific methods such as CST6,7, Hicks-
Henne bump functions8,9 or PARSEC9,10 to Free-Form Deformation11–14, proper orthogonal decomposition2,15,16 or
the discrete method17. All of these approaches are subject to the ‘curse of dimensionality’; in the context of aerody-
namic optimisation this refers to the problems associated with increasing the number of design variables used in the
optimisation procedure. For many optimisation schemes the number of objective function evaluations is proportional
to the number of design variables used, in conjunction with this a large number of design variables can lead to poor
convergence rates and poor design space conditioning. Considering that for aerodynamic optimisation each objective
function evaluation equates to a single, often expensive, aerodynamic solution the impact of dimensionality can be
large. On the other hand, the fidelity of the parameterisation, and therefore the design space of the problem, is directly
linked to the number of design variables. This often leads to a compromise between available resources and desired
accuracy of the results.
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One approach to reducing this effect is to control the shape with a series of nested, hierarchical parameterisation
schemes and increase the fidelity at intervals throughout the optimisation process. This approach was first used in an
aerodynamic optimisation setting by Beux and Dervieux18 and has since been applied to a range of aerofoil optimi-
sation problems using a variety of different parameterisation frameworks such as Bèzier curves19–22, Bèzier surface
FFD23–25, RBFs26 and B-Splines with a knot insertion algorithm27,28. There are two main approaches to applying this
kind of parametrisation framework, the first is to uniformly increase the fidelity of the parameterisation periodically
throughout the optimisation18–28 , this is often referred to as a ‘multi-level’ approach. The second is to locally change
the fidelity of the parameterisation based on some objective20,21,25,26, this is referred to as an ‘adaptive’ approach. In
general, it was shown that implementation of multi-level and adaptive parameterisations can improve the convergence
rate, robustness and final result of an optimisation procedure. This paper investigates the application of both of these
parameterisation approaches to multi-resolution subdivision curves for aerodynamic optimisation procedures.

Subdivision curves are a shape parameterisation method used predominantly in computer graphics and anima-
tion29. They describe a smooth curve based on an initial coarse network of points and a simple subdivision rule of
refinement. By successively applying the subdivision rule increasingly fine networks are created which at the refine-
ment limit create a curve. In some cases these limit curves are equivalent to B-Splines, for example Chaikin’s corner
cutting scheme30 is equivalent to uniform quadratic B-Splines; further extensions to higher order uniform B-Splines
can also be derived31. B-Splines and subdivisions share many characteristics; the method of implementation is, how-
ever, one area of major difference. B-splines utilise continuous parametric representation whereas subdivisions use a
hierarchical process of discrete refinement. It is the innately hierarchical nature of subdivisions that make them easily
applicable to multi-resolution analysis.

Multi-resolution analysis utilises hierarchical nested data sets to efficiently store data and allow operations to be
performed at varying levels of detail. For geometry and shape parameterisation applications this typically means
the ability to implement either coarse geometry changes while maintaining the fine detail, or fine geometry changes
while maintaining the overall shape. This approach has been implemented comparably from both B-spline32 and
subdivision33 perspectives.

The aim of this work is to explore the use of multi-resolution subdivision curves for aerodynamic shape optimi-
sation with particular emphasis on how they can be used in multi-level and adaptive schemes to improve both the
efficiency and accuracy of current optimisation procedures.

II. Subdivision Curves
Subdivision curves are defined as the limit of a process of repeated subdivision refinement of an initial control polygon.
Each subdivision refinement defines a new set of smoother, denser points as a weighted average of the old points. For
this reason the refinements can conveniently be expressed as a simple matrix transformation

Cn+1 = PnCn (1)

from old points Cn to new points Cn+1. For simple subdivision schemes on closed polygons these matrices are just the
two row offset repetition of a subdivision ‘mask’. Two common examples are Chaikin’s rule30 (equations 2 and 3) and
the Cubic B-spline rule (equations 4 and 5). Figure 2 shows a simple implementation of Chaikin’s rule on a closed
polygon. Note how the rows of the transformation matrices all sum to 1 and therefore describe a weighted averaging
of the previous points, this is a key feature of all subdivision transformation matrices. Equations 2 and 4 describe the
matrix for areas of smooth subdivision whereas equations 3 and 5 represent an area with a corner or endpoint, where
the non-averaged matrix row represents the corner or endpoint itself.

Given a set of subdivision matrices P the N th subdivision level CN can be expressed as

CN = PN−1 . . . Pn+1PnCn (6)

for some n < N. The limit surface can therefore be described as

C∞ = lim
N→∞

CN = . . . Pn+1PnCn. (7)

In practice this calculation must be truncated at some point and the limit surface calculated. A typical solution to this
is to calculate an evaluation matrix based on eigenanalysis34 that pushes the subdivision points to their limit locations.
With this method however the user cannot directly parameterise the surface itself and therefore cannot specify the
distribution of points around the surface. As the distribution of points around an aerofoil can be very important for
aerodynamic applications an alternative method is used in this work. This is done by exploiting the equivalency be-
tween B-spline curves and some subdivision formulations, and creating a continuous B-spline transformation between
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Chaikin’s rule:

Pn =



. . . . . .
0.25 0.75

0.75 0.25
0.25 0.75

0.75 0.25
0.25 0.75

. . . . . .


, (2) Pn =



. . . . . .
0.5 0.5

1
0.5 0.5

0.25 0.75
. . .


. (3)

Cubic B-Spline rule:

Pn =



. . . . . .
0.125 0.75 0.125

0.5 0.5
0.125 0.75 0.125

0.5 0.5
0.125 0.75 0.125

. . . . . .


, (4) Pn =



. . . . . .
0.5 0.5

1
0.5 0.5

0.75 0.25
0.1875 0.6875 0.125

. . . . . .


. (5)

Figure 1. Matrix representations of the Chaikin and Cubic B-Spline subdivision schemes.

Figure 2. Simple closed subdivision using Chaikin’s Scheme

the final subdivision level N and the limit curve. This B-Spline transformation can then be formulated as matrix PN
BS

such that a desired point distribution is achieved. This method is however constrained to subdivisions with B-spline
equivalents.

It is then convenient to define

φn = PN
BS PN−1 . . . Pn (8)

and therefore the relationship between any level of control polygon and the limit surface can be expressed as

C∞ = φnCn. (9)

The columns of φi represent the basis functions of the subdivision scheme. Figure 3 shows the basis functions for a
Chaikin subdivision with fixed endpoints, these are identical to the basis functions of an equivalent quadratic B-spline.
From this it can be seen that the different subdivision levels can be used to control and deform the limit surface at
varying levels of fidelity.

III. Reverse Subdivision Curves
Given a set of points it can often be desirable to obtain the subdivision polygon (or closest possible match) that
produced them. Consider a fine set of points Cn; the coarser set of points Cn−1 can simply be calculated as the least
squares solution of equation 1,

Cn−1 = (Pn−1)+Cn, (10)
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Figure 3. The basis functions for the first two levels of a Chaikin subdivision with fixed endpoint conditions with a 4 point initial control
polygon

where + denotes the Moore-Penrose pseudo-inverse. However as Pn is a non-square, non-invertible matrix this leads
to some loss of information with the result that, for almost all cases,

Pn−1Cn−1 6= Cn. (11)

For this reason it is important to retain any errors created through the least squares process and include them in any
subsequent refinement. This can be done very conveniently and efficiently by extending the refinement matrices Pn by
any orthogonal compliment Qn = null((Pn)T ) and extending the subdivision refinement equation such that

Cn+1 =
[
Pn Qn

] [Cn

Dn

]
= PnCn + QnDn,

(12)

for some set of error coefficients Dn. Then by letting
[
Pn Qn

]−1
=

[
An

Bn

]
equation 10 can be re-expressed as the

reverse subdivision equations

Cn−1 = AnCn, (13)

Dn−1 = BnCn. (14)

This importantly creates a one-to-one relationship between the subdivision refinement levels and thus allows in-
formation to be propagated uniquely and exactly in either the refinement or coarsening direction (figure 4).

a) b)

Figure 4. Process for subdivision refinement (a) and reconstruction (b)

Equation 9 can then be reformed using equation 12 such that

C∞ = φnCn +

N∑
i=n

φi+1QiDi. (15)

By storing and including these error terms it means that any shape can now be represented by any subdivision rule
as long as the correct error terms Dn are used.
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IV. Subdivision Basis Elevation
In shape optimisation, as well as many other applications, it can be advantageous to have varying degrees of fidelity
in different areas of the shape. This can allow high fidelity control in areas that need it and low fidelity control in
areas that do not. To achieve this within the subdivision framework a process of basis elevation has been devised that
promotes a given subdivision basis functions to the first subdivision level. In this context ‘basis elevation’ refers to
the process of copying a subdivision control point or basis function from a given level up to the first level, here on
referred to as the ‘active’ level. All shape control is then be performed on the active level only with the subdivision
configuration itself changed to control fidelity.

Figure 5a shows a graphical representation of an initial subdivision configuration, an open set of five control points
with end-points, subdivided using a cubic B-spline subdivision scheme. Just the first three levels are included here but
in practice they would be further refined to a much finer limit surface. Each node represents a subdivision control point
and the arrows between the nodes represent a weighted association from a ‘parent’ to a ‘child’ where the darkness is
proportional to its weighting. It should be noted that the sum of any node’s parent associations must equal one, this is
because a subdivision control point is always a weighted average of its parent points; this is not true of a node’s child
association.

To ‘elevate’ a given ‘target’ node to the active, first level a chain of surrogate parent nodes are created in the
intermediate levels. Each of these is associated with a weighting of 1 which represent a duplication of the target
control point. However as the sum of all parent associations must sum to one, all of the original associations between
the target node and its parents must be removed. Figure 5c shows the result of elevating the two highlighted nodes.

This elevation process allows any subdivision control point from any level to be pushed to the first level and used
together. It has however been found that if this basis elevation process is applied naively the resulting set of basis
functions can be undesirable; containing redundant, highly overlapping or multi-maxima functions, figures 5d and 5f
show examples of this. The authors have found that these features can negatively influence an optimisation process.
For this reason a three step process has been implemented to ensure that a suitable set of final basis functions are
found:

1. Elevate desired control points to active level
2. Identify non-consecutive children and elevate control points to remove them.
3. Remove redundant control points and simplify configuration to achieve minimal overlap of basis functions.

Figure 5 shows an example of the process to elevate the 3rd control point on level 2 and the 9th control point on level
3. From here on the control points will be referred to in the form [level, id], e.g. [2, 3] and [3, 9]. Figures 5c and 5d
show how elevating these two control points (step 1) affects the subdivision system and basis functions. It can be seen
that two of the basis functions have two maxima, this is due to some of the nodes having non-consecutive children.
This can be seen in figure 5c where the children of control points [1, 2] and [1, 4] have been split by the elevated nodes
and are now not consecutive. To remove this, the isolated control points [2, 4], [2, 6] and [3, 8] are elevated; this is
step 2 and the result of this can be seen in figures 5e and 5f. It should be noted that this step does increase the number
of design variables but the authors have found this to be a reasonable compromise to remove the multi-maxima basis
functions.

A third and final simplification step is then implemented that removes redundancy and minimises the overlap of
basis functions. This is done by finding any set of nodes equal or larger in size than their combined children, then
elevating those children. This ensures that the design space is maintained and the most efficient set of basis functions
is chosen. It can be seen that there are three instances in figure 5e where the above condition is true: control points
[1, 1],[1, 2]; [1, 3],[1, 4] and [2, 6],[2, 7]. Their combined children were then also elevated to give the final configuration
shown in figures 5g and 5h.
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a) Initial set of associations

Level 1 Level 2 Level 3

b) Initial set of basis functions

c) Associations after initial basis elevation (Step 1)

Level 1 Level 2 Level 3

d) Basis functions after initial basis elevation (Step 1)

e) Associations after removal of non-consecutive children (Step 2)

Level 1 Level 2 Level 3

f) Basis functions after removal of non-consecutive children
(Step 2)

g) Associations after final simplification (Step 3)

Level 1 Level 2 Level 3

h) Basis functions after final simplification (Step 3)

Figure 5. Example of basis elevation of 3rd control point on level 2 and 9th control point on level 3.
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V. Adaptive Design Variable Prioritisation
The ability to use a variety of design variables from different subdivision levels opens the possibility of adapting the
design variable used to suit the problem at hand. For an optimisation this could be done once at the start to allow
greater control in an area of particular interest, periodically throughout the optimisation or even after every iteration.
However in order to achieve this, a robust strategy for prioritising the design variables must first be implemented. The
approach described below aims to prioritise the design variables such that the best approximation of the exact surface
gradient is achieved while minimising the number of design variables used.

Given an adjoint approach to aerodynamic simulation a full surface gradient for the objective function J, ∂J
∂z j

, is
available at every iteration. From this the gradients for any particular set of design variables, ai, can be calculated as

∂J
∂a1
∂J
∂a2
...
∂J
∂an

︸︷︷︸
Gradients

=


∂z1
∂a1

· · ·
∂zm
∂a1

...
. . .

...
∂z1
∂an

· · ·
∂zm
∂an

︸ ︷︷ ︸
Geometric

Sensitivities


∂J
∂z1
∂J
∂z2
...
∂J
∂zm

︸︷︷︸
Surface

Sensitivities

. (16)

Within the subdivision framework the geometric sensitivities for a given level L are given by φL where each column
φL

i represents the basis function for design variable aL
i . The gradients for each subdivision level are therefore given by

gL =
∂J
∂aL

i

=
(
φL

i

)T ∂J
∂z j

. (17)

These gradients can then be projected onto the aerofoil surface to obtain the parametrised surface sensitivities, φL
i gL.

For an unconstrained steepest descent optimisation this is equivalent to the surface deformation direction. As the
subdivision level, and therefore fidelity, is increased these parameterised surface sensitivities will converge to the
exact adjoint surface sensitivity. The importance of each design variable can then be characterised by the change in
gradient as the subdivision level is increased. This can be calculated directly by comparing the gradients at a given
level and its subdivided previous level, i.e.

∆gL = ĝL
− PL−1ĝL−1 (18)

where the hat represents the normalisation ĝL =
gL

||φL
i gL ||

. The rationale behind this metric is that a large change in the
gradients between levels suggests that the addition fidelity available at that level has a significant impact. This method
then localises this so that the influence of individual design variables can be identified. The values of ∆gL

i can then
be compared across the levels with the largest values representing the most important design variables. In this work a
tolerance is specified such that if ∆gL

i > ltol the design variable is used.
One assumption that this metric makes is that the adjoint surface sensitivity is always the best search direction for

an optimisation. Previous work35,36 has however suggested that using high fidelity gradients, such as exact adjoint
surface sensitivities, is not always appropriate and that maintaining a smooth surface throughout the optimisation
process is crucial. This was also investigated by the authors37 who showed that using un-smooth surface deformations,
particularly in the early stages, can hinder both the rate of convergence and robustness of an optimisation. For this
reason a limitation on the available design variables is applied at the start of the optimisation process. A maximum
subdivision level, Lmax, is set for the first optimisation phase, this is then increased by some integer u (typically u = 2)
at every refinement stage.

A further limitation is also included for the profile-constrained optimisation presented in section VIII.C. This
is applied to reduce unnecessary fidelity in areas where constraints are going to be immediately violated. In this
work the profile constraint enforces that the optimised aerofoil surface must always be outside the initial aerofoil
surface. It can therefore be deduced that any design variable supporting an area of the surface sufficiently close to the
constraint boundary with an inwards pointing gradient will immediately violate the constraint and thus not be used by
the optimiser. For this reason any design variable for which this is true ∆gL

i = 0.

VI. Aerofoil Parameterisation
To parameterise the aerofoils in this work a cubic B-Spline subdivision scheme is used with a single, closed initial
polygon with ‘corners’ at the leading and trailing edges. This ensures that the position of the leading and trailing edges
are equal to the ‘corner’ control points at every subdivision level. This is equivalent to using two distinct subdivision
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curves for the upper and lower surfaces with shared endpoints at the leading and trailing edges. In physical terms the
trailing edge is a corner, however the leading edge is not, for this reason the control points closest to the leading edge
are constrained to lie directly above and below it; this enforces the vertical surface required.

In this work the first subdivision level has been defined by six control points with two points defining the leading
and trailing edges at [x/c, z/c] = [0, 0] and [1, 0] respectively, and points at x/c = 0 and x/c = 0.5 on each surface. All
points are free to move in the z direction apart from the trailing edge point that is fixed. In this work, unless otherwise
specified, the aerofoils have been defined by 601 cosine distributed points and the maximum level is defined by the
eighth subdivision polygon containing 260 points. Table 1 shows the total number of control points in each level used.

Subdivision Level Number of Control Points

1 6
2 8
3 12
4 20
5 36
6 68
7 132
8 260

Table 1. Number of control points at each subdivision level

Given an initial aerofoil Cinitial, the starting initial subdivision positions can then be calculated by the recursive
application of equation 13. The resulting control point positions, Cn

initial, represent the least-squares approximations of
the initial aerofoil for the limit surfaces φnCn

initial. At each of these subdivision levels a set of fixed error terms Dn can
then be calculated by applying equation 14. Then for the set of control points Cn

initial calculated, equation 15 implies
that

Cinitial ≡ φ
nCn

initial +

N∑
i=n

φi+1QiDi, ∀n ≤ N. (19)

The benefit of this is that any subdivision optimisation can be set to start from exactly the prescribed initial aerofoil
rather than a best approximation. This approach has been used for all the optimisations in this paper. Figure 6 shows
the initial positions for the first four subdivision levels; each of which reproduce a NACA0012 exactly.

NACA0012

Level 1

Level 2

Level 3

Level 4

Figure 6. Initial control point positions for the first four subdivision levels for a NACA0012.

Each of these available subdivision levels can then be used to parametrise the aerofoil independently, in what have
been described hereafter as ‘single-level’ schemes, in an ascending series, which have been described as ‘multi-level’
or by adaptively modifying the subdivision scheme (sections IV and V), which have been described as ‘adaptive’. For
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the single-level schemes the aerofoils are defined by the equation

Caero = φnCn +

N∑
i=n

φi+1QiDi (20)

for the desired subdivision level n with control points Cn. For the multi-level schemes the same definition applies
but when a ‘refinement trigger’ is activated n → n + 1. This increases the number of design variables, and therefore
available fidelity, while maintaining the aerofoil shape exactly. For the the adaptive methods a reconfiguration of the
full subdivision system is triggered by the ‘refinement trigger’ with the design variables chosen through prioritisation
technique described in section V. This recalculates the parameterisation such that fidelity is placed in areas where it
is needed, there is therefore not always a strict increase in the total number of design variables. The aerofoil shape is
again maintained exactly.

The aim of these refinement methods is to use fewer design variables in the early stages of optimisation to increase
the rate of convergence, robustness and, for finite-difference gradients, reduce gradient calculation times. Then, as the
lower dimensional design space looks to be fully exploited, the refinement process is applied to allow the larger design
space to be explored.

For each optimisation case investigated a variety of these subdivision schemes have been applied. Each available
subdivision level has been applied as a single-level parameterisation, as four multi-level schemes starting from the
first, second, third and fourth levels respectively and refining up to the final level, as well as a single adaptive scheme.
The single-level schemes are equivalent to using normal cubic B-Splines and act as the control group for which the
benefits of the other methods have been compared against.

VII. Optimisation Methodology
In this work subdivion curves have been applied to a range of aerodynamic optimisation problems. For all of these
tests the multi-purpose large-scale optimiser SNOPT38 was used. This is a gradient-based sequential-quadratic pro-
gramming (SQP) method that employs a reduced-Hessian BFGS search-direction and, in this work, a non-derivative
line-search technique. This was coupled with two different aerodynamic solvers; a potential flow panel-code and the
SU2 Euler solver39,40. For the potential flow solver function gradients were calculated by finite-difference, importantly
this means that the cost of calculating the gradients is proportional to the number of design variables used. For the
adaptive method adjoint surface sensitivities are required to prioritise the design varaibles, for the potential flow solver
this is calculated by finite-differencing each of the aerofoil points. For SU2 however, the gradients were calculated
using the adjoint equations, and consequently the cost of calculating the gradients is independent of the number of
design variables used.

Optimiser convergence was determined based on the activation of one of three criteria:
1. The Karush-Kuhn-Tucker (KKT) first-order optimality condition38 satisfying a tolerance level
2. The optimiser unable to improve the objective function
3. For the schemes not on the final level, satisfying the refinement condition (equation 21)
The refinement condition aims to trigger the refinement of the subdivision scheme when the optimisation has

exploited most of the available gains from the current design space and is approaching the local minimum. This
moment can be difficult to identify as it is very hard to differentiate between the optimiser converging to a local
optimum and the optimiser traversing a difficult area of the design space. If refinement is triggered too early the under-
exploitation of design space can result in slower convergence and possibly a poorer final result, and if it is triggered too
late, over-exploitation of the design space can waste resources. A method for approximating the optimum refinement
time was proposed by Anderson26 where refinement is triggered when the convergence of the objective function with
respect to the iterations drops below some proportion t < 1 of the maximum attained. A slightly modified version of
this is implemented in this work. This triggers refinement if the rolling average of the log-scaled gradients is less than
a proportion t of the max rolling average of the log scaled gradients; i.e.

1
w

w−1∑
j=0

|Gk− j| < max
m≤l≤k

t
m

m−1∑
j=0

|Gl− j| (21)

where Gi = log10(Ji− j) − log10(Ji− j−1) (22)

for objective function J, iteration k (for current optimisation phase), t < 1 and integers w and m. The parameter t
controls the change in gradient required to trigger the scheme and w and m control the size of the rolling average
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windows for the maximum and current gradients. If small values are used for w and m this defines a very aggressive
triggering system, for well behaved, consistently converging optimisations this ensures that iterations are not wasted
converging areas close to a local minimum. For more complex optimisation procedures this can however cause prema-
ture triggering when the optimiser only makes a small improvement through a highly non-linear area. For this reason
these parameters can be increased to average the gradients over a given window and only trigger refinement when
improvements are consistently small.

VIII. Optimisation Results
To test benefits of using the multi-level and adaptive subdivision parameterisations described above, a series of opti-
misations of varying difficulty have been performed. A set of geometry matching problems present the simplest test,
minimising the RMS geometry error between the aerofoil surface and a target aerofoil. A further set of inverse design
problems present a more challenging optimisation with a final constraint drag optimisation test representing the most
difficult test.

A. Geometry Matching

Three geometry matching problems have been considered in this work. Each one starts from an initial NACA0012
then targets RAE2822, NACA4410 and ONERA M6 aerofoils. For all of these optimisations the objective function is
defined as the root-mean-squared difference between the current and target aerofoils, i.e.,

J =

√√
1
n

n∑
i=1

(
zi − ztarget

i

)2
, (23)

the gradients are then calculated analytically. The refinement parameters used are w = m = 1 and t = 0.3 and the
adaptive parameters are ltol = 5 × 10−3, Lmax = 4 and u = 2.

Figures 7, 8, 9 show the results of these optimisations. For each of the three test cases in can be seen, for the
single-level parameterisations, that as more design variables are used the results improve. This is what you would
expect as the design space is increased, it can however be seen that it can take quite a large number of iterations to
reach the final result. For the multi-level cases it can be seen that they always achieve a final result equivalent to the
‘single-level 8’ case, it appears that this is the global optimum for all three test cases. The multi-level case, however,
converges quicker in most instances obtaining the optimum in fewer iterations. The rate of convergence of the multi-
level methods also seems to be dependant on the starting level used, with the ‘4→8’ case performing best for all three
test cases. The adaptive method then provides further improvement on the ‘4→8’ multi-level method for the RAE2822
test case and shows comparable performance for the other two test cases.
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Figure 7. Results for the geometry matching optimisation from a NACA0012 to an RAE2822. Numbers represent the number of design
variables for the previous optimisation phase.
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Figure 9. Results for the geometry matching optimisation from a NACA0012 to an ONERA M6. Numbers represent the number of design
variables at the end of an optimisation phase.

B. Inverse Design

Three inverse design problems have also been considered to compare the subdivision aerofoil parametrisations. Each
one starts from an initial NACA0012 then targets RAE2822, NACA4410 aerofoils with α = 0 and an ONERA M6
with α = 3. For all of these the objective function is defined as the root-mean-squared difference between the current
and target pressure distributions, i.e.,

J =

√√
1
n

n∑
i=1

(
Cpi −Cptarget

i

)2
. (24)

The pressure distributions are calculated with a potential flow panel code and the gradients are calculated through
finite-forward-differencing with a step size of 10−10. The refinement parameters are w = m = 1 and t = 0.1 and the
adaptive parameters are ltol = 10−2, Lmax = 4 and u = 2.

Figures 10, 11, 12 show the inverse design test case results. For the single-level methods it can again be seen
that, in general, the final results improve with increased fidelity. There are however some instances where this is not
true, for example, for the NACA4410 case (figure 11) the 6th, 7th and 8th level methods fail to improve on the final
result obtained using just the 5th level. This shows that the optimiser has failed to reach the global optimum. It can
also be seen that the rate of convergence tends to increase with fidelity for these cases, in particular it can be seen
for the RAE2822 case (figure 10) where the ‘single-level 8’ case takes a significantly longer to converge than any of
the other methods. The multi-level methods converged to the optimum result consistently for all cases investigated
and have better convergence rates than the high fidelity single-level cases. For all three test cases the adaptive method
then showed further improvements to convergence rates, particularly for the high fidelity regions. Figure 13 plots the
objective function obtained at the end of each optimisation phase against the number of design variables used. It shows
that the adaptive cases always requires fewer design variables than the multi-level schemes to obtain a given objective
function. In particular a result comparable to the optimum is achieved with between 162-175 design variables for all
three test cases, compared to 259 required by the multi-level methods. This emphasises the efficiency of the design
variables used by the adaptive parameterisation.
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Figure 10. Results for the inverse design from a NACA0012 to an RAE2822 using a potential flow solver at α = 0. Numbers represent the
number of design variables at the end of an optimisation phase.
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Figure 11. Results for the inverse design from a NACA0012 to a NACA4410 using a potential flow solver at α = 0. Numbers represent the
number of design variables at the end of an optimisation phase.
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Figure 12. Results for the inverse design from a NACA0012 to an ONERA M6 using a potential flow solver at α = 3. Numbers represent
the number of design variables at the end of an optimisation phase.
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C. Inviscid Drag Reduction

TEST CONFIGURATION

Initial Aerofoil: NACA0012,
Flow Conditions: α = 0,

M = 0.85,
Minimise: CD,

Subject to: CL = 0,
y ≥ yNACA0012 ∀x ∈ [0, 1],

Refinement Parameters: t = 0.1, w = 3, m = 3,

Adaptive Parameters: ltol = 10−2, Lmax = 3, u = 1.

The final optimisation is a test case outline by the Aerodynamic Design Optimisation Discussion Group41. This is
the inviscid drag reduction of a NACA0012 at M = 0.85 and α = 0. A considerable number of papers have been
published on this case1,2,37,42–49 and it has been shown to be a particularly difficult problem to optimise due to a range
of characteristics such as multiple local minima37, non-symmetric solutions48 and hysteresis49.

These tests have been performed with the unstructured CFD solver SU2 with the local thickness constraint applied
as linearly in SNOPT at every chord-wise percentile. To calculate the design variable gradients the adjoint equations50

are solved to calculate the surface sensitivities which are then projected, in the z direction, on to the design variables.
The benefit of this method is that the calculation of the gradients is independent of the number of design variables used.
Due to the symmetry of the problem a symmetry plane was aligned with the aerofoil chord and just half the mesh was
solved. This meant that only half of the aerofoil surface, and therefore only half of the subdivision curve, needed to be
modelled. For this reason each subdivision level has half the number of control points and design variables used in the
other optimisation cases. The full optimisation study was run on a 257 × 257 half-mesh (figure 14), generated using a
conformal mapping approach where all surface cells have aspect ratio one with a farfield distance of 50 chord lengths.
The mesh was then deformed at every iteration using an RBF method51 with a support radius of 10 and Wendland’s C4
RBF52. This ensures the surface deformations are dissipated smoothly across the mesh to maintain mesh quality. The
RBF deformations are also mirrored with respect to the x-axis to ensure the symmetry plane stays fixed throughout
the optimisation. At each CFD run the solution was started from the previous best result to increase the chances of the
lower branch of the hysteresis loop being found. This was found to be a largely successful approach and is believed to
be the main contributor to the improvement in results compared to previous work from the authors37,53.

Figure 14. 257 × 257 mesh used for the inviscid, symmetric NACA0012 optimisation.

It was found that no improvement could be made at subdivision level 1 (with 2 design variables). For this reason
only levels two and above are included in the results for this test case.

The results for this case are displayed in figure 15. The drag convergence results in figure 15a show that the
single-level methods improve with fidelity up to level 5 after which they fail to successfully exploit the available
design space. This can further be seen in figures 15b and 15c where the single-level results show significantly different
aerofoil shapes and CP distributions to the optimum found. In particular the aerofoil shapes for levels 6, 7 and 8 are
not very smooth. The formation of these unsmooth shapes is likely to be the reason for their premature stagnation
which is in agreement with the conclusions of Masters et al.37. It can then be seen that the multi-level methods all
converge to good results and all surpass those from the single-level methods. In this case the ‘3→ 8’ method produces
the joint best result of 15.7 drag counts. Figures 15b and 15c show that all three of the multi-level methods converge
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to similar aerofoil shapes though there are some small discrepancies in the CP distributions. Interestingly, even though
the ‘2 → 8’ and ‘4 → 8’ methods converge to very similar drag values they have slightly different CP distributions at
the leading and trailing edges. This indicates that there may be some degree of multi-modality around the optimum
solution. For this test case the adaptive method takes a very similar path to that of the ‘3 → 8’ scheme, achieving an
equivalent final result though it uses slightly fewer design variables in the latter optimisation stages.

Iterations CD (Counts)

Baseline ∼ 469.4
Single-Level 2 (3 DV) 6 332.2
Single-Level 3 (5 DV) 12 148.5
Single-Level 4 (9 DV) 18 65.9
Single-Level 5 (17 DV) 52 25.1
Single-Level 6 (33 DV) 12 246.5
Single-Level 7 (65 DV) 33 247.0
Single-Level 8 (129 DV) 214 144.7
Multi-Level 2→8 83 18.8
Multi-Level 3→8 81 15.7
Multi-Level 4→8 93 18.6
Adaptive 81 15.7

Table 2. Table of final drag results (in counts) for the inviscid NACA0012 optimisation at α = 0 and M = 0.85 with 257 × 257 mesh.

A limited study was also done on the effects of increasing the mesh resolution. For this the ‘3 → 8’ multi-level
optimisation was run with increased mesh resolutions of ‘513×513’ and ‘1025×513’. The result of these optimisations
are displayed in figure 16 and show that the all three mesh resolutions produce similar results up to approximately 16
drag counts where the increased mesh resolution allows a further reduction in drag over the initial result. The final
drag results are then summarised in table 3 which show that the finest mesh produces the best result of just 4.2 drag
counts.

Mesh Resolution CD (Counts)

Multi-Level 3→8 257 × 257 15.7
Multi-Level 3→8 513 × 513 8.2
Multi-Level 3→8 1025 × 513 4.2

Table 3. Table of final drag results (in counts) for the inviscid NACA0012 optimisation at α = 0 and M = 0.85 for increased mesh resolution.
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Figure 15. Results for the symmetric inviscid optimisation of a NACA0012 at α = 0 and M = 0.85 with 257 × 257 mesh.
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IX. Conclusion
In this work the benefits of using hierarchical subdivision parametrisations for aerofoil optimisation has been investi-
gated. Three different parameterisation methods have been included: a ‘multi-level’ scheme that globally refines the
parametrisation on optimiser convergence; an ‘adaptive’ scheme that locally refines and coarsens the parameterisation
based on the adjoint surface sensitivities and a ‘single-level’ control group that uses no refinement. Each of these
methods have been applied with a range a parameters.

Seven test cases have been investigated, three geometric shape matching case, three inverse design cases and
the symmetric inviscid drag reduction of a NACA0012. These provide a range of tests that vary in computational
requirement as well as complexity. The geometric shape matching cases represent the simplest of the optimisations.
For all three of the tests it appears that all of the individual cases reach their global minimum. It was however found
that by using the multi-level methods compared to the single-level methods the optima could be reached in fewer
iterations. The adaptive method then provided additional improvement for one of the cases and comparable results for
the other two.

The three inverse design cases then represent a significant increase in complexity compared to the geometry match-
ing optimisations. For these cases it was found that some of the high-fidelity single-level methods stopped prematurely
in local minima and failed to fully exploit the available design space. The multi-level methods, however, did not have
this problem and always reached, what appears to be, the global minimum. They also showed better convergence rates
than the equivalent single-level methods. The adaptive cases also reached the optimum in all cases, as well as show-
ing further improvement in the convergence rates over the multi-level methods and requiring fewer design variables
throughout the optimisation.

The final optimisation case, the inviscid, symmetric drag reduction of a NACA0012, represents the most complex
optimisation case investigated. For this, the high fidelity single-level methods again struggled to navigate the design
space and often stopped in local minima. The multi-level and adaptive cases however always converged to very good
results with the ‘multi-level 3→ 8’ and adaptive cases achieving the best results of 15.7 drag counts. A limited study
on the effects of increasing the mesh resolution was then performed. This showed that increasing the mesh resolution
significantly reduced the final drag results with the finest ‘1025 × 513’ mesh producing a result of 4.2 drag counts.

This work has shown that using the hierarchical multi-level and adaptive parameterisation can improve the ro-
bustness and rate of convergence of a range of optimisation cases when compared to the single-level results which
are equivalent to cubic B-splines. They converged to the vicinity of the optimum result in all instances whereas the
single-level methods often failed to reach the global minimum if large numbers of design variables were used. The
adaptive method then showed that further improvements to convergence could be made through the efficient selection
of design variables such that local fidelity was only increased where necessary.
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